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Let % be a field of characteristic p > 3. Let 4 = k[ X, ,..., X J/(X{%..., X,7),
and let L be the generalized Witt Lie algebra formed by the derivations of 4.
It was conjectured by Jacobson [7], and proved by Allen and Sweedler [1],
that the forms of L (defined below) correspond precisely to the forms of A.
In this paper I use a lemma from [1] to prove that the automorphism group
schemes of 4 and L are isomorphic; from this a strengthened form of the
Allen-Sweedler result follows by the techniques of faithfully flat descent.

The proof is based on a discussion of automorphism group schemes
vis-a-vis formal groups and Hopf algebras. The resuits here are doubtless
known to the cognoscenti, but I cannot find them anywhere in writing. Since
for example Galois theory for inseparable extensions is being developed from
both points of view (compare [9] and [10]), it seems worthwhile to put the
facts on record. I have tried to keep the treatment sufficiently elementary and
expository that those familiar with either approach may follow the proofs and
see how the two methods are connected.

1.1. Letkbea field, I afinite-dimensional vector space over k. For every
(commutative) k-algebra R we can consider the group G1,(R) of invertible
R-linear maps from ¥V ® R to itself; this defines a functor G1, from
k-algebras to groups. Concretely, choose a basis v, ,..., v, of V; then invertible
R-linear maps correspond to # by n matrices with invertible determinant,
and thus to algebra homomorphisms of

0 = A[X{q yeees X » 1/det(X)]
into R.

Now in general, if a functor G from k-algebras to groups satisfies
G(R) = Alg(4, R) for some algebra A, we say G is an affine group scheme
and write G = Spec A. (The experts will pardon a slight abus de langage
here.) Automatically then 4 acquires the structure of an involutive bialgebra,
or Hopf algebra; and conversely a Hopf algebra structure on A induces
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group structures on all Alg(4, R) and so defines an affine group scheme
[5, Ex. 2, p. 8]. Thus our ring 0 above is naturally a Hopf algebra, and
G1,, = Spec 0.

1.2. Let G = Spec A be an affine group scheme. An operation of G on V
1s, for each R, an operation of the group G(R) on V %) R, functorial in R.
This is equivalent [5, Ex. 3, p. 2] to an 4-comodule structure on V; that is,
a map o:V—>ARV such that (id, Xo)oc = (4 ®id,)o and
(e ®idy) s =id, , where 4 and e are the comultiplication and counit of
the Hopf algebra. The group scheme G1, is universal for such operations;
that is, the operations correspond to homomorphisms G — G1,, . Explicitly,
if o(v;) = 3 ¢;; @ v;, then the associated Hopf algebra map 4 < 0 sends
X tocy;.

1.3. Let us suppose now that I/ is furnished with some additional
structure, such as a bilinear map I’ X ¥ -»> V. Then we can define a functor
Aut V' by letting Aut V(R) C G1,(R) be those maps preserving the induced
structure on V' () R. This condition is easily seen to be equivalent to a set
of polynomial equations in the matrix entries, and hence Aut V is Spec 0,
for some quotient 0, of 0. We say that an operation of a group scheme G on V'
preserves the given structure if it does so for every R, and clearly such an
operation corresponds to a homomorphism G — Aut V.

2.1. We can go through the same constructions replacing the category of
k-algebras by that of linearly compact k-algebras. (These are k-algebras B
satisfying B = |im B/I for a filter of ideals I of finite codimension; they are
topologized by letting {6 + I} be a basis of neighborhoods of 4.) A functor

from such algebras to groups which satisfies
F(B) = Contin. Alg. Hom(S, B)

for some linearly compact S is called a formal group, written F = Spf S.
Automatically S acquires the analogue of a Hopf algebra structure (using
the completed tensor product: thus 4 maps S to S & S), and any such
structure defines a formal group [4, Ex. VII]. We say F is infinitesimal if S
is a local ring. An operation of F on V again corresponds to a map
o: V- .5 Vsatisfying identities like those before. If o(v,) = 3 ¢;; ® v;,
then the condition that a structure be preserved imposes the same equations
on (c;;) as in (1.3).

2.2. In place of S we can consider E, the set of continuous linear homo-
morphisms from S to k. Dualizing the structure on S makes E into a cocom-
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mutative Hopf algebra, and every such Hopf algebra gives a formal group.
The formal group is infinitesimal iff £ is coconnected. An operation of F on V'
corresponds to an E-module structure on V, and the condition of preserving
additional structure becomes precisely the condition in [1, Sec. 2.3].

3.1. Let G = Spec 4 be an affine group scheme which is algebraic, i.e.,
such that 4 is a finitely generated k-algebra. Let N be the kernel of the map
e: Ak, and let A, = lim A/N*. Then G = Spf 4, is naturally an
infinitesimal formal group, called the completion of G at the identity.

3.2. LetF = Spf .S be an infinitesimal formal group, with M the maximal
ideal of S. Suppose F operates on V, with o(v;) = Y ¢;; ® v; . The second
comodule condition says that the image of (¢;) under e:.S — & is the
identity matrix; hence (c¢;;) is nonsingular and defines a map of 0 to S. It
follows also that this map takes N (generated by X;; — 8,;) to M (the kernel
of e : S — k), and so it extends uniquely to a continuous map of 0, into S.
The comodule conditions then say precisely that F — Spf0, is a homo-
morphism. Conversely, any such homomorphism corresponds to a map
¢ : 0, — S giving an operation of F with ¢;; = $(X;).

3.3. Let us finally give I some additional structure. Then F preserves
this structure iff (c;;) satisfies the appropriate polynomial conditions, which
happens iff the map 0 — S factors as 0 -> 0, — S. As before, these
correspond to maps 0,, — S. Thus we have proved:

ProposiTION 1. The formal group (Aut V)~ is universal for structure-
preserving actions of infinitesimal formal groups on V. ||

If instead of making S local we require only that all its maximal ideals
have % as residue field (E “split”, in the terminology of [1]), we can construct
a correspondingly larger universal group. But the infinitesimal part is all we
need.

4. We now prove:

ProrostrioN 2. Let G and G' be algebraic affine group schemes, ¢ : G — G’
a homomorphism. Let K be the algebraic closure of k. Assume:

1) the map (K) : G(K) — G'(K) is an isomorphism, and

2) the induced map ¢ : G — G’ is an isomorphism.

Then @ 1s an isomorphism.
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Proof. Write @ : A" — A for the map of Hopf algebras corresponding to
@. Then @ is an isomorphism iff the map

dRid:AQK—>ARK

is an isomorphism. The same holds for ¢, and so we may assume &2 = K.

The functor H(R) = Ker[G(R) — G'(R)] is easily seen to be Spec C,
where C = A K, k. Since Alg(C, k) = H(k) has only one element, C is
(by the Nullstellensatz) a local ring finite dimensional over k. Hence it is
linearly compact, and the map 4 — C extends to a map 4, — C.

Now by construction 4" — 4 — C and the counitmap A’ - 4 -k — C
coincide; hence also 4, — A, > C and A4, — A, - k— C coincide.
But by 2) the maps from 4, to a linearly compact local algebra are determined
by their compositions with 4,” — A, . Thus the map 4, — C, surjective by
construction, must factor through %k, whence C = k. That is, H is trivial,
and ¢ is a monomorphism. It follows [5, Ex. 2, p. 26] that & is surjective.

Let O now be any maximal ideal of 4’, corresponding to an element of
G’'(k). By 1) there is a corresponding element of G(k), and so Q = 9-1(P)
for some maximal ideal P of 4. From Q we get a map “translation by 0”:

45404 2% 42k~4,

which by the group scheme axioms is a ring isomorphism. We have a similar
isomorphism 4 - A induced by P, and since ¢ is a group map @ is compatible
with these isomorphisms. We know by 2) that @ induces an isomorphism
A, — A4, ; it follows that @ also induces an isomorphism

lim 4'/Q" —> lim AJP".

Let I now be the ideal ker(®). The isomorphism above shows that  must
be contained in Q" for all # and Q. But this implies I = 0. (For example,
if xe Q" then by Krull's theorem [3, p. 65] (1 — ¢)x = 0 for some
g €0, and so the annihilator of x is not contained in any maximal ideal.) ||

The second half of this proof is rather more natural when phrased in the
geometric language of [4] and [5]; the Proposition then extends immediately
to non-affine algebraic group schemes.

5.1. Suppose that V' is a finite-dimensional space with some additional
structure, and 7’ is another such. Let K be the algebraic closure of 2. We
say that V' is a form of V if V' ® K is K-isomorphic to V' & K. We can
illustrate this with an example we will want later:
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PropostTiON 3. Let k be a field of characteristic p > 0. Let A be the
k-algebra k[ X, ,..., X, J(X,7 ,..., X,,?). Then the forms of A are the algebras

A = Yy e, V(Y — 0y, VP — ),
with a; € k.

Proof. Consider such an 4'. In 4’ ® K we can form x; = Y; — (a,)'/?;
this gives us elements x; ,..., x, generating A’ ® K and satisfying (x,)? = 0,
and they define an isomorphism with 4 ® K.

Suppose conversely that B is a form of A4, and choose a basis
1 = 3%4,%1,¥s,.. of B. Then y,? is in the span of y, over K, so it is so over
k, and we have y,? = a, for some q; € k. Again form x; = y; — (a;)'/? in
B & K; these are nilpotent elements spanning the maximal ideal M of
B QK ~A& K. Since M/M? has dimension n, we can find n of the x;
spanning M mod M?; we may as well assume they are x,,..,x,. By
Nakayama’s lemma x, ,..., x, generate B ® K. Hence y,,..., ¥, generate
B & K and therefore generate B. We thus have

KY, . V(Y —ay ..., Y,? — ay)

mapping onto B via Y;— y;; the map is an isomorphism by dimension-
counting,

5.2. Associated with the algebra 4 is the generalized Witt Lie algebra L,
the derivation algebra of A; for any k-algebra R, the R-derivation algebra
of A ® Ris L & R. An automorphism 6 of 4 induces an automorphism 6*
of L by 0*(x) = 8 o x o §72; this obviously commutes with change of R and
80 gives us 2 homomorphism Aut 4 -> AutL.

THEOREM. Assume p > 3. Then the map Aut A — Aut L is an isomorphism.

Proof. We can apply Proposition 2. The first hypothesis there was proved
(using the assumption p > 3) by Jacobson [7, p. 114]. Proposition 1 and (2.2)
allow us to translate the second hypothesis into a statement about universal
coconnected cocommutative Hopf algebras. A proof of it (independent of the
descent theory) can then be found in [1], essentially in Lemmas 3.5.2 and
354. 1

5.3. Asa corollary to the Theorem we have
CoroLLARY 1 (Allen-Sweedler). Forms of L are in one-to-ome corres-

pondence with forms of A. Explicitly, if A' is a form of A, the corresponding
form L’ is the derivation algebra of A'.
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Proof. The techniques of faithfully flat descent (developed in [6], and
simply explained in [2]) classify forms by cohomology of the automorphism
scheme; hence there obviously is a one-to-one correspondence. To make it
explicit, we recall the construction of the forms. There are two natural maps

dy,d: AQK—>ARKQK,

the cocycles @ are certain automorphisms of 4 @ K ) K, and the form is
simply
A ={ac A QR K|dya = 0d,a}.

The same holds for L and 6*. An obvious computation shows now that L’
is exactly the derivations taking A’ to itself. [

In view of Proposition 3, Corollary 1 is exactly what was conjectured by
Jacobson [7, p. 118].

This argument actually yields a stronger corollary. Let k& be the field
with p elements, R any k-algebra, and S a faithfully flat extension of R.
An R-algebra A’ is called an R-form of A splitby Sif A’ ®p S ~ A4 ®; S.
Then we have

CoroLLARY 2. The R-forms of A split by S are in one-to-one correspondence
with the R-forms of L split by S. |

CoroLLARY 3. If k is perfect, L has no nontrivial forms. More generally,
each form of L is split by some purely inseparable extension of k with exponent
one.

Proof. 1t suffices to prove the corresponding statements for A4, and there
the result is obvious from the proof of Proposition 3. |

CoOROLLARY 4. Let A’ be a form of A, and L' its derivation algebra. Then
Aut 4" = AutL'.

Proof. 'The map is defined just as for 4. To prove it is an isomorphism
we may as in Proposition 2 make a base extension to K; but there the
Corollary reduces to the Theorem. |

5.4. (Remarks). 1. For p >> 3 the Lie algebra L @ K is simple
[7, p. 109]; hence all forms of L are simple Lie algebras.
2. Since L is a derivation algebra, it has a p-power map making it a
restricted Lie algebra. By the previous remark all L (%) R are centerless for
p = 3, and the p-power map on a centerless Lie algebra is unique [8, p. 23].
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Hence all antomorphisms of L %) R preserve the p-power map. It follows
that the forms of L qua Lie algebra are the same as the forms of L qua
restricted Lie algebra.

3. Just as faithfully flat descent can replace Galois descent, we see here
that it can replace the rather more elaborate Hopf algebra descent developed
in [1].
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