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Abstract 

Hachenberger, D. and D. Jungnickel, Translation nets: a survey, Discrete Mathematics 

106/107 (1992) 231-242. 

We survey some recent results on translation nets. 

1. Introduction 

Let G be a group of order S* 3 1 and let W be a set of subgroups of G 
satisfying: 

(1.1) IHI= I, 
(1.2) ILll =s for all U in W, 
(1.3) UV = G for any two different elements U and V in W. 

Then W is called a partial congruence partition in G with parameters s and r (for 
short: (s, r)-PCP) while the elements of W are called components. For reasons of 
cardinality, (1.3) is equivalent to 

(1.3’) U fl V = 1 for any two different components U and V of W. 
We are interested in partial congruence partitions W in G because the incidence 

structure 

(1.4) N(H) = (G, {Ug 1 g E G, U E W, E 1 
is a net of order s and of degree r (for short: an (s, r)-net). i.e., a finite, simple 
afJine l-design, additionally admitting G in a natural way as translation group 
acting regularly on the set of points of N(H). Therefore N(W) is called a 
translation net of order s and of degree r. (For geometric reasons, one usually 
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assumes r 2 3.) Observe that the parallel classes of N(W) are exactly the sets of 
right cosets of the components of W. Conversely, every translation net with 
translation group G can be coordinatized as in (1.4) for a suitable partial 
congruence partition W in G (see [33,4]). H ence the existence of translation nets 
is a purely group-theoretic problem which can be formulated as follows: 

(1.5) Let G be a group of order s2 > 1. Determine the number 

T(G):= max{r cs + 1 1 there exists an (s, r)-PCP in G} 

exactly or find at least bounds for it. 
In this survey, we will discuss the existence problem for translation nets, the 

question of when a translation net is maximal and the codes of abelian translation 
nets. This updates the relevant section in Jungnickel [24]. 

2. Upper bounds for T(G) 

It is easy to show that the degree r of an (s, r)-net N is at most s + 1. Equality 
holds if and only if any two points are joined by exactly one line. In this case N is 
an afine plane of order s. Thus translation nets are generalizations of the 
well-known translation planes which were first studied by Andre [l]. The standard 
reference for translation planes is Liineburg [27]. It is a fundamental fact that the 
translation group of a translation plane is elementary abelian. Therefore, we 
have: 

(2.1) If G is an elementary abelian group of order pti > 1 (for some prime p), 
then T(G) = p” + 1. 

A natural question, which was first dealt with by Jungnickel [21] is to ask for 
upper bounds for the degree r of a translation net with translation group G 
provided that G is not elementary abelian. Theorem 2.2 is due to Frohardt [14] 
which is generalized by Jungnickel [23]. It says that upper bounds on T(G) are 
found by studying the Sylow-subgroups of G. 

Theorem 2.2. Let G be a group of order s2 > 1, p be a prime divisor of s and let P 
be a p-Sylow-subgroup of G. Then any (s, r)-PCP in G induces a partial 
congruence partition in P with the same degree r, i.e. T(G) c T(P). 

This result is the main motivation for studying the existence of partial 
congruence partitions in p-groups. Theorem 2.3 solves problem (8.2.14) of 
Jungnickel [24]. 

Theorem 2.3 (Hachenberger [Ml). Let p be any prime and let G be a group of 
order p2” which is not elementary abelian. Zf n 3 4, then 

T(G) s (p”-’ - l)(p - I)-’ =p”-‘+. . . +p + 1. 
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For example, if G is a group of order 3’ which is not elementary abelian, then 
T(G) < 13 while T(EA(38)) = 82. Theorem 2.3 is a generalization of a result of 
Frohardt [14] where the particular case p = 2 is dealt with. As the cases p = 2 and 
p odd are not distinguished in the proof of Theorem 2.3, many of the arguments 
used there are different from Frohardt’s, who used special facts about 2groups. 

3. Partial congruence partitions in groups of order p4 and p6 

In this section we summarize some results on groups of order p4 and p6, two 
cases not covered by Theorem 2.3. 

Theorem 3.1 (Hachenberger [17]). Let G be a group of order p4 satisfying 
T(G) s 3. Then one has one of the following cases: 

(3.1.1) G is elementary abelian and T(G) =p2 + 1. 
(3.1.2) G is isomorphic to &,p2 x &I,Z and T(G) =p + 1. 
(3.1.3) p is odd and G is either isomorphic to (x, y ( xp2 = yp2 = 1, [x, y] = xp ) 

or E(p3) x &. In both cases, one has T(G) =p + 1. 
(3.1.4) p = 2 and G is either isomorphic to (x, y 1 x4 =y4 = 1, [x, y] =x2y2, 

(~“y’)” = 1) or D4 x Z2. In both cases, one has T(G) = 3. 

(Here Z, denotes the cyclic group of order a, E(p3) the extraspecial group of 
order p3 and exponent p and D4 the dihedral group of order 8.) 

Theorem 3.2 (Hachenberger [IS]). Let G be a group of order p6 satisfying 
T(G) ap + 2. Then one has one of the following cases: 

(3.2.1) G is elementary abelian and T(G) =p3 + 1. 
(3.2.2) p is odd, G is isomorphic to E(p3) x EA(p3) and T(G) =p + 2. 
(3.2.3) G is isomorphic to (a, b, c, u, v, x 1 all generators have order p; 

[a, b] = u, [b, c] = v, all further commutators in generators are equal to I) and 
T(G)=p+2. 

(3.2.4) p is odd, G is isomorphic to the special group of exponent p with center 
of order p3 and T(G) =p2 + 1. 

The groups G of order 64 satisfying T(G) 2 4 were already classified by 
Sprague [33] and Gluck [15]. In the main parts of the proof of Theorem 3.2 the 
cases p = 2 and p odd are not distinguished. The special interest of some authors 
in groups of even order stems from a theorem of Dillon [ll] which states that 
(2k, k)-partitions in groups G of order 4k2 can be used to construct certain 
difference sets in G. This shows that partial congruence partitions also lead to 
other interesting objects studied in design theory (cf. Bailey and Jungnickel [3]). 
By results of Sprague [33], Gluck [15], Frohardt [14] and Hachenberger [17,18] 
all groups G of order p2k2 (where k 2 3 and p is the smallest prime divisor of IG 1) 
satisfying T(G) 2 k are classified. 
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4. Constructions and examples 

In order to determine T(G) exactly for some nontrivial group G of square 
order, one has to show the existence of a partial congruence partition of degree 
T(G) in G. Therefore, examples of partial congruence partitions implicitly are 
needed in the proofs of Theorems 3.1 and 3.2. It is remarkable that in all but the 
groups in (3.2.3) any known example of a PCP of degree T(G) contains at least 
one normal component. It seems therefore to be important to study such partial 
congruence partitions. This is done by Hachenberger and Jungnickel [19] and by 
Hachenberger [16] under a geometric and group theoretic point of view, 
respectively. A simple but important observation due to Sprague [33] shows that 
it is useful to divide the class of all partial congruence partitions into the following 
families: 

(a) there exists no normal component, 
(b) there exists exactly one normal component, 
(c) there exist exactly two normal components, 
(d) there exist at least three normal components (which already implies that 

the corresponding translation group is abelian). 
A further fundamental result says that the existence of a partial congruence 

partition W with JW] 2 2 is equivalent to the existence of a so-called system of 
pairwise orthogonal othomorphisms between any two different components of W. 

Theorem and Definition 4.1 (Hachenberger and Jungnickel [19]). Let W be an 
(s, r)-PCP in a group G of order s2 > 1 and assume that r 3 2. Let A and H be two 
different components of W. For any U in II-! - {A, H} let yo be the following 
mapping : 

yr,:H-+A h + y,(h)> 

Then : 
(4.1.1) y. is a bijection. 
(4.1.2) U = {by,(h) 1 h E H}. 

where {y,(h)-‘} = A fl Uh. 

(4.1.3) For any two different components U and V in W - {A, H} the mapping 
6 u,“: H+A, h-, y”(h)-‘y,,(h) likewise is a bijection. 

Moreover, any partial congruence partition may be represented in this way. Any 
yrr in T(H,A):={y,I UEW-{A, H}} . IS called an (H, A)-orthomorphism and 
T(H, A) is called a system of pairwise orthogonal (H, A)-orthomorphisms. 

If A is a normal subgroup of G in the situation above, then G is isomorphic to a 
semidirect product S(H, A, JC) for a suitable homomorphism n : H-, Aut(A). In 
this case, the mappings yU in T(H, A) additionally satisfy the following property 

(4.2) Y&,hz) = yrr(Wn(hz) y,(h,) for all hl, h2 in H 

and are therefore called semi-isomorphisms of H onto A (with respect to n), 
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while T(H, A) is called a system of pairwise orthogonal semi-isomorphisms of H 
onto A (with respect to JC). 

Example 4.3. Let p be an odd prime and G be isomorphic to E(p3) X EA(p’), 
the group in (3.2.2), e.g. 

G = (a, b, u, v, x, y ) all generators have order p; [a, b) =y, 
all further commutators in generators are equal to 1). 

Then A := (av, 6, y) is a normal subgroup which is isomorphic to E(p”) while 
H := (bx, v, uy ) is an elementary abelian subgroup of order p3 which is a 
complement of A in G. For i in GF(p), the Galois field of order p, let 

{ 

H -+ A, 
cpi : b%Yvaxfiyy-+a -n+ryb-B-ia+i~yz,-a+iy 

Y 
-y-ap+ifly+ip-i( -ez+‘y+ly)’ 

These mappings form a system of pairwise orthogonal semi-isomorphisms of H 
onto A with respect to conjugation of A by elements of H. The corresponding 
(p”, p + 2) - PCP, W:= {A, H} U {vi(H) 1 i E GF(p)}, is of maximal possible 
degree by (3.2.2). 

Partial congruence partitions in family (b) where the normal component A is 
abelian are of particular interest. Using some basic facts about the first 
cohomology group of the translation group G considered as an extension of A, 
one can actually construct such PCPs (see Hachenberger [16]). In this case an 
(H, A)-orthomorphism is a bijective cocycle of H onto A (i.e., a mapping 
satisfying (4.2) under the assumption that A is abelian). The set of all cocycles of 
H into A forms a subgroup with respect to pointwise multiplication which is 
isomorphic to the subgroup 

U(H, A) : = { QI E Aut(G) 1 q(a) = a f or all a in A, cp(hA) = hA for all h in H} 

of Aut(G) (see Aschbacher [2, §17]). Therefore partial congruence partitions 
containing H and A can be described by suitable subsets of U(H, A). 

Example 4.4 (Hachenberger [16]). Let GF(q) be the Galois field of order q and 
odd characteristic p. Then 

(a,, b,, cl, x1, Y,, z1)(a2, bZ, c2, x2, y2, G) 

:= (a, + az, b, + bz, cl + c2, x1 + xz - a2blr 

YI + YZ - a+l, =I + 3 - bd 

defines a multiplication on the set G of 6-tupels over GF(q) which turns G into a 
non-abelian group of exponent p. The subgroups H : = {(a, b, 0, x, 0, 0) ) a, b, x E 
GF(q)} and A:= ((0, 0, c, 0, y, z) 1 c, y, z E GF(q)} of G have order q3 each and 
intersect trivially. A is an elementary abelian normal subgroup of G while H is a 
special group which is not normal in G. Let yl, ql, f,, y2, rj2, & be any 
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elements of GF(q). The mapping z:= z(y,, ql, cl, yz, q2, <J defined by 

(a, b, c, x, y, z)~ 

a 
:= a, b, c + yla + YZ~, x, Y + rlla + r/d - y1 2 

0 
+ y2x, 

2+5;1a+t~b-~2 
b 

0 2 
- YIX - y,ab 

> 

is an automorphism of G fixing the sets A and G/A elementwise and therefore by 
definition lies in U(W, A). Now there exists an element d = d(q) in GF(q) such 
that the polynomial t3 - t - d is irreducible in GF(q)[t]. Then the set 

Yd I= { Z;,j 1 i, j E GF(q)} with ti,j:= z(-j, 0, -I!-‘(i +j), i, -2-l dj, 0) 

is a subgroup of order q* of U(H, A) and the orbit of H under !& together with A 
forms a (q3, q* + l)-PCP in G. 

Considering the case where H and A both are normal components in G, the 
orthomorphism method reduces to the well-known automorphism method (see 
[3]) which is based on ideas of Mann [28] for constructing certain sets of mutually 
orthogonal latin squares. 

Automorphism method 4.5. Let K be a finite group. An automorphism z of K is 
called fixed-point-free if z = idK or if 1 is the only element of K fixed by t. A 
subset r of Aut(K) is called a system of pairwise orthogonal fixed-point-free 
automorphisms of K if 

(4.5.1) y is fixed-point-free for all y in r and 
(4.5.2) y-lq is fixed-point-free for all p, y in IY 

Let f(K) denote the maximal cardinality of a set of pairwise orthogonal 
fixed-point-free automorphisms of K, and let G := K x K, A := ((1, k) 1 k E K} 
and H = {(k, 1) 1 k E K}. Then there exists an (IKI, r)-PCP in G containing the 
normal subgroups A and H as components if and only if f (K) 3 r - 2. 

Example 4.6. Let p be a prime and let at > 1 be an integer which is not a power of 
2. Furthermore, let K = GF(q) be the Galois field of order q = p” and let t be an 
automorphism of K of odd order which is not the identity. Then 

A(n, t):= {~(a, 6) 1 a, b E K) 

with 

1 a b 

0 1 a’ 

00 1 
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is a non-abelian group of order q2 and 

H:= {h(A): ill K*} with h(il):=diag(l, il, An’) 

is a cyclic group of order q - 1 acting in the following way as an automorphism 
group of A(n, z): 

u(a, b)F=h(k)-‘u(a, b)h(A) = u(Aa, ;Il”b). 

It is not difficult to see that h(A) is fixed-point-free unless p is odd and il = -1. 
Hence any complete system of representatives of the right cosets of the subgroup 
(h(-1)) in H forms a system of pairwise orthogonal fixed-point-free automorph- 
isms of A (n, t). As the order of h (- 1) is 2 if p is odd and 1 if p = 2, we therefore 
obtain 

T(A(n, t) x A(n, t)) af(A(n, t)) + 2 2 (q - 1) - gcd(2, q - l)-’ + 2, 

which proves the existence of a (q’, (q - 1) . gcd(2, q - l)-’ + 2)-PCP in the 
group A(n, T) x A(n, t). 

We finally consider the abelian case. This was completely solved by Bailey and 
Jungnickel [3]. 

Theorem 4.7. Let A = (&)“’ x * - - x (ZpO)“u where m, # 0. Then 

T(A x A) =pm + 1, whevem=min{m,~m~~l,i=1,..., a}. 

As any partial congruence partition in an abelian group can be constructed by 
Method 4.5, Theorem 4.7 together with an obvious direct product construction 
indeed completely solves the existence of translation nets with an abelian 
translation group (see [24]). 

5. Maximal nets 

In this section, we discuss the application of translation nets to a problem which 
has generated considerable interest ever since it was first considered by Bruck [6], 
i.e., the construction of maximal nets or, equivalently, maximal sets of mutually 
orthogonal Latin squares (MOLS). This is of particular interest to the question of 
the quality of the bound in Bruck’s [7] celebrated completion theorem for nets. 
While this result roughly states that any net of order s and degree r is imbeddable 
into an affine plane of the same order provided that its deficiency d = s + 1 - r 
(i.e., the number of ‘missing’ parallel classes) is only in the magnitude of %, the 
largest known examples of maximal nets all have deficiency about j&. The 
following recent result due to Metsch [29] considerably narrows this gap by 
lowering the bound required for imbeddability to about %. 
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Theorem 5.1. Let N be an (s, r)-net of deficiency d = s + 1 - r satisfying 

(51.1) 3sX3d3-18d2+8d+4-2R(d*-d-1)+9R(R-l)(d-1)/2, 

where R = d + 1 (mod 3) and R E (0, 1,2}. Then N can be imbedded into an afine 
plane of order s. 

We recall that another result of Bruck [7] guarantees that an (s, r)-net N has at 
most one completion to an affine plane of order s provided that N has small 

deficiency, i.e., that the deficiency d of N satisfies 

(51.2) s > (d - l)*; 

in this case, N has at most sd transversals, and equality holds if and only if N is 
imbeddable. These results are no longer true for nets with critical deficiency, i.e., 
with 

(51.3) s = (d - l)“, 

as shown by Ostrom [32]. Here N has at most 2sd transversals, and equality holds 
if and only if there exist exactly two completions of N to an affine plane of order 
S. 

In view of the preceding remarks, the construction of transversal-free nets of 
small or critical deficiency is of particular interest. The first examples of such nets 
were provided by Bruen [9, lo] who constructed transversal-free translation nets 
of order s =p2 and deficiency d =p (where p is an odd prime) and d = p - 1 
(where p 2 5 is a prime). We shall now sketch the known examples which can be 
obtained by means of translation nets. (For other recent constructions, see Evans 
[12,13].) The remaining results of this section are due to Jungnickel [25] unless 
stated otherwise. As the following result shows, only elementary abelian 
translation groups have to be considered. (In fact, a more general result can be 
obtained, but the version given here suffices. The proofs use the bounds discussed 
in Section 2.) 

Theorem 5.4. Let N be an (s, r)-translation net with translation group G, where 
s # 4, let p be the smallest prime divkor of s, and assume that s is a square. If the 
deficiency d of N satisfies 

(5.4.1) d<max{26, (p - I)$>, 

then G is elementary abelian. 

Jungnickel [22] proved that any affine plane A extending a translation net N of 
small deficiency has to be a translation plane (with the same translation group). 
We now state an improvement of this result. 
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Theorem 5.5. Let N be a translation net of small defkiency d = s + 1 - r with 
translation group G, and assume that N has order s f2, 4. Then the number of 
transversals of N is a multiple of s, say ts, where t < d; adjoining all these 
transversals to N results in a transversal-free (s, r + t)-net E = E(D) which is 
actually a translation net with the same translation group G. In particular, the 
partial congruence partition describing E is obtained from that describing N by 
adding t further components. Moreover, the automorphism group of N is the 
stabilizer of N in the automorphism group of E. 

In the case of critical deficiency, the situation is more involved. 

Theorem 5.6. Let N be a translation net of order s = m2, where m # 2, with 
critical deficiency d = m + 1 belonging to the partial congruence partition W in the 
group G. Any transversal of N through 0 is a subgroup of G and can be adjoined 
as a further component to W. If E is a net extending N, then E is either a translation 
net with translation group G, or E is a transversal-free net with deficiency m. In the 
latter case N also possesses at least two distinct extensions to a translation net of 
deficiency m. 

Any partial congruence partition in an elementary abelian group can be 
considered as a partial t-spread in a suitable projective space PG(2t + 1, p) (see, 
e.g., [4] or [24]). If the partial t-spread is in fact maximal, we can apply Theorems 
5.5 and 5.6. 

Corollary 5.7. Let IF be a maximal partial t-spread in PG(2t + 1, p), where p is a 
prime, and let N be the corresponding translation net. If (F has small or critical 
deficiency, then N is transversal-free. 

All that remains is to find the required maximal partial t-spreads to be used in 
Corollary 5.7. While some families of such spreads were known (see the 
discussion in Jungnickel [24]), we now give a general construction method 
motivated by ideas of Bruen [8] and Beutelspacher [5]. For simplicity, we only 
consider the case t = 1 in detail; see Hirschfeld [20] for the required geometric 
background. 

Proposition 5.8. Let S be a regular spread in PG(3, q), where q 2 4, and let R. 
and R, be two reguli in S which intersect in exactly two lines, say L and M. Let Ml 
denote the partial spread of deficiency 2q obtained by omitting the 2q lines in 
RO U R, , and let L be a set of lines in PG(3, q) satisfying the following conditions: 

(5.8.1) L is contained in the union RI, U R; of the opposite reguli of R,, and R,. 
(5.8.2) Each point in L U M is on at most one line of L. 
(5.8.3) L contains at least one line from each of RI, and RI. 
(5.8.4) For each line G E (Rh U R;) - L, at least one of the two points of 

intersection of G with L U M is on a line of L. 
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Then the set [F = W U L in a maximal partial spread in PG(3, q) with deficiency 
d = 2q - ILI. Moreover, any line not in IF either lies entirely in P(R,) U P(R,) 
(where P(X) denotes the set of points covered by the lines in a set of lines A’) or 
contains at most 4 points not in P(ff). 

One next shows that any maximal partial spread of PG(3, q) which is 
constructed by the method of Proposition 5.8 remains maximal when considered 
as a partial t-spread or the prime subfield GF(p) of GF(q) (for the appropriate 
value of t). Examples can then be provided by comparatively simple direct 
computations. We just give the final result on transversal-free nets arising in this 
way. 

It is obvious from (5.8.2) that any set L satisfying the conditions in Proposition 
5.8 contains at most q + 1 lines. Thus the maximal partial spread belonging to L 
has deficiency at least q - 1, a bound which can be achieved by Theorem 5.9. 

Theorem 5.9. There exist transversal-free translation nets of order s = q* and 
deficiencies d = q - 1, q and q + 1 whenever q is a power of a prime 25. Hence 
there exists a maximal set of k MOLS of order q* for k E {q2 - q - 2, q* - q - 1, 
q* - q} whenever q is a power of a prime 25. 

Some examples can also be constructed for p = 2 and p = 3, cf. Jungnickel [25]. 
In general, it is an open problem to decide when a maximal PCP gives rise to a 
transversal-free net (even if it belongs to a maximal partial t-spread). In this 
connection, the following result is somewhat surprising. 

Theorem 5.10. Every maximal partial congruence partition in G = 8, x Z, (q a 
prime power) defines a translation net with translation group G which is actually 
transversal-free. Moreover, all the maximal PCPs in this group can be described. 

6. Codes of translation nets 

Let N be a net of order s and degree r. The GF(p)-code C(N) is the 
GF(p)-span of the incidence vectors of the lines of N; the dimension of C(N) is 
called the p-rank of N. Moorehouse [30] has proposed the following conjecture. 

Moorehouse’s Conjecture 6.1. Let N be an (s, r)-net and N’ an (s, r - 1)-subnet 
of N. If p is a prime dividing s for which p* does not divide s, one has 

(6.1.1) rank,(N) - rank,,(N’) 2s -r + 1. 

Moorehouse tested his conjecture for numerous small examples and proved its 
validity for r = 3 (and arbitrary N, N’) and for subnets of AG(2,p) (and arbitrary 
r). In the latter case, one has in fact equality in (6.1.1); this strengthens the 
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well-known fact that AG(2,p) has p-rank p(p + 1)/2, cf. Lander [26]. The 
importance (and difficulty) of Conjecture 6.1 can be seen from the following 
result. 

Theorem 6.2 (Moorehouse [30]). Assume the existence of an a&e plane of order 
s, where either s = 2 (mod 4) or s is square-free. If Conjecture 6.1 holds for s, then 
s is a prime and the only plane of order s is AG(2, s). 

Thus Conjecture 6.1 includes the well-known conjecture that AG(2,p) is the 
only plane of order p. For translation nets, Moorehouse [31] proved the following 
result. 

Theorem 6.3. Conjecture 6.1 holds for translation nets with abelian translation 
group. 
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