

Available online at www.sciencedirect.com

Applied Mathematics Letters

Applied Mathematics Letters 17 (2004) 1343–1348

www.elsevier.com/locate/aml

A Class of Elliptic Systems Involving N-Functions

C. O. Alves*

Departamento de Matemática, Universidade Federal de Campina Grande 58109-970 - Campina Grande (PB), Brazil coalves@dme.ufcg.edu.br

P. C. CARRIÃO[†] Departamento de Matemática, Universidade Federal de Minas Gerais 31270-010 - Belo Horizonte (MG), Brazil. carrion@mat.ufmg.br

O. H. MIYAGAKI^{*†‡} Departamento de Matemática, Universidade Federal de Viçosa 36571-000 - Viçosa (MG), Brazil olimpio@ufv.br

(Received August 2003; revised and accepted April 2004)

Abstract—In this work, we state a result of compactness due to Lions in Orlicz spaces. We give an application proving an existence result for a gradient type elliptic systems in \mathbb{R}^N involving *N*-functions. © 2004 Elsevier Ltd. All rights reserved.

Keywords—Orlicz space, Critical Sobolev exponent, Positive solution.

1. INTRODUCTION

In this paper, we study the existence of solution for the following class of elliptic systems:

$$\begin{aligned} -\Delta u + Wu &= Q_u(u, v) + H_u(u, v), & \text{in } \mathbb{R}^N, \\ -\Delta v + Wv &= Q_v(u, v) + H_v(u, v), & \text{in } \mathbb{R}^N, \\ u, v > 0, & \text{in } \mathbb{R}^N, \end{aligned}$$
(S)

where $W : \mathbb{R}^N \longrightarrow (0, \infty)$ is a continuous function, $H \in C^1(\mathbb{R}_+ \times \mathbb{R}_+, \mathbb{R})$ is a 2*-homogeneous function with gradient $\nabla H = (H_u, H_v)$, $2^* = 2N/(N-2)$ with $N \ge 3$, and $Q \in C^1(\mathbb{R}_+ \times \mathbb{R}_+, \mathbb{R})$ is a positive function bounded from above by an N-function, (see [1,2] for definitions), that is, the function Q is assumed to verify the following conditions:

$$Q_u(u,v) \le Ca(|u|) \quad \text{and} \quad Q_v(u,v) \le Cb(|v|), \qquad u,v \in \mathbb{R}; Q(u,v) \le C(A(|u|) + B(|v|)), \qquad u,v \in \mathbb{R},$$
(Q₀)

*Supported in part by Millennium Institute-MCT/Brazil.

[†]Supported in part by CNPq/Brazil.

[‡]Author to whom all correspondence should be addressed.

^{0893-9659/04/\$ -} see front matter O 2004 Elsevier Ltd. All rights reserved. Typeset by \mathcal{A}_{MS} -TEX doi:10.1016/j.aml.2004.04.005

where C denotes a generic positive constant, $A(t) = \int_0^t a(s) ds$ and $B(t) = \int_0^t b(s) ds$ mean two N-functions, with a and b satisfying condition (G) below, namely, we say that a function g verifies condition (G) if

$$g \text{ is odd}, \quad g(0) = 0, \quad g(t) > 0, \quad \text{if } t > 0, \qquad \lim_{t \to +\infty} g(t) = +\infty,$$

nondecreasing and right continuous on $t > 0, \quad |g(t)| \le |t|^{2^* - 1}, \quad \text{ for all } t.$ (G)

Here F_z denotes the partial derivative of F with respect to variable z.

The main difficulty of establishing existence results to this kind of elliptic system is the fact that the function Q has critical growth involving N-functions. Because it is possible to find a Nfunction such that, at infinity, its growth is greater than any subcritical growth (see an example below). It is well known that, when we use the variational techniques, a lemma proved by Lions in [3] is one of the greatest tools to show the existence of solution to (S). In [4], it is given a different proof for this result. However, as far as we know, the proof of this result involving N-function has never appeared before in the literature. In this paper, we prove a version of this lemma for N-functions (see Main Lemma) and, as application, we state a result involving the above system which completes some results obtained by the authors in the papers [5,6]. Finally, we would like to cite papers [7,8] (and references therein) for some existence results for quasilinear problems in Orlicz-Sobolev space setting.

The example below, given in [9], shows a function whose primitive is a N-function with behavior mentioned above.

EXAMPLE. Let $a: [0, \infty) \to \mathbb{R}$ be given by

$$a(t) = \begin{cases} t^{2^*-1}, & \text{if } 0 \le t < 1, \\ t^{2^*-1-1/\log(\log 2)}, & \text{if } 1 \le t \le 3, \\ t^{2^*-1-1/\log(\log n)}, & \text{if } n \le t < n+1, \quad n = 3, 4, \dots \end{cases}$$

DEFINITION. ORLICZ SPACE. Let Ω be a domain in \mathbb{R}^N and let A be an N-function. The Orlicz space $L_A(\Omega)$ is the set of all measurable functions u defined on Ω such that there exists $\lambda > 0$ satisfying $\int_{\Omega} A(|u(x)|/\lambda) dx < \infty$, endowed with the norm

$$\|u\|_{L_A(\Omega)} = \inf \left\{ \lambda : \int_{\Omega} A\left(\frac{|u(x)|}{\lambda}\right) \, dx \leq 1 \right\}.$$

LEMMA A. MAIN LEMMA. Let $\{u_n\}$ be a bounded sequence in $H^1(\mathbb{R}^N)$, such that

$$\lim_{n\to\infty}\sup_{y\in\mathbb{R}^N}\int_{B_R(y)}|u_n|^2\,dx=0,\qquad\text{for some }R>0.$$

Then

$$\|u_n\|_{L_A(\mathbb{R}^N)} \longrightarrow 0, \qquad \text{as } n \to \infty,$$

where A is a N-function verifying (G).

The next result is related to the action of group in Sobolev spaces. For more details about this subject see [10, Theorem 1.24].

DEFINITION. Let G be a subgroup of O(N), $y \in \mathbb{R}^N$ and r > 0. We define

$$m(y,r,G) = \sup\{n \in \mathbb{N} : \exists g_1, \dots, g_n \in G \text{ s.t. } B(g_jy,r) \cap B(g_ky,r) = \emptyset, \text{ for } j \neq k\}$$

where B(y,r) denotes a ball centered in y with radius r. An open subset Ω of \mathbb{R}^N is compatible with G if $g\Omega = \Omega$ for every $g \in G$ and for some r > 0

$$\lim_{|y|\to\infty,\mathrm{dist}\,(y,\Omega)\leq r}m(y,r,G)=\infty.$$

COROLLARY B. Let $\Omega \subset \mathbb{R}^N$ be a open set and G a subgroup of O(N). If Ω is compatible with G, the following embedding is compact:

$$H^1_{o,G}(\Omega) \hookrightarrow L_A(\Omega).$$

In order to give an application of above lemma, we shall impose the following hypothesis:

$$\begin{array}{l} H \text{ is } 2^{*}-\text{homogeneous, } H(u,v)>0 \text{ for every } u,v>0, \\ H_{u}(0,1)=H_{v}(1,0)=0. \end{array} \tag{H}_{1} \end{array}$$

$$H_u(0,1) = H_v(1,0) = 0.$$
 (H₂)

$$\begin{array}{ll} 0 < \theta, & Q(u,v) \leq \nabla Q(u,v).(u,v), & \theta > 2, \ u,v \in \mathbb{R}; \\ & Q(u,v) \geq C \left(|u|^q + |v|^q \right), & u,v \in \mathbb{R}, \end{array}$$
for some $q \in [2,2^*-1)$, if $N \geq 4$ and $q \in (3,5)$, if $N = 3, \\ & Q_u(0,1) \geq 0 \text{ and } Q_v(1,0) \geq 0, \\ & \text{ the 1-homogeneous function } G \text{ defined by} \end{array}$ (Q)

$$G\left(s^{p^*}, t^{p^*}\right) = H(s, t), \ \forall s, t \ge 0, \text{ is concave.}$$

For (u, v) fixed, $\frac{\nabla Q(t(u, v)).(u, v)}{t}$ is a strictly increasing function for $t \ne 0$.

$$W$$
 is 1 – periodic. (P)

Thus, our application of Lemma A is the following.

THEOREM C. Suppose that (Q), (P), (G), (H₁), and (H₂) hold. Then system (S) has a positive solution.

2. PROOFS

PROOF OF LEMMA A. Observe that, without loss of generality, we can assume $u_n \ge 0$. On the contrary, for $u_n \in L_A(\mathbb{R}^N)$ writing $u_n = u_n^+ - u_n^-$ with $u_n^{\pm} = \max\{\pm u_n, 0\}$ we have $u_n^{\pm} \in L_A(\mathbb{R}^N)$ and

$$||u_n||_{L_A(\mathbb{R}^N)} \le ||u_n^+||_{L_A(\mathbb{R}^N)} + ||u_n^-||_{L_A(\mathbb{R}^N)}$$

Let u_n^* be the Schwarz symmetrization of u_n (see e.g., [11]). Then

$$\int_{\mathbb{R}^N} A\left(\frac{u_n}{\lambda}\right) \, dx = \int_{\mathbb{R}^N} A\left(\frac{u_n^*}{\lambda}\right) \, dx \quad \text{and} \quad \|u_n\|_{L_A(\mathbb{R}^N)} = \|u_n^*\|_{L_A(\mathbb{R}^N)} \,, \tag{1}$$

so, it is sufficient to prove

1

$$\|u_n^*\|_{L_A(\mathbb{R}^N)} \longrightarrow 0, \qquad \text{as } n \to \infty.$$
⁽²⁾

In order to prove the convergence above, we remark that the embedding

 $H_0^1(\Omega) \hookrightarrow L_A(\Omega)$ is compact, when Ω is bounded. (3)

Indeed, observe that if Ω is bounded, there exists $u_0 \in H^1_0(\Omega)$, such that $u_n \longrightarrow u_0$ in $L^q(\Omega)$ as $n \to \infty$, for all $q \in (2, 2^*)$. Moreover, notice that from (G) we infer that for $q \in (2, 2^*)$ and each $\delta > 0$, there exists $C_{\delta} > 0$, such that

$$A(t) \le \delta\left(t^2 + t^{2^*}\right) + C_{\delta}t^q, \qquad \forall t \in \mathbb{R}.$$
(4)

By (4), by choosing $\delta = \epsilon^{2^*+1}$, we have

$$\int_{\Omega} A\left(\frac{u_n - u_0}{\epsilon}\right) \, dx \le 1$$

Hence, $u_n \longrightarrow u_0$ in $L_A(\Omega)$ as $n \to \infty$. This proves (3).

Now we will prove (2). For each R > 0 fixed and since $u \in L_A(\mathbb{R}^N)$ we have

$$\int_{B_R} A\left(\frac{u}{\lambda}\right) \, dx = \int_{\mathbb{R}^N} A\left(\frac{\chi_{B_R}u}{\lambda}\right) \, dx \le \int_{\mathbb{R}^N} A\left(\frac{u}{\lambda}\right) \, dx < \infty$$

and

$$\int_{\mathbb{R}^N} A\left(\frac{(1-\chi_{B_R})u}{\lambda}\right)\,dx < \infty,$$

where χ_{B_R} denotes the characteristic function on a ball, B_R , centered at the origin with radius R. Then

$$||u||_{L_A(B_R)} = ||\chi_{B_R}u||_{L_A(\mathbb{R}^N)}$$
 and $||u||_{L_A(\mathbb{R}^N\setminus B_R)} = ||(1-\chi_{B_R})u||_{L_A(\mathbb{R}^N)}$

By hypothesis and applying Lions's Lemma (see [3]) we have

$$|u_n|_q, |u_n^*|_q \longrightarrow 0, \ u_n^* \longrightarrow 0, \qquad \text{a.e., in } \mathbb{R}^N \text{ as } n \to \infty,$$

where $|u|_s$ denotes the usual L^s -norm.

But, recalling that $\{u_n^*\}$ is bounded in $H^1(\mathbb{R}^N)$ and using (3), we get

$$\|u_n^*\|_{L_A(B_R)} \longrightarrow 0$$
, as $n \to \infty$.

By the inequality below due to Strauss (see [11])

$$|u_n^*(x)| \leq rac{ ilde{C}}{|x|^{(N-1/2)}} \equiv g(x), \qquad ilde{C} > 0, \quad orall \, n \in \mathbb{N}, \quad orall \, x \in \mathbb{R}^N \setminus B_R,$$

we conclude that $g \in L^s(\mathbb{R}^N \setminus B_R)$, s > 2N/(N-1).

So, given $\epsilon > 0$, choose $R_0 > R$ such that

$$\int_{\mathbb{R}^N\setminus B_{R_0}} |g(x)|^s\,dx \leq rac{\epsilon}{2}, \qquad orall\,x\in \mathbb{R}^N\setminus B_{R_0}.$$

Now since the embedding $H^1_{\text{rad}}(R < |x| < R_0) \hookrightarrow L^s(R < |x| < R_0)$ is compact for all $s \in (2, \infty)$, where $H^1_{\text{rad}}(R < |x| < R_0) = \{u \in H^1(R < |x| < R_0) : u \text{ is radial}\}$, taking $s = 2^*$ we obtain

$$\int_{\mathbb{R}^N \setminus B_R} \left| u_n^* \right|^{2^*} dx = \int_{B_{R_0} \setminus B_R} \left| u_n^* \right|^{2^*} dx + \int_{\mathbb{R}^N \setminus B_{R_0}} \left| u_n^* \right|^{2^*} dx \longrightarrow 0, \quad \text{as } n \to \infty.$$
(5)

From (4) and using (5), we get

$$\int_{\mathbb{R}^N \setminus B_R} A\left(\frac{u_n^*}{\epsilon/2}\right) \, dx < 1, \qquad \forall \, \epsilon > 0 \text{ and for all } n \text{ sufficiently large},$$

that is, $||u_n^*||_{L_A(\mathbb{R}^N \setminus B_R)} \longrightarrow 0$ as $n \to \infty$. This completes the proof of lemma.

PROOF OF COROLLARY B. It suffices to observe that the embedding $H^1_G(\Omega) \subset L^p(\Omega)$ is compact, for all $p \in (2, 2^*)$ (see [10, Theorem 1.24]).

PROOF OF THEOREM C. It is well known that weak solutions of (S) are the critical points of functional

$$I(u,v) = \frac{1}{2} \int_{\mathbb{R}^N} \left(|\nabla u|^2 + |\nabla v|^2 \right) \, dx + \frac{1}{2} \, \int_{\mathbb{R}^N} W\left(u^2 + v^2 \right) \, dx - \int_{\mathbb{R}^N} Q(u,v) \, dx - \int_{\mathbb{R}^N} H(u,v) \, dx,$$

1346

which belong to $C^1(H^1(\mathbb{R}^N) \times H^1(\mathbb{R}^N), \mathbb{R})$. Hereafter, we denote by $E = (H^1(\mathbb{R}^N))^2$ the Hilbert space endowed with the norm

$$\|(u,v)\|^2 = \int_{\mathbb{R}^N} \left((|\nabla u|^2 + |\nabla v|^2 + W(|u|^2 + |v|^2)) dx \right)$$

As in [12], in the definition of functional I, we are considering the following extension for the functions Q and H in whole space \mathbb{R}^2 :

$$Q(u,v) := egin{cases} Q(u,v), & u,v \geq 0, \ Q(0,v) + Q_u(0,v)u, & u \leq 0 \leq v, \ Q(u,0) + Q_v(u,0)v, & v \leq 0 \leq u, \ Q(u,0), & u,v \leq 0, \end{cases}$$

and

$$H(u,v) := H(u^+, v^+), \qquad w^{\pm} := \max\{\pm w, 0\}$$

We also make use of the following constant:

$$S_{H} = \inf\left\{\frac{\int_{\mathbb{R}^{N}} \left(|\nabla u|^{2} + |\nabla v|^{2}\right) dx}{\left(\int_{\mathbb{R}^{N}} H(u, v) dx\right)^{2/2^{*}}} : (0, 0) \neq (u, v) \in \left(H^{1}\left(\mathbb{R}^{N}\right)\right)^{2}\right\}$$

The constant S_H was defined by de Morais and Souto in [12] (see also [13]), which is related to the best constant of Sobolev obtained in [14]. As in the scalar case, the levels where the functional I fails to satisfy Palais-Smale condition (see below the definition) will involve the constant S_H .

Under our hypothesis, it is standard to prove that our functional verifies the mountain pass geometry (see [15]), then there exists a $(PS)_c$ sequence $\{(u_n, v_n)\} \subset E$, that is,

$$I(u_n, v_n) \longrightarrow c \text{ and } I'(u_n, v_n) \longrightarrow 0, \text{ in } E^*,$$

where $c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t)) > 0$, with $\Gamma = \{\gamma \in C(E, \mathbb{R}) : \gamma(0) = 0 \ \gamma(1) = (e, e)\}$. We point out that, arguing as in [4], the above sequence is bounded in E. So, we can assume that there exists $(u, v) \in E$, such that $(u_n, v_n) \rightharpoonup (u, v)$ weakly in E, as $n \to \infty$. Passing to the limit in $I'(u_n, v_n) = o(1)$, as $n \to \infty$, we conclude that (u, v) is a weak solution of problem (S). Adapting the arguments used in [16], we consider the solution $w_{\epsilon} > 0$ of equation

$$-\Delta w_{\epsilon} = w_{\epsilon}^{2^*-1}, \qquad \text{in } \mathbb{R}^N,$$

and $\psi_{\epsilon} = \varphi w_{\epsilon}$, where φ is cut-off function, that is, $\varphi = 1$ in B_1 , $\varphi = 0$ in $\mathbb{R}^N \setminus B_2$, and $0 \le \varphi \le 1$. Define

$$v_{\epsilon} = rac{\psi_{\epsilon}}{\left(\int_{B_2}\psi_{\epsilon}^{2^*}
ight)^{1/2^*}},$$

then

$$I(tBv_{\epsilon}, tDv_{\epsilon}) \le \frac{t^2}{2} (B^2 + D^2) \int (|\nabla v_{\epsilon}|^2 + Wv_{\epsilon}^2) - t^{2^*} H(B, D) - \lambda t^q (B^q + D^q) C \int v_{\epsilon}^{q+1},$$

which implies

$$I(tBv_{\epsilon}, tDv_{\epsilon}) < \frac{1}{N} \left(S_{H}\right)^{N/2} \left(\frac{1}{2^{*}}\right)^{(N-2)/N}, \quad \text{for } \epsilon \text{ sufficiently small.}$$

Therefore,

$$c < \frac{1}{N} (S_H)^{N/2} \left(\frac{1}{2^*}\right)^{(N-2)/N} \equiv S_0.$$
 (*)

Repeating the arguments explored in [5, Lemma 3.3] together Lemma A and (*), we have that there exist ρ , $\eta > 0$ and $y_n \in \mathbb{R}^N$, such that

$$\lim_{n\to\infty}\left[\sup_{y\in\mathbb{R}^N}\int_{B_\rho(y)}|u_n|^2+|v_n|^2\,dx\right]\geq\eta.$$

Putting $\hat{u}_n(x) = u(x - y_n)$ and $\hat{v}_n(x) = v(x - y_n)$ then $\{(\hat{u}_n, \hat{v}_n)\}$ is a $(PS)_c$ sequence with c > 0, such that $(\hat{u}_n, \hat{v}_n) \rightarrow (\hat{u}, \hat{v})$ weakly as $n \rightarrow \infty$. Moreover, (\hat{u}, \hat{v}) is a nontrivial solution of (S) with $\hat{u} > 0$ and $\hat{v} > 0$. This completes the proof of Theorem C.

3. FINAL COMMENTS

Adapting the arguments explored by the authors in [5,6], it is possible to show a result of existence of a positive solution to (S) when the function W is a perturbation of a 1-periodic function, that is, W behaves at infinity like a 1-periodic function.

REFERENCES

- 1. T.K. Donaldson and N.S. Trudinger, Orlicz-Sobolev spaces and imbedding theorem, J. Funct. Anal. 8, 52–75, (1971).
- J.P. Gossez, Orlicz spaces, Orlicz-Sobolev spaces and strongly nonlinear elliptic problems, Trabalhos de Matemática 103, Universidade de Brasília, Brasilia, (1976).
- 3. P.L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case. Part II, Ann. Inst. H. Poincaré 1, 223–283, (1984).
- V. Coti-Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on ℝ^N, Comm. Pure Appl. Math. 45, 1217–1269, (1992).
- 5. C.O. Alves, P.C. Carrião and O.H. Miyagaki, Nonlinear perturbation of a periodic elliptic problem with critical growth, J. Math. Anal. Appl. 260, 133-146, (2001).
- C.O. Alves, P.C. Carrião and O.H. Miyagaki, Existence of homoclinic orbits for asymptotically periodic systems involving Duffing like equation, Appl. Math. Lett. 16 (5), 639-642, (2003).
- 7. P. Clement, M. García-Huidobro, R. Manásevich and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, (preprint).
- J.P. Gossez and R. Manásevich, On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces, Proc. Royal Soc. Edinburgh 132A, 891-909, (2002).
- J.V. Goncalves and S. Meira, On a class of semilinear elliptic problems near critical growth, Internat. J. Math. & Math. Sci. 21, 321–330, (1998).
- 10. M. Willem, Minimax Theorems, Birkhäuser, Berlin, (1996).
- 11. O. Kavian, Introduction à la Théorie Des Points Critiques at Applications Aux Problèmes Elliptiques, Springer, Heidelberg, (1993).
- D.C. de Morais Filho and M.A.S. Souto, Systems of p-Laplacian equations involving homogeneous nonlinearities with critical Sobolev exponent degrees, Comm. P. D. E. 24, 1537-1553, (1999).
- C.O. Alves, D.C. de Moraes and M. Souto, On system of elliptic equations involving subcritical or critical Sobolev exponents, Nonl. Anal. TMA 42, 771-787, (2000).
- 14. G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pure Appl. 110, 353-372, (1976).
- A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14, 349-381, (1973).
- H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36, 437–476, (1983).

1348