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A b s t r a c t - - I n  this work, we state a result of compactness due to Lions in Orlicz spaces. We 
give an application proving an existence result for a gradient type elliptic systems in ]~N involving 
N-functions. @ 2004 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

In this paper, we study the existence of solution for the following class of elliptic systems: 

- A u  + Wu = Q~(u,v)  + H~(u ,v) ,  in R N, 

- A v  + Wv = Qv(u, v) + Hv(u, v), in ]~N, (S) 

u, v > 0, in ]~N, 

where W : ~N ) (0, c~) is a continuous function, H E C1(]~+ × ~+ ,R)  is a 2*-homogeneous 
function with gradient ~ H  = (H~, Hv), 2* = 2 N / ( N - 2 )  with N > 3, and Q c C1(~+ x ~ + , ~ )  
is a positive function bounded from above by an N-function, (see [1,2] for definitions), that is, 
the function Q is assumed to verify the following conditions: 

Q~(u, v) < Ca(lu[) and Q,(u, v) <_ Cb(]v[) , u, v e ]~; 

Q(u, v) < C(A(lul) + g(Ivl)), ~, v e ~, (Qo) 
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where C denotes a generic positive constant, Aft) = f~ a(s) ds and B(t)  = fo b(s) ds mean two 
N-functions, with a and b satisfying condition (G) below, namely, we say that  a function g verifies 
condition (G) if 

g i s o d d ,  g ( 0 ) = 0 ,  g( t )>O,  if t > 0 ,  lim g ( t ) = + o o ,  
t - - * - k c ~  (c) 

nondecreasing and right continuous on t > 0, Ig(t)t <_ Itl 2.-1, for all t. 

Here F~ denotes the partial derivative of F with respect to variable z. 
The main difficulty of establishing existence results to this kind of elliptic system is the fact 

that  the function Q has critical growth involving N-functions. Because it is possible to find a N- 
function such that,  at infinity, its growth is greater than any subcritical growth (see an example 
below). It is well known that,  when we use the variational techniques, a lemma proved by Lions 
in [3] is one of the greatest tools to show the existence of solution to (S). In [4], it is given a 
different proof for this result. However, as far as we know, the proof of this result involving 
N-function has never appeared before in the literature. In this paper, we prove a version of this 
lemma for N-functions (see Main Lemma) and, as application, we state a result involving the 
above system which completes some results obtained by the authors in the papers [5,6]. Finally, 
we would like to cite papers [7,8] (and references therein) for some existence results for quasilinear 
problems in Orlicz-Sobolev space setting. 

The example below, given in [9], shows a function whose primitive is a N-function with behavior 
mentioned above. 

EXAMPLE. Let a : [0, oo) --~ R be given by 

t . -1,  if0_<t<l, 

aft) = t 2* -1-1/1°g0°g 2) , if 1 < t < 3, 

t 2*-l-1/log(logn), i f n _ < t < n + l ,  n = 3 , 4 , . . . .  

DEFINITION. ORLICZ SPACE. Let fl be a domain in R N and let A be an N-function. The Orlicz 
space LA(~)  is the set of all measurable functions u defined on ~ such that there exists A > 0 
satisfying fn  A(Iu(x)I/A)dx < oo, endowed with the norm 

IIUHLn(a) = inf { l  : ~ A (~U(~ )~) dx < l } .  

LEMMA A. MAIN LEMMA. Let {un} be a bounded sequence in HI(]RN), such that 

lim sup f lun] ~ dx = O, for some R > O. 
n--+~ ye~ N JBR(y) 

~ O, ~ n - - +  00,  

Then 

where A is a N-function verifying (G). 

The next result is related to the action of group in Sobolev spaces. For more details about this 

subject see [I0, Theorem 1.24]. 

DEFINITION. Let G be a subgroup of O(N),  y C ~N and r > O. We define 

m(y , r ,G)  = sup{n E N:  ~ g l , . . . , g n  E G s.t. B(gjy,  r) n B(gky ,r )  = 0, for j # k}, 

where B(y,  r) denotes a ball centered in y with radius r. An  open subset f2 of R N is compatible 
with G / f  g~t = ~t for every g E G and for some r > 0 

lira re(y, r, G) = oo. 
l y l - - - * o c , d i s t  (y ,~)<r  
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COROLLARY B. Let ~ C ~N be a open set and G a subgroup of O(N). I f  ~ is compatible 
with G, the following embedding is compact: 

Hlo,a(gt) ~ LA(~). 

In order to give an application of above lemma, we shall impose the following hypothesis: 

H is 2* - homogeneous, H(u, v) > 0 for every u, v > 0, 

H~(0, 1) = H,(1 ,  0) = 0. (H~) 

H=(0, 1) = Hv(1, O) = O. (H~) 

Q(~,v) ~ c(l~lq + Ivlq), ~ , v e ~ ,  
for s o m e q E [ 2 , 2 * - l ) ,  if N >__ 4 and q • (3, 5), if N = - 3 ,  

Q~(0,1) > 0 and Qv(1, 0) > 0, 
(Q) 

the 1-homogeneous function G defined by 

G s;* H(s, t) ,  Vs , t  > O, is concave. 

For (u, v) fixed, VQ(t(u, v)).(u, v) is a strictly increasing function for t ~ O. 
t 

W is 1 - periodic. (P) 

Thus, our application of Lemma A is the following. 

THEOREM C. Suppose that (Q), (P), (G), (H1), and (H2) hold. Then system (S) has a positive 
solution. 

2. P R O O F S  

PROOF OF LEMMA A.  Observe that,  without loss of generality, we can assume un >_ O. On the 
contrary, for un • LA(]~ iv) writing us = u~ + --u~ with u~ = max{=t=un, 0)} we have u~n • LA(]R N) 
and 

Let u~ be the Schwarz symmetrization of u~ (see e.g., [11]). Then  

N A dx = , A dx and H'lZnI]LA(~ N) H nHLA(~ N) (1) 

SO, it is sufficient to prove 

U* H r~HLA(~ N) ) O, as n --~ oo. (2) 

In order to prove the convergence above, we remark that  the embedding 

H~(~)  ~ LA(a)  is compact, when ~ is bounded. (3) 

Indeed, observe that  if f~ is bounded, there exists uo • H0~(~), such tha t  un ----* u0 in Lq(f~) 
as n ~ oc, for all q E (2, 2*). Moreover, notice tha t  from (G) we infer tha t  for q • (2, 2*) and 
each ~ > 0, there exists C5 > 0, such that  

A(t)  __ + + vt• . (4) 

By (4), by choosing 5 = c2"+1, we have 

~ A ( u~ - u° dx <_ 1. 

Hence, us - -~  u0 in LA(Yt) as n ~ oc. This proves (3). 
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Now we will prove (2). For each R > 0 fixed and since u • LA(]~ N) we have 

R. N N 

and 

f~NA ( ( 1 -  XBR)u)A dx < oo, 

where XBR denotes the characteristic function on a ball, BR, centered at the origin with radius R. 

Then 

II~IIL~(B~) = I IxB~I tL~(~N) and II~IIL~(,V+\B~) = I I ( 1 -  X~)~ I Is . , , (~ ' ) -  

By hypothesis and applying Lions's Lemma (see [3]) we have 

* O, a . e . ,  i n  R N a s  n --* 0% 

where [uis denotes the usual LS-norm. 
But, recalling that  {u~} is bounded in HI(N N) and using (3), we get 

U *  II ~II~(B~) > 0, as n ~ o o .  

By the inequality below due to Strauss (see [11]) 

0 
I~:(~)1 <- I~I(N_~/2) = g(x), 0 > 0, Vn • :N, V x • ]R N \ BR, 

we conclude that  g • LS(]~ N \ BR), s > 2N/ (N  - 1). 

So, given e > 0, choose R0 > R such that  

£ ig (x ) l  ~ dx < 2' 
N \ B R  0 

V x • R N \ BRo. 

Now since the embedding H:ad(R < Ixl < R0) ~ Ls(R < Ixl < R0) is compact for all s • (2, cx~), 
where HI~,d(R < Ix[ < Ro) = {u • HI (R  < ]x I < R 0 ) : u  is radial}, taking s = 2* we obtain 

> O, as n -+ oo. (5) 

From (4) and using (5), we get 

A < , 
,<\B= t ~ / 2 )  

V e > 0 and for all n sufficiently large, 

tha t  is, ItU~HLA(~N\BR) ' 0 as n --+ oo. This completes the proof of lemma. 

PROOF OF COROLLARY B. It suffices to observe that  the embedding H~(ft) c LP(Q) is compact, 

for all p E (2, 2*) (see [10, Theorem 1.24]). 

PROOF OF THEOREM C. It is well known that  weak solutions of (S) are the critical points of 

functional 

£ '£ 2 ]; 
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which belong to C t (H 1(I~ N) x H 1 (I~N), JR). Hereafter, we denote by E = (H 1 (IR N))2 the Hilbert 

space endowed with the norm 

tl(u,v)ll 2 = ~ ((IVul 2 + IVvl 2 + w (l~l 2 + Ivl2)) d~. 

As in [12], in the definition of functional I,  we are considering the following extension for the 
functions Q and H in whole space R2: 

{ Q(~,v), 
Q(O, ~) + Q.(O, ~)u, 

Q(~'~) := Q(u,O)+Q~(~,o)~,  

Q(u, 0) 

U, V ~ 0, 

u < 0 < v ,  

v < 0 < u ,  

u, V _< O, 

and 

H(u,v):=H(u+,v+), 

We also make use of the following constant: 

w ± := max{+w,  0}. 

SH = inf / f ~  (IVu12 + IVy]2) dx: ( 0 , 0 ) ¢  (u,v)c (H 1 (]~N))2 / 
( f~  H(u,v) dx) 2/2. J [ 

The constant SH was defined by de Morals and Souto in [12] (see also [13]), which is related to the 
best constant of Sobolev obtained in [14]. As in the scalar case, the levels where the functional I 
fails to satisfy Palais-Smale condition (see below the definition) will involve the constant SH. 

Under our hypothesis, it is standard to prove that  our functionM verifies the mountain pass 
geometry (see [15]), then there exists a (PS)c sequence {(urn v,~)} C E, that  is, 

I(un, v~) ~c and F(u~,vn) ~ O, in E*, 

where c = inf-yer maxt6[0,1] I(~f(t)) > O, with F = {~/ E C(E, R) : 3'(0) = 0 7(1) = (e, e)}. We 
point out that ,  arguing as in [4], the above sequence is bounded in E. So, we can assume that  
there exists (u, v) c E, such that  (un, vn) ~ (% v) weakly in E, as n ~ ec. Passing to the 
limit in U(um v~) = o(1), as n ~ oc, we conclude that  (u, v) is a weak solution of problem (S). 
Adapting the arguments used in [16], we consider the solution we > 0 of equation 

2"--1 in ]~N, --z~we ~-- w e 

and % = ~we, where ~ is cut-off function, that  is, ~ = 1 in B1, ~ = 0 in RN\B2, and 0 < ~ < 1. 
Define 

Ce 
V e 

( /B2~)2" )  1 /2 . '  

then 

[(tBv~,tDv~) < -ff (B2+D 2) (IVv~12+Wv~,) -t2"H(B,D)-Atq(Bq+Dq)C v~ +1, 

which implies 

1 (~__Zl (N-2)/N 
I(tBvE,tDv~) < ~ (SH) N/2 for c sufficiently small. 
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Therefore, 
1 (I"~(N-2)/N_so. 

c < \ 2 " /  (,) 

Repeating the arguments explored in [5, Lemma 3.3] together Lemma A and (*), we have that 
there exist p, U > 0 and y~ E ~ N  such that 

lim I s u P / B  lun[2+Iv~[2dx] >-~ • 
n--*cx~ yE~N p(y) 

Putt ing 3n(x) = u(x-yn) and 9~(x) = v(x-y~) then {(3,~, ©n)} is a (PS)c sequence with c > 0, 
such that (3~, ©~) -~ (3, ©) weakly as n -~ co. Moreover, (3, ©) is a nontrivial solution of (S) with 

> 0 and 9 > 0. This completes the proof of Theorem C. 

3. F I N A L  C O M M E N T S  

Adapting the arguments explored by the authors in [5,6], it is possible to show a result of 
existence of a positive solution to (S) when the function W is a perturbation of a 1-periodic 
function, that is, W behaves at infinity like a 1-periodic function. 
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