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Considering a QCD chiral symmetry breaking model where the gap equation contains an effective 
confining propagator and a dressed gluon propagator with a dynamically generated mass, we verify that 
the chiral symmetry is restored for a large number of quarks n f ≈ 7 − 13. We discuss the uncertainty 
in the results, that is related to the determination of the string tension (K F ), appearing in the confining 
propagator, and the effective gluon mass (mg) at large n f .

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Chiral symmetry breaking (csb) is one of the main QCD char-
acteristics. It is well understood from the phenomenological point 
of view; where a quark condensate 〈q̄q〉 has a vacuum expectation 
value at the scale of few hundred MeV, and a dynamical quark 
mass is generated at the same scale. Therefore, the chiral symme-
try is broken and the (almost)massless (pseudo)Goldstone pions 
are generated. The knowledge of the csb mechanism in strongly 
interacting gauge theories will be complete when we know how 
this symmetry is broken or restored as we vary the number of 
fermions, the fermionic representations, the temperature or the 
chemical potential, and how this symmetry is related to confine-
ment.

In the last years lattice simulations have contributed consider-
ably to the understanding of a possible connection between csb 
and confinement, where center vortices play a fundamental role. 
In the SU(2) case the artificial center vortices removal also im-
plies a recovery of the chiral symmetry [1–3]. The relation between 
vortices and csb is discussed at length in Ref. [4], and follows 
old proposals that confinement and csb are intimately connected 
[5–7]. There are also lattice results indicating no direct one-to-
one correspondence between confinement and csb in QCD [8]. Al-
though these results appear to be in conflict, they may not be fully 
contradictory according to the ideas first delineated by Cornwall 
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in Ref. [9], where it was observed that confinement is necessary 
for csb when quarks are in the fundamental representation, but 
the symmetry breaking happens through one-dressed-gluon ex-
change if we consider quarks in the adjoint representation. This 
means that we may have competing mechanisms as proposed in 
the model of Ref. [10], which was further studied in Refs. [11–13].

The csb model of Ref. [10] describes a gap equation that con-
tains an effective confining propagator and a dressed gluon propa-
gator with a dynamically generated mass. To grasp the idea behind 
the model we can first discuss what happens with the one-dressed 
massive gluon exchange. The effects of dynamical gluon mass gen-
eration have been discussed in Ref. [9], and imply a frozen cou-
pling constant given by

ḡ2(k2) = 1

b ln[(k2 + 4m2
g)/�

2] , (1)

where b = (11N − 4n f T (R))/48π2 for the SU(N) group with n f
flavors, and T (R) is connected to the quadratic Casimir eigenvalue 
C2(R) for fermions in one specific representation (R) of the gauge 
group. The infrared value of this coupling obtained through the 
functional Schrödinger equation [9] and through phenomenolog-
ical analysis [14] is small. This fact together with a dynamically 
massive gluon propagator that roughly behaves as 1/[k2 + m2

g] in 
the infrared (IR), causes a damping in the gap equation erasing the 
possibility to generate a phenomenologically acceptable dynami-
cal mass for quarks in the fundamental representation [9,15,16]. 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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These results have been obtained based on the Schwinger–Dyson 
calculations for the gluon propagator [17–20], which are in agree-
ment with lattice simulations for the gluon propagator [21]. Note 
that the study of the gap equation with quarks in the adjoint rep-
resentation does lead to csb due to the larger Casimir operator 
appearing in the gluon exchange [9,11].

The difficulties to produce csb at the desired level, as dis-
cussed above, led to new approaches to study csb in the context 
of Schwinger–Dyson equations (SDE). One of them considers the 
one-dressed gluon exchange making use of a gluon propagator de-
scribed by the lattice data, which is less damped at intermediate 
momenta than the one obtained with the SDE, and with a larger 
value for the quark–gluon vertex due to a possible enhancement 
of the quark–ghost scattering kernel [22]. The other is the model 
of Ref. [10] that we addressed before, where csb for quarks in the 
fundamental representation is essentially triggered by a confining 
propagator, and the main purpose of this work is to determine how 
the chiral symmetry is recovered in this model when we increase 
the number of fermions.

The confining propagator used in Refs. [10–13] is giving by

Dμν
eff (k) ≡ δμν Deff (k) ; Deff (k) = 8π K F

(k2 + m2)2
, (2)

where m, which is related with the dynamical quark mass M , not 
only cures the IR singularities of the 1/k4 propagator, but also con-
tributes with a negative term to the effective Hamiltonian, which 
is crucial to generate the massless pions associated to the csb. This 
entropic quality of this propagator has been stressed in Ref. [23].

In QCD we expect that quarks interact through a linear poten-
tial proportional to the string tension K F , at least up to a certain 
distance [24]. This behavior is not observed if we perform the 
Fourier transform of the time–time component of the dynamically 
massive gluon propagator obtained in lattice simulations or in SDE 
solutions, however this is a property of Eq. (2). As far as we know 
there is no evidence that the dynamically massive gluon propaga-
tor may generate such linear potential.

A confinement scenario, fully described in [17], claims that dy-
namical mass generation in QCD lead to an effective theory where 
the gluons acquire an effective mass, and consequently this theory 
has vortex solutions which are responsible for confinement. This 
scenario is consistent with the lattice simulations, where center 
vortices seem to be necessary for csb [1–3]. In this way vortices 
appear in the effective dynamically massive theory, and not in the 
QCD Lagrangian and consequently in the SDE. This is the main 
reason for the introduction, by hand, of the effective propagator 
shown in Eq. (2) into the gap equation.

The complete gap equation that we shall consider is

M
(

p2
)

=
∫

d4k

(2π)4

{
32π K F[

(p − k)2 + m2
]2

+

+ 3C2 ḡ2 (p − k)

(p − k)2 + m2
g
(
k2

)
}

M
(
k2

)
k2 + M2

(
k2

) , (3)

where we consider a simple fit for the running gluon mass dis-
cussed in [25]

m2
g

(
k2

)
= m4

g

k2 + m2
g
. (4)

It can be proven that the entropic parameter (m) of Eqs. (2)
and (3) has to be proportional to the string tension. For instance, 
in [10] the condition to generate massless pions is M2 = 9K F /4π2, 
and it was also verified that naturally m ≈ M . In Ref. [11] the bi-
furcation condition for the complete gap equation was studied and 
we can assume

m2 = κ K F , (5)

where κ ≈ 0.18 imply in reasonable values of the dynamical quark 
mass (200 MeV < M < 300 MeV) for n f = 2. With these values it 
was shown in Refs. [10] and [11] that we can describe the light 
quark phenomenological parameters, for example, the values of the 
quark condensate and the pion decay constant.

There is another important reason to consider the complete gap 
equation model of Eq. (3) with a confining propagator and one-
dressed-gluon exchange. We have observed that for quarks in the 
fundamental representation approximately 95% of the dynamical 
quarks mass is generated by the confining propagator and 5% by 
the dynamically massive gluon exchange, while for quarks in the 
adjoint representation the result is exactly the opposite [11,13]. 
This is what we meant in the beginning by competing mecha-
nisms, and may explain the apparently contradictory lattice results 
quoted in the second paragraph, where csb is related to confine-
ment due to vortices, but no one-to-one relation between csb and 
confinement is found in other simulations.

The model that we discuss in this work has also a clear dif-
ference with the scenario in which all the symmetry breaking is 
generated by gluon exchange, i.e. when the gap equation has only 
the dressed-gluon exchange and a more sophisticated vertex func-
tion. If we just assume naive Casimir scaling for the interaction in 
the SDE, it is clear that csb for quarks in different representations 
will be increased accordingly to the value of this operator, which 
will appear in all Green’s functions implicit in the gap equation, 
and this fact may be tested by lattice simulations. For instance, if 
the csb of quarks in the fundamental representation seems to be 
enhanced in the one-dressed gluon exchange approach, the csb for 
quarks in the adjoint representation will be enhanced even more. 
To further strength the qualities of the model of Ref. [10], we com-
ment in the sequence how it can explain the difference between 
the chiral transition of fundamental and adjoint quarks [13], with-
out appealing for an enhancement of the quark–gluon vertex and 
without the use of the lattice gluon propagator.

It is known that the chiral symmetry restoration at finite tem-
perature in QCD with two quark flavors in the fundamental rep-
resentation is connected to the de-confinement transition [26,27]. 
Whereas, when quarks are in the adjoint representation, it has 
been found that the chiral transition happens at a temperature 
(Tc) higher than the de-confinement temperature (Td) [28–30], 
where the ratio between these temperatures for adjoint quarks is 
giving by [28]: Tc/Td ≈ 7.7 ± 2.1, and factors of the same order 
were found in [29,30]. Working with Eq. (3) we have been able 
to explain this difference in [13], which is basically related to the 
different contributions of the two propagators present in the gap 
equation. In the realm of SDE we are not aware of other expla-
nation of this difference in the chiral transition, what may be a 
signal of the model success. The main uncertainty in the calcula-
tion of Ref. [13] is the poor knowledge of the effective gluon mass 
for quarks in the adjoint representation.

The chiral symmetry restoration does not happen exclusively 
with the increase of the temperature. Recent lattice calculations 
are indicating that the chiral symmetry is also restored with the 
increase of the number of flavors [31,32]. In a gap calculation 
considering only one-gluon dynamically massive exchange it was 
observed that the chiral symmetry is recovered when the number 
of quarks is nq ≈ 8 [33], and our intention is to verify this effect in 
the model of Ref. [10]. It is important to mention that our calcu-
lation makes use of the rainbow approximation, a simple fit of the 
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Fig. 1. Dynamical gluon mass infrared value as a function of the number of flavors. 
The mass is extrapolated for large n f values according the fits of Eq. (6).

phenomenological running of the dynamical gluon mass, the con-
fining effective propagator with an entropic parameter that follows 
Eq. (5), and, of course, we work in the Landau gauge. The main 
problem to calculate how the solution of Eq. (3) varies with n f
(or nq), as stated in the previous paragraph in the finite tempera-
ture case, is the poor knowledge that we have about the variation 
of K F and mg with the number of quarks.

In order to study how the solutions of Eq. (3) vary as we 
change the number of flavors (n f ) we need to know what hap-
pens with K F and mg as n f is increased. The infrared value of 
the dynamical gluon mass was recently determined in lattice sim-
ulations for a small number of flavors [33], and the variation of 
the string tension with n f , also for a small number of quarks, was 
discussed in Ref. [34]. Therefore it will be necessary to extrapo-
late the known K F and mg values for large n f . This will be the 
main uncertainty introduced in the results that we shall present. 
According to Ref. [33] the values for the infrared dynamical gluon 
mass are 373(8), 427(9), 470(12) MeV respectively for n f = 0, 2, 4
quarks. We plot in Fig. 1 the linear and exponential curves used to 
extrapolate these values, whose best fits are given by

mg(n f ) = 0.5(
1 − 0.053 n f

) GeV,

mg(n f ) = 0.5e0.059 n f GeV. (6)

Note that the fits were normalized in order to match the phe-
nomenologically acceptable value mg ≈ 2�QCD ≈ 500 MeV that has 
been obtained in Refs. [14,17,35].

To know how the string tension (K F ) for quarks in the fun-
damental representation varies with the number of quarks we 
followed Ref. [34] and assumed K F = 0.18(1), 0.17(2), 0.14(1),

0.12(3) GeV2 respectively for n f = 0, 2, 3, 4 flavors. We them per-
formed two different fits (in units of GeV2):

Gaussian: K F (n f ) = 0.183 exp

[
−

(
n f
6.1

)2
]

,

Linear: K F (n f ) = 0.187 − 0.015n f ,

Power-1: K F (n f ) = 0.029(10.21 − n f )
0.8,

Power-2: K F (n f ) = 0.07(7.0 − n f )
0.5. (7)

These fits, hereafter termed as cases 1, to 4, are shown in Fig. 2, 
where we may see that, for instance in the case 3, the string ten-
sion goes to zero as n f ≈ 10.

It is not difficult to imagine how the csb will depend on the 
variation of K F with the number of flavors. The string tension in 
the confining propagator plays the same role of the coupling con-
stant in the one-gluon exchange gap equation, and for K F below 
Fig. 2. Fits, giving by Eq. (7), of the string tension as a function of the number of 
flavors.

Fig. 3. Dynamical quark masses as a function of the momenta for different num-
ber of flavors, computed in the case 2 (linear fit for the string tension) and the 
exponential fit for the dynamical gluon mass.

a certain critical value csb will be restored. In Fig. 3 we show the 
behavior of the dynamical quark masses as a function of the mo-
menta for different number of flavors, computed with the Gaussian 
fit for the string tension and the exponential fit for the dynamical 
gluon mass. As the string tension value decreases we have smaller 
dynamical masses.

Fig. 4 contains the infrared values of the dynamical quark 
masses as a function of the number of quarks. These curves were 
computed with the complete gap equation considering the fits pro-
posed for the string tension combined with the exponential fit for 
the dynamical gluon mass. We may verify that the chiral symme-
try is restored for n f values of the order of 7 to 13 where the 
uncertainty is basically due to our poor knowledge of the string 
tension and the gluon mass at large n f . Note that mg values are 
not so relevant for the determination of the critical n f value, as 
could be expected in face of the results presented in Refs. [11,13]. 
This is the main reason why we only focused on one of the fits 
for mg .

The dynamical masses as a function of the number of fermions 
shown in Fig. 4 were fitted with the expression

M = A(nc − n f )
δ,

where nc is the critical number of fermions. We can note that the 
case 2 (linear fit for K F ) leads to a critical number of fermion 
nc ≈ 12.48, which is in agreement with lattice data [31,32]. In this 
particular case the critical behavior approaches a mean field one. 
Case 1 leads to a larger critical number, but this was expected be-
cause this is the case of a Gaussian fit for the string tension, and 
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Fig. 4. Infrared values of the dynamical quark masses as a function of the number 
of quarks. The points corresponding to the central values of the infrared quark mass 
were computed with the complete gap equation considering the different cases of 
Eq. (7) for the string tension. The influence of the dynamical gluon mass is negligi-
ble compared to the uncertainty in the string tension value. The fits are given just 
to guide the eyes. The results were fitted by the expression M = A(nc − n f )

δ , with 
nc and δ shown in the figure. Case 2 shows an approximate mean field behavior 
near criticality, with a critical number of fermions nc ≈ 12.48.

away from the peak the Gaussian tail falls slowly, and probably 
this is a bad fit for the string tension at large n f although this is a 
possible fit for the data. Unfortunately, it is impressive that there 
are not lattice data (and with small errors) for K F at large n f . This 
lack of data does not allow us to perform more precise calcula-
tions. Note that we should not expect that the Gaussian tail would 
give a good description of the critical K F behavior at large n f .

It has been argued by Maris [36] that fermion de-confinement 
can be studied through the analytic properties of the fermion 
propagator and, in particular, by its Schwinger function

�(t) =
∫

d3x

∫
d4 p

(2π)4
ep0t+�p·�x M(p2)

p2 + M2(p2)
.

If there are two complex conjugate singularities the Schwinger 
function will show an oscillatory behavior, and if it exhibits a real 
mass singularity of the propagator, the quark is observable and 
consequently not confined. In this case, if there is a stable asymp-
totic state associated with the quark propagator with mass m we 
shall have

�(t) ∝ e−mt → lim
t→∞ ln�(t) ∼ −mt. (8)

In Fig. 5 we plot the behavior log �(t) as a function of t for 
the case 2 mentioned before. We expect that approaching the crit-
ical fermion number the oscillatory behavior of �(t) will never 
takes place and quarks will be deconfined corresponding to sta-
ble asymptotic states. Another confinement-de-confinement order 
parameter, as suggested in Ref. [37], is obtained from

ν(n f ) = 1

τ (n f )
, (9)

where τ (n f ) is the location of the first zero of the Schwinger func-
tion and its vanishing signals de-confinement, as shown in Fig. 6.

In the context of a csb model where the gap equation contains 
an effective confining propagator and a dressed gluon propagator 
with a dynamically generated mass, we verified that the chiral 
symmetry is restored for a large number of quarks. We first dis-
cussed the properties of the model, indicating that the introduction 
of the effective confining propagator is one way to introduce con-
finement by vortices, which cannot appear in the SDE when we 
consider only the exchange of dynamically massive gluons [10,17]. 
Fig. 5. Logarithm of the absolute value of the Schwinger function for the case 2. 
Note that as the number of fermions is increased the behavior is pushed to larger 
t values becoming more and more spaced, and we expect that approaching the 
critical number the oscillatory behavior will never takes place and quarks will be 
deconfined corresponding to stable asymptotic states.

Fig. 6. Behavior of the confinement-de-confinement parameter ν(n f ) = 1/τ (n f )

[37], as a function of the number of flavors in the main cases discussed in the 
text. Its vanishing indicates de-confinement.

We also discussed possible differences between this and other 
models to explain csb with dynamically massive gluons. Our re-
sults indicate that the chiral symmetry is restored for n f ≈ 7–13, 
in agreement with lattice results [31,32]. The values of the string 
tension (K F ) and dynamical gluon masses (mg ) were extrapolated 
from small to large number of quarks. This extrapolation is the 
larger source of uncertainty in our calculation. The gap equation 
calculation is quite numerically sensitive to the decrease of param-
eters that define the critical bifurcation behavior (factors like K F
or C2 ḡ2 in the one-gluon gap equation), but certainly the K F ex-
trapolated values is at the origin of the range of n f critical values. 
It is important to have new QCD simulations of the string tension 
and dynamical gluon masses for a large number of flavors and for 
different fermionic representations, otherwise it will not be possi-
ble to perform precise gap equation calculations of the csb phase 
diagram as a function of n f .
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