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Abstract

We establish a general framework for the analysis of boundary value problems of matrix models at zero 
energy on compact regions. We derive existence and uniqueness of ground state wavefunctions for the mass 
operator of the D = 11 regularized supermembrane theory, that is the N = 16 supersymmetric SU(N)

matrix model, on balls of finite radius. Our results rely on the structure of the associated Dirichlet form and 
a factorization in terms of the supersymmetric charges. They also rely on the polynomial structure of the 
potential and various other supersymmetric properties of the system.
Crown Copyright © 2016 Published by Elsevier B.V. This is an open access article under the CC BY 
license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Physical theories subject to boundary conditions play a crucial role in the study of physical 
properties at high energies and they are also notably relevant in the study of some condensed 
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matter effects. Recently, supersymmetric boundary conditions have received renewed attention, 
due to their connection with quantum phase transition at the boundary of topological supercon-
ductors. We refer to [1] and [2], where a systematic analysis of a class of N = 2 supersymmetric 
theories subject to several boundary conditions was carried out.

Matrix models related to the regularization of field theories with boundary conditions have 
been studied in order to test the AdS/CFT conjecture at finite temperature. In part this is due to 
its relation in the bulk picture with the black hole microstates in this regime [3]. An analysis of 
the unbounded matrix model wavefunction, related to the (0 + 1) supersymmetric Yang–Mills 
ground state, has been considered in various other cases [4–7]. In the context of M-theory and 
for the regularized supermembrane, this has been studied in [8] and subsequent work. For a 
matrix model wavefunction perspective see [9–14], for different aspects of Lorentz invariance 
see [15,16], for inner solutions see [17] and for asymptotic solutions see [18–22].

M-theory seen as a unification theory should provide a quantum description of D = 11 super-
gravity. In this setting, String Theory is regarded as a perturbative limit of M-theory which should 
include all non-perturbative effects. The D = 11 supermembrane describes relevant degrees of 
freedom of M-theory, because it couples consistently to a D = 11 supergravity background with-
out destroying the local fermionic symmetry [23]. This provides strong evidence that the ground 
state of the D = 11 supermembrane should correspond to a wavefunction constructed in terms 
of the D = 11 supergravity multiplet.

In spite of several insightful attempts [8–22], a construction of the ground state wavefunction 
of the D = 11 supermembrane has remained an elusive challenge since the original analysis 
performed in [8]. It is well-known that the Hamiltonian of the theory formulated on a Minkowski 
spacetime in the Light Cone Gauge [8] is the sum of two components. One of the components 
is associated with the kinematics of the center of mass of the supermembrane described in terms 
of the zero modes. The other component is the mass operator of the supermembrane which only 
depends on the non-zero modes.

The ground state wavefunction, � , factorizes into two parts

� = �0�non-zero.

The zero mode wavefunction, �0, is responsible for the planar wave associated to the super-
gravity supermultiplet. The non-zero mode wavefunction, �non-zero, should be annihilated by 
the mass operator of the supermembrane and should be a singlet under SO(9). This ensures that 
the full wavefunction � is the unique solution constructed in terms of the D = 11 supergravity 
multiplet.

Rigourous treatments of the spectrum (in particular the ground state of the supermembrane) 
have been achieved by means of an SU(N) regularization of the theory [8,24–26]. These always 
involve the quantum mechanics of an SU(N) matrix model which was originally introduced in a 
different context in [4,27,28]. The corresponding Hamiltonian is the starting point of the matrix 
model theory developed in [29].

The regularized D = 11 supermembrane was rigorously shown to have a continuous spectrum, 
the segment from zero to infinity, in [30]. The compactification in a sector of the target space by 
itself does not change this property [31]. However, the spectrum becomes purely discrete with 
finite multiplicities, when the maps describing the regularized Hamiltonian satisfy a topological 
condition [32] corresponding to a non-trivial central charge in the supersymmetric algebra. See 
[33–38] for a rigourous treatment in this respect. The setting developed in [38] also shows that the 
BMN matrix model [39] has purely discrete spectrum when considered beyond its semi-classical 
limit. This argument extended the semiclassical analysis performed in [39].
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In this paper we will consider the SU(N) regularized D = 11 Supermembrane without any 
topological restriction. The mass operator or Hamiltonian has then continuous spectrum from 
0 to infinity and a problem of great interest is to determine whether 0 is an eigenvalue of the 
Hamiltonian or not. In other words, proving or disproving the existence of ground state wave 
functions.

A plausible programme to examine this problem can be divided into three main steps.

a) Consider first the Dirichlet problem on a bounded domain � with smooth boundary. In the 
case of the regularized SU(N) Supermembrane one may consider a ball of arbitrary but finite 
radius R. The domain � remains invariant under the action of the local SU(N) symmetry 
and global SO(9) symmetry. There the Dirichlet problem may be formulated as (I) below. 
This formulation breaks explicitly supersymmetry as no periodicity condition on the datum 
at the boundary are imposed at this stage. Since the supersymmetry generates translations, 
one has to impose periodic boundary conditions in order to define a supersymmetric invari-
ant problem (cf. [32,33]). The supercharge operator does not annihilate the solution of the 
Dirichlet problem. However, this solution is a minimizer in the semi-norm constructed from 
the supersymmetric charge under the constraint and datum given at the boundary.

b) Solve the external Dirichlet problem.1 That is, the Dirichlet problem for the mass operator or 
Hamiltonian on the complement of the domain �. The problem should now be formulated 
on an unbounded region. It is very important here to handle the domain of the Schrödinger 
operator, taking into account the fact that the bosonic potential is unbounded and has valleys 
extending to infinity where the wavefunction might not vanish at infinity. There are strong re-
sults valid on bounded domains (use in the present work) which are not valid for unbounded 
regions in general.

c) One must then combine the previous two steps. To this end one must find a patching of 
the two solutions. One has to choose a suitable boundary datum in order to glue these two 
solutions with sufficient smoothness. If the smooth patching exists, then there exists the 
ground state wavefunction of the D = 11 Supermembrane. Otherwise it does not exist. If 
the former alternative holds, then one will recover the invariance under supersymmetry of 
the ground state wave function. Moreover, for this particular boundary data the solution 
of the first and second stages coincide with the ground state wavefunction of the D = 11
Supermembrane.

If the existence and uniqueness of the ground state wave function can be demonstrated by follow-
ing these three steps, one can implement afterwards perturbation techniques in order to analyze 
properties of the solution.

1.1. Aims and scope of the present work

In this paper we will only address part a) in the programme described above. In turns we 
describe a rather general methodology for examining the ground state wavefunctions of a class 
of supersymmetric models on compact regions subject to Dirichlet boundary conditions. Prelim-
inary results in this direction were already considered in [40] and [41].

1 Another strategy, already explored from a numerical perspective [38], is to obtain conditions under which one gets a 
convergent sequence of solutions when the diameter of � increases to infinity. See the acknowledgements.
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We focus on the SU(N) regularized supermembrane theory. The corresponding mass operator 
is the Hamiltonian of the N = 16 supersymmetric SU(N) matrix model [29]. The center of mass 
is allowed to move freely in a D = 11 Minkowski spacetime but the membrane excitations are 
restricted to a bounded domain � of dimension 9(N2 − 1) with a smooth boundary ∂�.

In the main contribution below we establish the existence and uniqueness of the ground state 
wavefunction of the mass operator, assuming that its values are known on ∂�. The mass operator 
is subject to the physical constraints of the theory which, in the regularized model, generate local 
SU(N) invariance. In the large N limit, these constraints are associated to the residual area 
preserving diffeomorphisms symmetry of the D = 11 supermembrane in the Light Cone Gauge. 
Our arguments depend crucially on the supersymmetric structure of the mass operator.

Mathematically, we solve the homogeneous boundary value problem on � for the Hamil-
tonian of the supermembrane, given by H in (4) below, subject to inhomogeneous boundary 
conditions. The latter are represented by means of a datum, g, on ∂�. We will show that a 
unique wavefunction � exists such that⎧⎨

⎩
H� = 0
ϕA� = 0

in �

� = g on ∂�.

(I)

The linear map ϕA is the operator associated to the SU(N) constraint where A is an index in 
SU(N), see (5) below. Here and elsewhere g �= 0, as g = 0 renders � = 0.

The Hamiltonian H is a selfadjoint elliptic operator on the domain of homogeneous Dirichlet 
boundary conditions. Hence it has a basis of eigenfunctions vanishing at ∂� and only positive 
eigenvalues which accumulate at infinity. The ground eigenvalue of this Hamiltonian is therefore 
positive. Note that the latter is not directly related to the ground state problem on unbounded 
domains. We call � the ground state wavefunction of the mass operator in �, since it corresponds 
to the restriction to � of the ground state wavefunction of the mass operator in R9(N2−1) for 
g �= 0. We will show below that, remarkably, g can be chosen so that � is invariant under SO(9).

The wavefunction � is the state minimizing a seminorm, among all other states satisfying the 
constraint and the boundary condition. This seminorm is the one associated to the inner product 
defined in terms of the supersymmetric charges, Q and Q†, given by

(Qη,Qλ)L2(�) + (Q†η,Q†λ)L2(�) for η,λ ∈H1(�). (1)

In the subspace2 H1
0(�), this expression defines a norm and is directly related to the Hamiltonian 

H through Green’s identity. However it is only a seminorm in the full Sobolev space H1(�). This 
is analogous to the Dirichlet principle in Electrostatics, see Remark 3.

1.2. Structure of the paper

We present the specific description of the Hamiltonian H and formulate our main result about 
the problem (I) in section 2. The proof of this result is deferred to section 5. In sections 3 and 4
we formulate a general framework which we believe is applicable to a large variety of super-
symmetric models, where the Hamiltonian is a Schrödinger operator with a polynomial potential 
satisfying conditions of strong ellipticity. In section 3 we consider existence and uniqueness of 

2 Here H1
0(�) denotes the completion of the space of smooth functions with support a compact subset of �, C∞

c (�), 
in the norm of the Sobolev space H1(�).



L. Boulton et al. / Nuclear Physics B 910 (2016) 665–684 669
the solution for models with global symmetry only. In section 4 we formulate the criterion for 
existence and uniqueness of solutions for the more general case of models with gauge sym-
metry, which requires several technical considerations. In section 5 we implement the general 
framework of section 4, in order to show existence and uniqueness of the solution of (I). We 
consider the case of the complete regularized supermembrane theory including the regularized 
area preserving constraint. In the final part of section 5 we discuss its properties under the SO(9)

symmetry.

2. Formulation of the problem

The D = 11 supermembrane is described in terms of the membrane coordinates Xm and the 
Grassmann coordinates θα . The former corresponds to a vector and the latter to a Majorana 
spinor. They transform as scalars under diffeomorphisms on the base manifold. The superme-
mbrane theory in the Light Cone Gauge is invariant under rigid supersymmetry, rigid SO(9)

symmetry and also under area preserving diffeomorphisms of the base manifold. The latter are 
the residual gauge symmetry obtained from the original invariance of the action under superme-
mbrane worldvolume diffeomorphisms, once the Light Cone Gauge condition has been imposed.

In [8] the Hamiltonian and the wavefunction were given according to the symmetry group 
SO(9), so the above representation of the fields is explicit. For convenience the Majorana spinor 
is represented by means of linear combinations of elements of the subgroup SO(7) × U(1). 
In this way an explicit expansion λα of the operator associated to the fermionic coordinates in 
terms of a unique complex spinor of eight components was obtained in [8]. For this purpose, one 
defines two eigenspinors of γ9, called θ±, such that

γ9θ
± = ±θ±.

Then a complex SO(7) spinor satisfies

λ† = 21/4(θ+ − iθ−) and λ = 21/4(θ+ + iθ−),

where λ† is the fermionic conjugate momentum to λ.
Similarly, the bosonic coordinates XM can be expressed in terms of the representations of 

SO(7) × U(1) by means of (Xm, Z, Z). Here Xm for m = 1, . . . , 7 are the components of a 
vector in SO(7), and the complex scalars

Z = 1√
2
(X8 + iX9) and Z = 1√

2
(X8 − iX9)

transform under U(1). The corresponding bosonic canonical momenta decouple, as a vector 
in SO(7) of components Pm, a complex momentum P in U(1) and its conjugate P . That is 
PM = (Pm, P, P) where

P = 1√
2
(P 8 − iP 9) and P = 1√

2
(P 8 + iP 9).

Once the theory is regularized by means of the group SU(N) [8,24–26], the field operators 
are labeled by an index A in SU(N). The fields transform in the adjoint representation of the 
group.

We consider two realizations of the wavefunctions. One of these will be used in the arguments 
concerning the existence and uniqueness of the ground state wavefunction under an assumption 
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on the kernel of the susy charges. The other one will be used in the proof of this assumption for 
the D = 11 supermembrane.

For the first representation, we consider the fermion Fock space. That is a linear space of 
dimension 28(N2−1) which carries an irreducible representation of the Clifford algebra generated 
by (λ† + λ) and i(λ† − λ). The Hilbert space of physical states consists of the wavefunctions 
which take values in the fermion Fock space and satisfy the first class constraint.

In the second representation the wavefunction comprises elements of a Grassmann algebra 
generated by λA

α and is given by

�(XA
i ,ZA,Z

A
,λA

α ) =
8(N2−1)∑

u=0

�
α1...αu

A1...Au
(X,Z,Z)λA1

α1
λA2

α2
. . . λAu

αu
.

In the Schrödinger picture, λ†
αA = ∂

∂λA
α

is the momentum conjugate to λA
α . The coefficient func-

tions �(X, Z, Z) lie in the usual L2 space and the norm of the state is given by

‖�‖2
L2(�) =

8(N2−1)∑
u=0

1

u!
∥∥∥�

α1...αu

A1...Au

∥∥∥2

L2(�)
.

In [8] it was shown that the zero mode states transform under SO(9) as a [(44 ⊕ 84)bos ⊕
128fer] representation which corresponds to the massless D = 11 supergravity supermultiplet. 
Then the construction of the ground state wavefunction reduces to finding a non-trivial solution 
to

H� = 0 (2)

where H = 1
2M and � ≡ �non-zero is required to be a singlet under SO(9). Here M is the mass 

operator of the supermembrane.
From the supersymmetric algebra, it follows that the Hamiltonian can be express in terms of 

the supercharges as

H = 1

16
{Qα,Q†

α}.
The physical subspace of solutions is given by the kernel of the first class constraint ϕA. That is

ϕA� = 0 (3)

for all A = 1, . . . , N2 − 1.
The supercharges associated to modes invariant under SO(7) × U(1) are given explicitly [8]

by

Qα =
{
−i�i

αβ∂XA
i

+ 1

2
fABCXB

i XC
j �

ij
αβ − fABCZBZ

C
δαβ

}
λA

β

+ √
2
{
δαβ∂ZA + ifABCXB

i Z
C
�i

αβ

}
∂λA

β

and

Q†
α =

{
i�i

αβ∂XA
i

+ 1

2
fABCXB

i XC
j �

ij
αβ + fABCZBZ

C
δαβ

}
∂λA

β

+ √
2
{
−δαβ∂ A + ifABCXB

i ZC�i
αβ

}
λA

β .

Z
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The corresponding superalgebra satisfies [8]

{Qα,Qβ} = 2
√

2δαβZ
A
ϕA,

{Q†
α,Q

†
β} = 2

√
2δαβZAϕA,

{Qα,Q
†
β} = 2δαβH − 2i�i

αβXA
i ϕA.

The Hamiltonian associated to the regularized mass operator of the supermembrane [8] is then

H = 1

2
M = −� + VB + VF

� = 1

2

∂2

∂Xi
A∂XA

i

+ 1

2

∂2

∂ZA∂Z
A

VB = 1

4
f E

ABfCDE{XA
i XB

j XiCXjD + 4XA
i ZBXiCZ

D + 2ZAZ
B
Z

C
ZD}

VF = ifABCXA
i λB

α �i
αβ

∂

∂λβC

+ 1√
2
fABC(ZAλB

α λC
α − Z

A ∂

∂λαB

∂

∂λαC

).

(4)

The generators of the local SU(N) symmetry are

ϕA = f ABC
(
XB

i ∂XC
i

+ ZB∂ZC + ZB∂
Z

C + λB
α ∂λC

α

)
. (5)

They annihilate the physical states. They commute with Qα and Q†
α , hence also with H .

The Hamiltonian H is a positive operator. It annihilates � on the physical subspace, if and 
only if � is a singlet under supersymmetry. In this case,

Qα� = 0 and Q†
α� = 0.

The latter ensures that the wavefunction is massless, however it does not guarantee that the 
ground state wavefunction is the corresponding supermultiplet associated to supergravity. This 
holds true, only when � is a singlet under SO(9).

The following is the main result of this paper. We strongly believe it provides a valuable 
insight into the problem of existence for the ground state of H on an unbounded domain. In 
particular it settles completely part a) of the programme mention in section 1.

Theorem 1. For � a 9(N2 − 1)-dimensional ball and g �= 0 sufficiently regular in �, the bound-
ary value problem (I) always has a solution � and this solution is always unique.

The proof and the precise assumptions on the regularity of g here will be discussed in sec-
tion 5. See Theorem 8. Under suitable conditions on g the solution is a singlet under SO(9).

3. Matrix models with global symmetries

In this section we describe a setting for the analysis of ground states which applies to a wide 
variety of matrix models on compact domains, given appropriate boundary data. The presence of 
an area preserving constraint will be address in section 4.

Below � ⊂ R
9(N2−1) will be a bounded open set whose boundary ∂� is of class C∞. Here 

and elsewhere L2(�), H1(�) and H2(�), are the corresponding Lebesgue and Sobolev Hilbert 
spaces of fields in � with d = 9(N2 −1) components. We will denote the inner product of L2(�)
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by (·, ·)L2(�). Here d is usually a large integer. The space H1
0(�) is the completion in the norm 

of H1(�) of the subspace C∞
c (�), the functions (d components also) with support a compact 

subset of �.

3.1. Conditions on a generic Hamiltonian

Let

H = −∇2
I+ V

be a Schrödinger operator where the matrix potential V = V † ∈ C∞(�). Then H is strongly 
elliptic [44, Chapter 7]. Let

Dom(H) =H1
0(�) ∩H2(�).

Since V : L2(�) −→ L2(�) is bounded and symmetric, according to Kato–Rellich’s theorem,

H : Dom(H) −→ L2(�)

is a selfadjoint operator.
Everywhere below we assume that H is the Hamiltonian of a supersymmetric theory in the 

following precise sense. The identity

H = 1

2
(QQ† + Q†Q) = [Q,Q†] (S)

holds true, for Q a supercharge operator. This supercharge operator is a first order differential 
operator satisfying supersymmetric superalgebra conditions, and such that

Q,Q† :H1(�) −→ L2(�)

and

Q,Q† :H2(�) ∩H1
0(�) −→H1(�).

The latter ensures that the domain of H in the representation (S) is mapped appropriately.
Additionally we will assume that this supercharge operator satisfies the condition

ker(Q|H1
0(�)) ∩ ker(Q†|H1

0(�)) = {0}. (K)

That is

Qψ = 0 and Q†ψ = 0 for ψ ∈ H1
0(�) ⇒ ψ = 0.

This will be satisfied by the supermembrane Hamiltonian H , also by the Hamiltonian considered 
at the end of section 3, and it is also true for other interesting cases [41,40].

All the results reported here depend strongly on the condition (K). The following lemma 
highlights the role played by this assumption in relation to the boundary value problem associated 
to H. The identity (6) is crucial for the existence and uniqueness of the solutions of (I).

Lemma 2. Let ψ ∈ Dom(H) be such that Hψ = 0. Then ψ = 0.
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Proof. If ψ is as in the hypothesis, then

0 = (ψ,Hψ) = 1

2
(ψ,QQ†ψ) + 1

2
(ψ,Q†Qψ)

= 1

2

(∥∥∥Q†ψ

∥∥∥2

L2(�)
+ ‖Qψ‖2

L2(�)

)
.

(6)

Hence ψ ∈ ker(Q|H1
0(�)) ∩ ker(Q†|H1

0(�)) and ψ = 0 according to (K). �
That is, (K) implies

kerH = {0}
on a supersymmetric Hamiltonian (S).

3.2. The Dirichlet form

Define the strongly elliptic Dirichlet form (of order one) associated to H by means of the 
identity

D(φ,ψ) = (∇φ,∇ψ) + (φ,V ψ).

Then

D : H1
0(�) ×H1

0(�) −→ C

is a non-negative coercive closed quadratic form.
That D is coercive, means that for suitable constants C > 0 and λ ≥ 0 (sufficiently large),

D(ψ,ψ) ≥ C ‖ψ‖2
H1(�)

− λ‖ψ‖2
L2(�) for all ψ ∈H1

0(�).

In the current setting, the inequality is valid for C = 1 and λ = 1 + �, where � is a lower bound 
of the minimum eigenvalue of the potential on �.

That the form D is non-negative can be seen as follows. For all ψ ∈ Dom(H),

D(ψ,ψ) = ‖Qψ‖2
L2(�) + ‖Q†ψ‖2

L2(�) ≥ 0. (7)

Recall (6). As Dom(H) is a core (in the form sense) for D, then (7) also holds true for all 
ψ ∈H1

0(�).
By virtue of Lemma 2, it then follows that the ground eigenvalue of H is strictly positive. Note 

that any ψ ∈ Dom(H) vanishes on ∂�.

3.3. The boundary value problems

The Dirichlet problems associated to H can be re-written in terms of D. Here we assume that 
data, g ∈H2(�) and f = (∇2 − V )g ∈ L2(�), are given.

The homogeneous Dirichlet problem with inhomogeneous boundary conditions associated to 
H is formulated as follows. Find � ∈H2(�) such that{

(−∇2 + V )� = 0 in �

� = g on ∂�.
(II)
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This is related to the inhomogeneous Dirichlet problem with homogeneous boundary conditions. 
Find � ∈ H2(�) such that{

(−∇2 + V )� = f in �

� = 0 on ∂�.
(III)

The weak formulation of (III) is the weak inhomogeneous Dirichlet problem with homogeneous 
boundary conditions. Find � ∈H1

0(�) such that

D(φ,�) = (φ,f ) for all φ ∈H1
0(�). (IV)

By setting � = � +g we see that (II) and (III) are equivalent. Clearly a solution of (III) would 
also be a solution of (IV). Normally the latter is also called a weak solution. Moreover, a solution 
� of (IV) originally in H1

0(�) will also be in H2(�) and would satisfy (III) (see below for the 
precise statement). In passing from (II) to (IV) the boundary condition � = g on ∂� has been 
replaced by the condition � ∈H1

0(�).
Let δ(ξ) be the seminorm associated to the inner product (1),

δ2(ξ) = ‖Qξ‖2
L2(�) +

∥∥∥Q†ξ

∥∥∥2

L2(�)
,

for ξ ∈ H1(�). The solution � to the inhomogeneous Dirichlet problem (II) is the state that min-
imises this seminorm, among all other states ξ ∈ H1(�) satisfying the same boundary condition 
ξ = g on ∂�. Indeed,

ξ − � = η ∈ H1
0(�)

and

δ2(ξ) = δ2(�) + δ2(η) ≥ δ2(�),

since

(Q�,Qη)L2(�) + (Q†�,Q†η)L2(�) = ((−∇2 + V )�,η)L2(�) = 0.

Below we will show that this minimising state � exists and is unique. Note that δ2(η) = 0 implies 
η = 0, because η ∈ H1

0(�).

Remark 3. The electrostatic field in the vacuum fulfils an analogous property. The electrostatic 
energy E of an electrostatic potential ξ on a bounded domain � is given by

E =
∫
�

∇ξ∇ξ.

This is a seminorm in H1(�). The harmonic potential is the one that minimises E among all 
other potentials satisfying the same boundary condition on ∂�.

3.4. Existence and uniqueness of solutions

As we shall see next, for regular data as above, (II) and (III) are always uniquely solvable.

Lemma 4. Let g ∈ H2(�). There always exists a unique solution � ∈ H1
0(�) ∩ H2(�) of (III)

and a corresponding unique solution � = � + g ∈ H2(�) of (II).
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Proof. Recall that D is a non-negative symmetric Dirichlet form of order 1. Let

K = {ξ ∈ H1
0(�) : D(ϕ, ξ) = 0 for all ϕ ∈H1

0(�)}.
By virtue of regularity results for strongly elliptic Dirichlet forms [44, Theorem (7.32)], it follows 
that K ⊂ H2(�) and in fact K = ker(H). Then, according to Lemma 2, K = {0}. Hence, by 
virtue of [44, Theorem (7.21)], there exists � ∈H1

0(�) such that (IV) holds true. Moreover, [44, 
Theorem (7.32)] in fact � ∈H2(�). Thus � is also a solution to (III) and � = � + g a solution 
to (II).

As K = {0}, it immediately follows that the solution is unique. �
3.5. Pointwise regularity at the boundary

A crucial observation on the regularity properties of supercharge operators of first order is 
now in place. This observation is independent of the assumption (K), however, for its validity, 
the potential should be smooth.

Lemma 5. Let Q̃ : H1(�) −→ L2(�) be a (generic) supercharge operator of first order. If 
Q̃� = 0 and Q̃†� = 0 for � ∈ H1

0(�), then � ∈ C∞(�) and

Q̃�(x) = Q̃†�(x) = 0 for all x ∈ �.

Proof. Let � be as in the hypothesis. By virtue of classical bootstrap arguments and the Sobolev 
Lemma [44], it follows that � ∈ C∞(�). That is � is smooth in the domain up to the boundary. 
Thus also Q̃� and Q̃†� lie in C∞(�). Hence Q̃�(x) = Q̃†�(x) = 0 for all x ∈ �. �
3.6. A toy model

Consider a version of the toy model introduced in [30] on a compact region. In [42] it was 
shown that this model has no zero eigenvalue for the non-compact problem. By combining the 
supersymmetric structure of the Hamiltonian shown below with Lemma 4, it follows that the 
solutions to the problems (II) and (III) exist and are unique in this case.

Let

H = p2
x + p2

y + x2y2 + xσ3 + yσ1

where σi are the Pauli matrices. The supersymmetric charges in this case are

Q = Q† =
( −xy i∂x − ∂y

i∂x − ∂y xy

)
.

The wavefunctions are such that

� =
(

�1
�2

)
and � = 0 on ∂�. (8)

We firstly show that the condition (K) is valid for the supersymmetric charges. Let � ∈H1
0(�)

be such that

Q� = Q†� = 0 in �. (9)
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According to Lemma 5, this condition is satisfied pointwise up to the boundary of �. Let x ∈ ∂�

and denote by n1, n2 the components of the normal to ∂� at x. The tangent to ∂� at x is then 
(n2, −n1), and we must have

(n2∂x − n1∂y)�(x) = 0.

The solutions are regular, so we can extend them continuously up to the boundary. Then (9)
yields

(i∂x + ∂y)�2(x) = (i∂x − ∂y)�1(x) = 0

pointwise. Since (n1, n2) �= 0, if n2 �= 0⎧⎪⎨
⎪⎩

(1 + i
n1

n2
)∂y�2(x) = 0 ⇒ ∂y�2(x) = 0 and ∂x�2(x) = 0

(−1 + i
n1

n2
)∂y�1(x) = 0⇒ ∂y�1(x) = 0 and ∂x�1(x) = 0.

(10)

A similar conclusion is obtained for n1 �= 0. Hence � and ∂n� must vanish on ∂�. According to 
the Cauchy–Kovalevskaya Theorem [44], from the fact that the potential is analytic, we conclude 
that � = 0 pointwise in �. This yields (K).

Similar arguments can be employed in order to derive existence and uniqueness of the solution 
for the SU(N) truncated model of the D = 11 supermembrane considered in [8], which only has 
global symmetries. See [40].

4. Systems with gauge symmetry

We now consider supersymmetric theories subject to a constraint. This constraint realises as 
a subspace decomposition which diagonalizes the Hamiltonian and its Dirichlet form, while it 
remains compatible with the boundary conditions.

Assumption 6 (Generic constraint).

a) There exist two subspaces X 1
0 , Y1

0 ⊆H1
0(�) such that

• they are both closed in the norm of H1(�),
• they are orthogonal to one another in the inner product of L2(�) and
• H1

0(�) = X 1
0 +Y1

0 .
We denote by X 0, Y0 ⊆ L2(�), respectively, the completion of X 1

0 and Y1
0 in the norm of 

L2(�). We write X 2 =H2(�) ∩X 0 and Y2 =H2(�) ∩Y0.
b) We have the decomposition(

X 2 ∩X 1
0

)
+

(
Y2 ∩Y1

0

)
=H2(�) ∩H1

0(�)

and there exist two operators

HX : X 2 ∩X 1
0 −→ X0 and HY : Y2 ∩Y1

0 −→ Y0

satisfying the following. The Hamiltonian decomposes as

Hψ =HXψX +HYψY for all

⎧⎪⎨
⎪⎩

ψ = ψX + ψY
ψX ∈X 2 ∩X 1

0

ψY ∈ Y2 ∩Y1
0 .
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Various consequences can be derived from these assumptions. Firstly note that

L2(�) =X 0 +Y0.

Also X 2, Y2, X 2 ∩X 1
0 and Y2 ∩Y1

0 are closed subspaces of H2(�), in the corresponding norm. 
From the definition, it immediately follows that

X 2 ⊆X 0 and Y2 ⊆ Y0.

Moreover, the closures of X 2 and Y2 in the norm of L2(�) are exactly X 0 and Y0, respectively. 
Hence X 2 +Y2 is dense in L2(�).

We also have the representation

X 1
0 =H1

0(�) ∩X 0 and Y1
0 =H1

0(�) ∩Y0.

Alongside with the two conditions in the Assumption 6, this implies that HX and HY are selfad-
joint operators in the Hilbert spaces X 0 and Y0, respectively.

Let

DX =D|X 1
0 ×X 1

0
:X 1

0 ×X 1
0 −→C

DY =D|Y1
0 ×Y1

0
: Y1

0 ×Y1
0 −→ C

be the restrictions of the Dirichlet form to the corresponding subspaces. Then both these forms 
are closed, symmetric and bounded below. Moreover, since

DX (φX ,ψX ) = (HXφX ,ψX )L2(�) for all φX ∈ X 2 ∩X 1
0 and ψX ∈ X 1

0

DY (φY ,ψY ) = (HYφY ,ψY )L2(�) for all φY ∈ Y2 ∩Y1
0 and ψY ∈ Y1

0 ,

then HX and HY are, respectively, the selfadjoint operators associated to DX and DY , via Kato’s 
First Representation Theorem [43, Th VI.2.1]. From this, it follows that

D(φ,ψ) =DX (φX ,ψX ) +DY (φY ,ψY )

for all φ, ψ ∈ H1
0(�) in the corresponding representations φ = φX + φY and ψ = ψX + ψY

provided by a).

4.1. The constrained boundary value problems

In what follows X 0 is the subspace of physical states. Set data: g ∈ X 2 and
f = (∇2 − V )g ∈ X 0. Consider the constrained versions of (II), (III) and (IV).⎧⎪⎨

⎪⎩
(−∇2 + V )� = 0 in �

� ∈ X 2

� = g on ∂�,

(V)

⎧⎪⎨
⎪⎩

(−∇2 + V )� = f in �

� ∈X 2

� = 0 on ∂�

(VI)

and

DX (φ,�) = (φ,f ) for all φ ∈X 1. (VII)
0
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Let X 1 =H1(�) ∩X 0 and Y1 =H1(�) ∩Y0. Then X 1 and Y1 are closed subspaces of H1(�). 
Consider the following condition which is similar but weaker than (K) from the previous section,

QψX = Q†ψX = 0 for ψX ∈ X 1
0 ⇒ ψX = 0. (KX )

That is, the supercharge operator satisfies an analogue to (K), but only in the constraint sub-
space X . Note that (K) implies (KX ).

Lemma 7. Suppose that a decomposition as specified in the Assumption 6 as well as (KX ) hold 
true. Let g ∈ X 2 and f = (∇2 − V )g ∈ X 0. There always exists a solution � ∈ X 2 ∩X 1

0 (�) of 
(VI) which is unique. Moreover, a corresponding solution � = � + g ∈ X 2 of (V) also exists 
and is unique.

Proof. We first show that (VII) has a solution. By virtue of the assumption (KX ) and the fact 
that

DX (φX , φX ) =D(φX , φX ) = 1

2
(‖QφX ‖2

L2(�)
+ ‖Q†φX ‖2

L2(�)
)

for all φX ∈ X 1
0 , then DX is positive and X 1

0 is a Hilbert space with respect to the corresponding 
inner product given by this form. By the Lax–Milgram Theorem [45, §6.2], there exists a solution 
� ∈ X 1

0 for (VII).
Now, since � ∈ X 1

0 , the part of � that lies in Y1
0 according to the decomposition a) of the 

Assumption 6 is �Y = 0. Hence,

D(φ,�) =DX (φX ,�) +DY (φY ,0) = (φX , f )L2(�) = (φ,f )L2(�)

for all φ ∈ H1
0(�) represented as φ = φX + φY for φX ∈ X 1

0 and φY ∈ Y1
0 . Thus � is also a 

solution of (IV). By repeating the same steps as in the proof of Lemma 4 (which applies on 
physical states), we get that � ∈ H2(�) ∩ H1

0(�). Hence, we have � ∈ X 2 ∩ X 1
0 and so � is a 

solution of (VI).
The rest of the proof follows from a similar argument as the one presented in Lemma 4. �

5. The ground state of the D = 11 supermembrane

Consider the supermembrane theory on a D = 11 Minkowski space–time introduced in sec-
tion 2. We formulate a precise result which implies the validity of Theorem 1. The relevance 
of the present setting is twofold. On the one hand, it is a problem of physical interest by itself 
due to its potential implications in M-theory. On the other hand, it is a crucial step towards the 
solution of the ground state problem on an unbounded domain. As we are in the presence of a 
gauge constraint, we resource to the framework of section 4.

Let H be the Hamiltonian given by the expression (4). Let � be a ball in R9(N2−1) of 
radius R > 0. The boundary, ∂�, is a sphere of dimension 9(N2 − 1) − 1 with the same ra-
dius. Consider the SO(7) × U(1) decomposition as described in section 2. The coordinates are 
(XA

i , ZA, Z
A
, λA

α ) where A is the SU(N) index. The radial coordinate ρ is defined by

ρ2 = (XA
i )2 + 2ZZ.

This radial coordinate and hence �, are invariant under the symmetry generated by the first class 
constraint. That is, the generators of local SU(N) transformations. Consequently the constraint 
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imposes no restriction to the normal derivative on the border, ∂ρ�|∂�. The constraints ϕA given 
in section 2 commute with Qα , Q†

α and H , and

ϕA : H2(�) ∩H1
0(�) −→ H1

0(�).

5.1. Validity of (K)

Let us verify the condition (K) for the supersymmetric charges. Assume that

Qαψ = 0 and Q†
αψ = 0 in � (11)

for ψ ∈ H2(�) ∩H1
0(�). We wish to prove that ψ = 0 in �.

Regularity at the boundary (Lemma 5), allows us to extend the restriction on ∂ψ
∂ρ′ arising from 

(11) smoothly to the boundary. The conditions Qαψ |∂� = 0 and Q†
αψ |∂� = 0 for the SU(N)

regularized supermembrane found in [8], now evaluated on the boundary where ψ = 0, are

Q8ψ = √
2∂ZA∂λA

8
ψ − i�i

8j ∂XA
i
λA

j ψ = 0 (12)

Q
†
8ψ = −√

2∂
Z

AλA
8 ψ + i�i

8j ∂XA
i
∂λA

j
ψ = 0 (13)

Qjψ = −i�i
j8λ

A
8 ∂XA

i
ψ − i�i

jkλ
A
j ∂XA

i
ψ + √

2∂ZA∂λA
j
ψ = 0 (14)

Q
†
jψ = +i�i

j8∂XA
i
∂λA

8
ψ + i�i

jk∂XA
i
∂λA

k
ψ − √

2∂
Z

AλA
j ψ = 0. (15)

Here �i
j8 = −iδi

j and �i
jk = iCijk , where the Cijk are the structure constants of the octonion 

algebra.
In order to verify (K) we only need (12) and (13). These equations are only valid at ∂� and 

they pertain the normal derivative of ψ there. The 9(N2 − 1) − 1 remaining angular derivatives 
are tangential derivatives vanishing at the boundary. That is,

∂αmψ |∂� = 0 for m = 1, . . . ,9(N2 − 1) − 1.

Consider the derivative with respect to ρ2. Observe that

∂ZAψ |∂� = 2Z
A ∂ψ

∂ρ2
|∂� and ∂XA

i
ψ |∂� = 2XA

i

∂ψ

∂ρ2
|∂�. (16)

Write ∂ρ2ψ ≡ ψρ2 . Then (12) and (13) reduce to

Q8ψ = √
2Z

A
∂λA

8
ψρ2 + (XA

i λA
i )ψρ2 = 0 (17)

and

Q
†
8ψ = −√

2ZAλA
8 ψρ2 − XA

i ∂λA
i
ψρ2 = 0. (18)

Applying Z
B ∂

∂
λB

8

to Q†
8ψ , gives

XA
j ∂λA

j
(Z

B ∂ψρ2

∂λB
8

) − √
2ZAZ

A
ψρ2 + √

2(ZAλA
8 )(Z

B ∂ψρ2

∂λB
8

) = 0. (19)

Replacing (17) into (19), then gives
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−XA
j ∂λA

j
(

1√
2
(XB

i λB
i )ψρ2) − √

2ZAZ
A
ψρ2 + √

2(ZAλA
8 )(Z

B ∂ψρ2

∂λB
j

) = 0. (20)

Thus

−(XA
j XA

j + 2ZAZ
A
)ψρ2 + (XB

i λB
i )XA

j

∂ψρ2

∂λA
j

+ 2(ZAλA
8 )(Z

B ∂ψρ2

∂λA
B

) = 0. (21)

Now, on ∂�,

(XA
j )2 + 2ZAZ

A = R2.

Then

R2ψρ2 |∂� = 0

for R2 �= 0. Thus

ψρ2 |∂� = 0.

By virtue of the Cauchy–Kovalevskaya Theorem, it then follows that ψ = 0 is the unique 
solution in a neighbourhood of the boundary. Moreover, since the potential is analytic on �, 
this solution can be extended uniquely to the whole ball �. Thus, the supercharges Qα and Q†

α

indeed satisfy the condition (K).

5.2. The constraint

We now define the subspace decomposition associated to the constraint (3), which is required 
in the framework of section 4. Since the ϕA are differential operator of order 1 with d = N2 − 1, 
then

ϕ ≡ (ϕA)d1 : C∞
c (�) −→ [C∞

c (�)]d ⊂ [L2(�)]d
is a densely defined operator onto d copies of L2(�). Its adjoint is

φ† : Z −→ L2(�)

where the domain

Z =
⎧⎨
⎩ψ ∈ [L2(�)]d :

there exists λ ∈ L2(�)

(ψ,ϕν)[L2(�)]d = (λ, ν)L2(�)

for all ν ∈ C∞
c (�)

⎫⎬
⎭ .

Define

X = {η ∈ C∞
c (�) : ϕη = 0} = ker(ϕ)

and

Y =
⎧⎨
⎩λ ∈ C∞

c (�) :
for suitable ψ ∈ Z
(λ, ν)L2(�) = (ψ,ϕν)[L2(�)]d
for all ν ∈ C∞

c (�)

⎫⎬
⎭ = ran(ϕ†|[C∞

c (�)]d ).

Then X , Y ⊂ C∞
c (�), these two spaces are orthogonal in L2(�) and

C∞(�) =X +Y .
c
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Let X 1
0 and Y1

0 be defined as the closures of X and Y , respectively, in H1(�). These two 
subspaces satisfy the conditions a) and also the first part of the condition b) in the Assumption 6.

Since

ϕAQψ = QϕAψ and ϕAQ†ψ = Q†ϕAψ for all ψ ∈ X ,

we know that Hη ∈X for all η ∈X . Then

HX ≡ H |X 2∩X 1
0

: X 2 ∩X 1
0 −→ X 0.

Moreover, since H is selfadjoint, and X and Y are orthogonal in L2(�), we also have Hη ∈ Y
for all η ∈ Y . Thus

HY ≡ H |Y2∩Y1
0

: Y2 ∩Y1
0 −→ Y0.

This ensures the second part of the condition b) of the Assumption 6.

5.3. Existence and uniqueness of the ground state

Since (K) is fulfilled, then also (KX ) is fulfilled. The following main result is a direct conse-
quence of Lemma 5.

Consider the boundary value problem (I) associated to the Hamiltonian H given by (4), asso-
ciated with the D = 11 regularized supermembrane (the N = 16 supersymmetric SU(N) matrix 
model). Consider⎧⎪⎨

⎪⎩
H� = f

ϕA� = 0
in �

� = 0 on ∂�.

(VIII)

Theorem 8. Let � be a 9(N2 − 1)-dimensional ball. Let g ∈ X 2 and f = −Hg ∈ X 0. There 
always exists a unique solution � to the problem (VIII), which lies in the space H2(�) ∩H1

0(�). 
The corresponding solution � = � +g ∈ H2(�) to the problem (I) also exists and is also unique.

5.4. Invariance of the solution under SO(9)

The supermembrane in 11D in the Light Cone Gauge has a SO(9) symmetry, the residual 
Lorentz invariance. The groundstate of the regularized supermembrane must be a singlet under 
SO(9), in order to be related to the D = 11 supergravity multiplet.

Denote by J the generators of the algebra of SO(9). Then J is a first order differential oper-
ator which commutes with H and satisfies J� ∈ H1

0(�) where � is the solution to Theorem 8. 
Assume that g is a singlet under SO(9). That is Jg = 0. Then the solution � to (VI) is also a 
singlet under SO(9).

Note that

(J †ξ,H�)L2(�) = (J †ξ,−Hg)L2(�) = −(Hξ,Jg)L2(�) = 0.

Then

(Hξ,J�)L (�) = 0 for all ξ ∈ C∞(�).
2 c
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Hence D(ξ, J�) = 0 for all ξ ∈ H1
0(�). We now use that J� ∈ H1

0(�) and the argument in the 
proof of Lemma 4, to obtain

J� = 0 (22)

as claimed. Since � = � + g, indeed

J� = J� + Jg = 0.

6. Conclusions

In this paper we fully settled part a) of the programme established in section 1 for proving or 
disproving the existence of ground state wave functions. We showed that the ground state wave-
function for the mass operator of the regularized D = 11 supermembrane theory3 on a bounded 
smooth domain, exists and is unique. Under a suitable assumption on the boundary condition, 
which is a given datum, this solution corresponds to a singlet under SO(9), the residual Lorentz 
invariance. The center of mass of the supermembrane moves freely on an 11D Minkowski space-
time but the membrane excitations are restricted to a bounded smooth domain.

Supersymmetry plays a crucial role in all the results presented in this paper. They rely on 
general rigorous arguments formulated in sections 3 and 4. These are valid in the context of su-
persymmetric theories for a Schrödinger Hamiltonian with a polynomial potential. The bounded 
domain is chosen to be invariant under the action of the symmetries of the theory. The uniqueness 
of the groundstate wavefunction relies on the property (K) introduced in section 3, and it is also 
satisfied by the supermembrane supersymmetric charges,

Qψ = 0 and Q†ψ = 0 for ψ ∈ H1
0(�) ⇒ ψ = 0.

The framework of sections 3 and 4 provides a new approach in the context of matrix models 
which allows characterizing the ground state wavefunction for a wide variety of supersymmetric 
matrix models by means of the homogeneous and inhomogeneous Dirichlet problems. The phys-
ical theory may or may not possess gauge symmetry. A novel feature here is a simplification of 
the treatment of the gauge constraint. There is no need to solve it explicitly, as it is enough to set 
it as a subspace of the configuration space with natural properties arising from the gauge theory. 
Moreover, the analysis of section 4 represents a generalization of the analysis for constrained 
theories whose physical space of states is a subspace given by the kernel of an operator, as it 
happens in physical gauge theories.

Part a) of the programme described in section 1 is a crucial step towards the solution of 
the ground state wavefunction problem on an unbounded domain (unbounded membrane ex-
citations). The quest for the ground state of the regularized D = 11 supermembrane, that is, 
the N = 16 supersymmetric SU(N) matrix model (which is expected to be a multiplet of the 
D = 11 supergravity) is a fundamental step towards the quantization of these theories, and in a 
more general context is fundamental in the quantization of M-theory.

The methods presented above might also have an impact in other areas of physics. These in-
clude the study of AdS/CFT black holes, compact Yang–Mills matrix models and other M-theory 
characterizations.

3 That is for the Hamiltonian of the N = 16 supersymmetric SU(N) matrix model.
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