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Let k be a field of characteristicp > 3. Let A = k[X, ,..., X,J/(XI’,..., Xnp), 
and let L be the generalized Witt Lie algebra formed by the derivations of A. 
It was conjectured by Jacobson [7], and proved by Allen and Sweedler [I], 
that the forms of L (defined below) correspond precisely to the forms of A. 
In this paper I use a lemma from [l] to prove that the automorphism group 
schemes of A and L are isomorphic; from this a strengthened form of the 
Allen-Sweedler result follows by the techniques of faithfully flat descent. 

The proof is based on a discussion of automorphism group schemes 
vis-a-vis formal groups and Hopf algebras. The results here are doubtless 
known to the cognoscenti, but I cannot find them anywhere in writing. Since 
for example Galois theory for inseparable extensions is being developed from 
both points of view (compare [9] and [IO]), it seems worthwhile to put the 
facts on record. I have tried to keep the treatment sufficiently elementary and 
expository that those familiar with either approach may follow the proofs and 
see how the two methods are connected. 

1 .l. Let k be a field, V a finite-dimensional vector space over k. For every 
(commutative) R-algebra R we can consider the group Gl,(R) of invertible 
R-linear maps from I’ @ R to itself; this defines a functor Gl, from 
K-algebras to groups. Concretely, choose a basis v1 ,..., v, of V; then invertible 
R-linear maps correspond to n by n matrices with invertible determinant, 
and thus to algebra homomorphisms of 

into R. 

0 = R[X,, ,..., X,, , l/det(X)] 

Now in general, if a functor G from &algebras to groups satisfies 
G(R) = Alg(A, R) for some algebra A, we say G is an ajine group scheme 
and write G = Spec A. (The experts will pardon a slight abus de Zangage 
here.) Automatically then A acquires the structure of an involutive bialgebra, 
or Hopf algebra; and conversely a Hopf algebra structure on A induces 
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WITT LIE ALGEBRAS 3.5 

group structures on all Alg(A, R) and so defines an affine group scheme 
[5, Ex. 2, p. 81. Thus our ring 0 above is naturally a Hopf algebra, and 
Gl, = Spec 0. 

1.2. Let G = Spec A be an affine group scheme. An operation of G on V 
is, for each R, an operation of the group G(R) on V @ R, functorial in R. 
This is equivalent [5, Ex. 3, p. 21 to an A-comodule structure on V; that is, 
a map CT: V---f A @ G’ such that (id,, @ u) u = (A @ i&) 0 and 
(e @ i&) u = id”, where d and e are the comultiplication and counit of 
the Hopf algebra. The group scheme Gl y is universal for such operations; 
that is, the operations correspond to homomor-phisms G ---f Gl y . Explicitly, 
if u(uJ = C cji @ V~ , then the associated Hopf algebra map A c 0 sends 
xii to cij . 

1.3. Let us suppose now that V is furnished with some additional 
structure, such as a bilinear map V x V -+ V. Then we can define a functor 
Aut V by letting Aut V(R) C GI v(R) be those maps preserving the induced 
structure on V @ R. This condition is easily seen to be equivalent to a set 
of polynomial equations in the matrix entries, and hence Aut V is Spec 0, 
for some quotient 0, of 0. We say that an operation of a group scheme G on V 
preserves the given structure if it does so for every R, and clearly such an 
operation corresponds to a homomorphism G --f Aut V. 

2.1. We can go through the same constructions replacing the category of 
k-algebras by that of linearly compact k-algebras. (These are k-algebras B 
satisfying B = @ B/I for a filter of ideals I of finite codimension; they are 
topologized by letting (b + I} b e a basis of neighborhoods of b.) A functor 
from such algebras to groups which satisfies 

F(B) = Contin. Alg. Hom(S, B) 

for some linearly compact S is called a formal group, written F = Spf S. 
Automatically S acquires the analogue of a Hopf algebra structure (using 
the completed tensor product: thus d maps S to S @ S), and any such 
structure defines a formal group [4, Ex. VII,]. We say F is infinitesimal if S 
is a local ring. An operation of F on V again corresponds to a map 
u : V - S @ V satisfying identities like those before. If u(zQ = C cii @ vj , 
then the condition that a structure be preserved imposes the same equations 
on (cij) as in (1.3). 

2.2. In place of S we can consider E, the set of continuous linear homo- 
morphisms from S to k. Dualizing the structure on S makes E into a cocom- 
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mutative Hopf algebra, and every such Hopf algebra gives a formal group. 
The formal group is infinitesimal iff E is coconnected. An operation of F on V 
corresponds to an E-module structure on V, and the condition of preserving 
additional structure becomes precisely the condition in [ 1, Sec. 2.31. 

3.1. Let G = Spec A be an affine group scheme which is algebraic, i.e., 
such that A is a finitely generated k-algebra. Let N be the kernel of the map 
e : A + R, and let a, = lim A/N”. Then G = Spf A^, is naturally an 
infinitesimal formal group, called the completion of G at the identity. 

3.2. Let F = Spf S be an infinitesimal formal group, with M the maximal 
ideal of S. Suppose F operates on I’, with U(VJ = C cji @I zli . The second 
comodule condition says that the image of (cij) under e : S + k is the 
identity matrix; hence (cij) is nonsingular and defines a map of 0 to 5’. It 
follows also that this map takes N (generated by Xii - &) to M (the kernel 
of e : S --z k), and so it extends uniquely to a continuous map of 6, into S. 
The comodule conditions then say precisely that F + Spf 0, is a homo- 
morphism. Conversely, any such homomorphism corresponds to a map 
(I, : 6, + S giving an operation of F with cii = #(Xii). 

3.3. Let us finally give V some additional structure. Then F preserves 
this structure iff (cij) satisfies the appropriate polynomial conditions, which 
happens iff the map 0 ---f S factors as 0 -+ 0, --f S. As before, these 
correspond to maps 6,, + S. Thus we have proved: 

PROPOSITION 1. The formal group (Aut V)” is universal for structure- 
preserving actions of inJinitesima1 formal groups on V. 1 

If instead of making S local we require only that all its maximal ideals 
have k as residue field (E “split”, in the terminology of [I]), we can construct 
a correspondingly larger universal group. But the infinitesimal part is all we 
need. 

4. We now prove: 

PROPOSITION 2. Let G and G’ be algebraic aj%se group schemes, q~ : G -+ G 
a homomorphism. Let K be the algebraic closure of k. Assume: 

1) the map p(K) : G(K) -+ G’(K) is an isomorphism, and 

2) the induced map C$ : G -+ G’ is an isomorphism. 

Then v is an isomorphism. 
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Proof. Write @ : A’ + A for the map of Hopf algebras corresponding to 
p. Then @J is an isomorphism iff the map 

is an isomorphism. The same holds for +, and so we may assume k = K. 
The functor H(R) = Ker[G(R) + G’(R)] is easily seen to be Spec C, 

where C = /l OR, k. Since Alg(C, k) = H(k) has only one element, C is 
(by the Nullstellensatz) a local ring finite dimensional over K. Hence it is 
linearly compact, and the map A -+ C extends to a map f&, -+ C. 

Now by construction A’ ---f A + C and the counit map A’ -+ A --f k ---f C 
coincide; hence also a,’ + a, + C and a,’ + & -+ k ---f C coincide. 
But by 2) the maps from & to a linearly compact local algebra are determined 
by their compositions with .&’ + 2, . Thus the map a, --f C, surjective by 
construction, must factor through k, whence C = k. That is, H is trivial, 
and v is a monomorphism. It follows [5, Ex. 2, p. 261 that @ is surjective. 

Let Q now be any maximal ideal of A’, corresponding to an element of 
G’(k). By 1) there is a corresponding element of G(k), and so Q = @-l(P) 
for some maximal ideal P of A. From Q we get a map “translation by Q”: 

A’-%AA’@A’ 2% A’ @ k ‘v A’, 

which by the group scheme axioms is a ring isomorphism. We have a similar 
isomorphism A --+ A induced by P, and since v is a group map @ is compatible 
with these isomorphisms. We know by 2) that @ induces an isomorphism 
a,’ + A, ; it follows that @ also induces an isomorphism 

Let I now be the ideal ker(@). The isomorphism above shows that I must 
be contained in p for all n and Q. But this implies I = 0. (For example, 
if x E (J Q’“, then by Krull’s theorem [3, p. 651 (1 - q) x = 0 for some 
q E Q, and so the annihilator of x is not contained in any maximal ideal.) 1 

The second half of this proof is rather more natural when phrased in the 
geometric language of [4] and [5]; the Proposition then extends immediately 
to non-affine algebraic group schemes. 

5.1. Suppose that V is a finite-dimensional space with some additional 
structure, and V’ is another such. Let K be the algebraic closure of k. We 
say that V’ is a form of V if V’ @ K is K-isomorphic to Z’ @ K. We can 
illustrate this with an example we will want later: 
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PROPOSITION 3. Let k be a jield of characteristic p > 0. Let A be the 
k-algebra k[X, ,..., X,]/(X,p ,..., X,p). Then the forms of A are the algebras 

A’ = k[Y, ,..., Yn]/(Yln - a, ,..., Y,” - a,), 

with ai E k. 

Proof. Consider such an A’. In A’ @ K we can form xi = Yi - (a#lD; 
this gives us elements x1 ,..., x, generating A’ @ K and satisfying (xi), = 0, 
and they define an isomorphism with A @ K. 

Suppose conversely that B is a form of A, and choose a basis 

1 =Yo,yl,Y2,.- of B. Then yip is in the span of y. over K, so it is so over 
k, and we have yip = ai for some ai E k. Again form xi = yi - (ai)llP in 
B @ K; these are nilpotent elements spanning the maximal ideal M of 
B @ K E A @ K. Since M/M2 has dimension n, we can find E of the xi 
spanning M mod M2; we may as well assume they are x1 ,..., x, . By 
Nakayama’s lemma x1 ,..., x, generate B @ K. Hence yI ,..., yn generate 
B @ K and therefore generate B. We thus have 

V, a..., Ynl/(Ylp - a, ,..., Ynp - a,> 

mapping onto B via Yi tt yi ; the map is an isomorphism by dimension- 
counting. 

5.2. Associated with the algebra A is the generalized Witt Lie algebra L, 
the derivation algebra of A; for any k-algebra R, the R-derivation algebra 
of A @ R is L @ R. An automorphism 0 of A induces an automorphism 8* 
of L by 8*(x) = 0 o x o 9-l; this obviously commutes with change of R and 
so gives us a homomorphism Aut A -+ AutL. 

THEOREM. Assumep > 3. Then the map Aut A ---f Aut L is an isomorphism. 

Proof. We can apply Proposition 2. The first hypothesis there was proved 
(using the assumption p > 3) by Jacobson [7, p. 1141. Proposition 1 and (2.2) 
allow us to translate the second hypothesis into a statement about universal 
coconnected cocommutative Hopf algebras. A proof of it (independent of the 
descent theory) can then be found in [l], essentially in Lemmas 3.5.2 and 
3.5.4. 1 

5.3. As a corollary to the Theorem we have 

COROLLARY 1 (Allen-Sweedler). Forms of L are in one-to-one corres- 
pondence with forms of A. Explicitly, if A’ is a form of A, the corresponding 
form L’ is the derivation a&ebra of A’. 
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Proof. The techniques of faithfully flat descent (developed in [6], and 
simply explained in [2]) classify forms by cohomology of the automorphism 
scheme; hence there obviously is a one-to-one correspondence. To make it 
explicit, we recall the construction of the forms. There are two natural maps 

d,,d,:A@K-+A@K@K, 

the cocycles 0 are certain automorphisms of A @ K @ K, and the form is 
simply 

A’ = {a E A @ K 1 d,a = Od,a}. 

The same holds for L and 0*. An obvious computation shows now that L’ 
is exactly the derivations taking A’ to itself. i 

In view of Proposition 3, Corollary 1 is exactly what was conjectured by 
Jacobson [7, p. 1181. 

This argument actually yields a stronger corollary. Let K be the field 
with p elements, R any k-algebra, and S a faithfully flat extension of R. 
An R-algebra A’ is called an R-form of A split by S if A’ OR S cx A Ok S. 
Then we have 

COROLLARY 2. The R-forms of A split by S are in one-to-one correspondence 
with the R-forms of L split by S. 1 

COROLLARY 3. If k is perfect, L has no nontrivial forms. More generally, 
each form of L is split by some purely inseparable extension of k with exponent 
one. 

Proof. It suffices to prove the corresponding statements for A, and there 
the result is obvious from the proof of Proposition 3. 1 

COROLLARY 4. Let A’ be a form of A, and L’ its derivation al’gebra. Then 

Aut A’ --+ Aut L’. 

Proof. The map is defined just as for A. To prove it is an isomorphism 
we may as in Proposition 2 make a base extension to K; but there the 
Corollary reduces to the Theorem. 1 

5.4. (Remarks). 1. For p 2 3 the Lie algebra L @ K is simple 
[7, p. 1091; hence all forms of L are simple Lie algebras. 

2. Since L is a derivation algebra, it has a p-power map making it a 
restricted Lie algebra. By the previous remark all L @ R are centerless for 
p > 3, and the p-power map on a centerless Lie algebra is unique [8, p. 231. 
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Hence all automorphisms of L @ R preserve the p-power map. It follows 
that the forms of L qua Lie algebra are the same as the forms of L qua 
restricted Lie algebra. 

3. Just as faithfully flat descent can replace Galois descent, we see here 
that it can replace the rather more elaborate Hopf algebra descent developed 
in [I]. 
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