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Abstract

Algebraic immunity (Al) is a new cryptographic criterion proposed against algebraic attacks. Extended algebraic
immunity (EAI) extends the concept of algebraic immunity, whose point is that a Boolean function f* may be replaced
by another Boolean function f* called the algebraic complement of f . In this paper, we investigate EAI of Boolean
functions. Firstly, we present a sufficient and necessary condition to judge Al of a Boolean function equals to its EAL
Secondly, we prove that two classes of Boolean functions with maximum Al also have optimal EAI. Finally, we analyze
that the structure of the annihilators of Boolean functions with the algebraic complement.
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1. Introduction

To resist algebraic attack!'), algebraic immunity(AI), has been introduced”. Then several constructions of
Boolean functions with maximum AI (MAI) have been investigated”>!. In [3], Zhang etc. note that m
sequence used frequently in stream ciphers doesn’t have all zero states. Denoted an algebraic complement of
f by f,then f and f° have the same value for any xe F," expect x=0. Thus, if AI(f“) < AI(f), itis
more efficient to take algebraic attacks after replacing f by f“. Since a difference of only 1 between the
algebraic immunities of two functions can make a crucial difference with respect to algebraic attacks, the
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difference between AI(f) and EAI(f) can not be ignored in algebraic attacks. So they extend the concept of
Al and define the extended algebraic immunity (EAI) of f as EAI(f)=min{AI(f),AI(f“)}. They prove
that 0< AI(f)—EAI(f) <1 and show that AI(f)—FEAI(f)=1 holds for a large number of cases. In [6],
Wang etc. study the relation between different properties of f and f“, such as weight, nonlinearity and so on.
They also present a sufficient condition to judge AI(f)= EAI(f). However, there are still many problems
worth discussing. For example, it doesn’t exist a sufficient and necessary condition to judge whether a
Boolean function f satisfies A/(f)= EAI(f). And we don’t know whether a Boolean function f with MAI
can also have optimal EAIL

In this paper, we study the above problems. The organization of the paper is as follows. In the following
section we provide some necessary preliminaries of the paper. In Section III, we present a sufficient and
necessary condition to judge AI(f)= EAI(f) firstly. Secondly, we prove that two classes of Boolean
functions with MAI also have optimal EAI. Finally, we analyze the structure of the annihilators of Boolean
functions with the algebraic complement. Section IV concludes the paper.

2. Preliminaries

Let F, be the binary finite field and F,' be the n -dimensional vector space over F, . A Boolean function
on n variables can be viewed as a mapping from £’ into F, . Denote the set of all Boolean function on »
variables by B,. Any fe€ B, can also be uniquely represented as a multivariate polynomial over F,, called
the algebraic normal form (ANF)

n
f(xl ""’xn) =4 +Zi=1 ax; +Zl£i<j5n a; ;%X 4 + “.+Zlii|<m<id£n G iy Xi 7, Toeetay GXXp X,

where the coefficients are in F, . The algebraic degree is the number of variables in the highest order term
with nonzero coefficient and is denoted by deg( /). The support of f € B, is denoted by supp(f)={xe F, |
f(x)=1}. The Hamming weight of f , denoted by wz(f), is defined as the number of ones in its truth table
which equals to the size of supp(f) . The function fe B, is balanced if and only if wr(f)=2"". Let
f,ge€ B,, g iscalled an annihilator of f if f-g=0. We denote the set of all annihilators of f by AN(f).
The algebraic immunity of f, denoted by A/(f), is the minimum degree of all nonzero annihilators of f .
Namely, 4I(f)=min{deg(g)|0# ge AN(/)UAN(+ f)}. It is known that AI(f)=min{deg(f).[n/2]}".

Definition 1 Given f'e B, , we define an algebraic complement of /', denoted by f*, as the function that
contains all monomials x," ---x” ,where each u, € {0,1}, that are not in ANF of the function f .

Definition 2 Given f'e B, , the extended algebraic immunity of /', denoted by EAI(f), is the minimum
degree of nonzero Boolean functions in AN()UAN(1+ )UAN(f)UAN+ 1), i.e.

EAI(f) :min{deg(g)|0 zge AN(HUANA+ HUAN(SYUANA+ £y =min{AI(f), AI(f)}.

Due to Definition 2, it’s obvious that EAI(f)<[n/2].

Definition 3 Let /e B, if the constant monomial in the ANF of f is zero (one) , we say f to be 0-CM
(1-CM).

Property 1%/ Let A(x)=(1+ x,)---(1+x,) , then the function A(x) has the following properties:

(1) A(x)=1 ifand only if x=0; (2) f(x)-A(x)=0 for Vf(x)e B, with f(0)=0;

(3) f(x)-A(x)=A(x) for Vf(x)e B, with f(0)=1.

Property 2 Let /e B, , then

1) f“(x)=f(x)+A(x) forall xe F)";(2) f°(x)= f(x) for all nonzero xe F,".

Due to Property 2, it’s clear that f(x) and f“(x) have different value just for x=0.
Property 3% Let e B, then
) ﬁ4](f)—A[(f”)| <1;2) 0L AI(f)—EAI(f)<1,and 0< AI(f)—EAI(f)<1.
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3. Main Results
3.1. A sufficient and necessary condition to judge AI(f)= EAI(f)

In [6], Wang etc. study the relation between A/(f) and EAI(f), but they can merely give a sufficient
condition of AI(f) = EAI(f) . In the following part, we present a sufficient and necessary condition to judge
AI(f)=EAI(f) for the first time.

Lemma 1" Let f e B, , then

(1) AN(f)=AN(SHUAN(f)" when f is 1-CM; (2) AN(f)=AN(f)UAN(f)" when f is 0-CM.

Corollary 11 Let fe B, , then

(1) AN(+ /)= AN+ f*)UAN(1+ f°)° when f is 1-CM;

(2) AN(+ f)=AN(A+ /H)UAN(1+ f)° when f is 0-CM.

Theorem 1 Let /€ B, ,then

(1) When f is 0-CM, EAI(f)= AI(f) ifand only if VO#ge AN(1+ (), deg(g®) = AI(f).

(2) When f is 1-CM, EAI(f)= AI(f) ifand only if VO# ge AN(f), deg(g®) = AI(f).

Proof. Firstly, we prove the sufficient condition. If for any 0= ge AN(1+ /), degg® = AI(f) . That is,
for any ge AN(1+ f)°, deg(g)=> AI(f) . Due to Corollary 1, we know that for any ge AN(1+ ),
deg(g) = AI(f). Itis easy to see that f is 1-CM and 1+ f is 1-CM when f is 0-CM, then 1+ f is 0-CM.
Note that for any xe F,', f“(x)= f(x)+A(x). Then (f+A(x))g=fg+A(x)g=0, if f°g=0. Note that
£ is 1-CM, thatis f“(0)=1 when x = 0 . So g(0)=0. This implies that A(x)g =0. Thus fg =0. Hence
for any ge AN(f°), deg(g)= AI(f). Consequently, for any ge AN(1+ f)UAN(f°), deg(g)= AI(f).
This implies that AI(f“)> AI(f).So EAI(f)=AI(f).

Secondly, we prove the necessary condition. If EAI(f)=AI(f), then AI(f)< AI(f°). So for any
0#£ge AN(1+ f)UAN(f), deg(g) = AI(f) . That is, for any g€ AN(f)UAN(+ f), deg(g®) = AI(f).
Therefore, for any ge AN(1+ f), degg® = AI(f).

Thus, we finish the proof. o

The following result can be obtained directly from Theorem 1.

Corollary 2 Let fe B, , then

(1) When f is 0-CM, EAI(f)= AI(f)—1 ifand only if VO# ge AN(1+ 1), deg(g’) < AI(f).

(2) When f is 1-CM, EAI(f)= AI(f)—1 ifand only if VO# ge AN(f), deg(g®) < AI(f).

3.2. The EAI of two classes of Boolean functions with MAI

To resist algebraic attacks more effectively, we hope the Al and EAI of Boolean functions can
simultaneously achieve maximum. But in [6], it shows that a Boolean function on odd number of variables
with MAI, can only satisfies E4/(f)=|n/2]. In this subsection, we study the case of the Boolean functions
on even number of variables. We research two classes of Boolean functions which satisfy AI(f)=n/2, and
we give some sufficient and necessary conditions for them to achieve the maximum EAI at the same time.

Lemma 2 Let feB , n even, and

no

0,wt(x,, -, x,) <%
f(xla"'axn) = 15Wt(x15'“7xn) >%
be {01}, wi(x,,--,x,) =%

Then EAI(f)=n/2—1 when b=1.
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Theorem 2 Let n even, a Boolean function

0,wt(x,, -, x,) <%
.f(xls"'r-xn) = lsWt(xls"'rxn) >%
bE {071}9Wt(x19"'5x,,) =%

Then EAI(f)=n/2,ifand only if I(x,,--,x,)€ F,', s.t. wi(x,,-++,x,)=n/2 and f(x,,++,x,)=0.

Proof. In [4], it has been proved that AI(f)=n/2. By Lemma 2, it is obvious to prove the necessary
condition. Next we prove the sufficient condition.

Note that f is 0-CM, so it is just need to prove that Vge AN(1+ /), deg(g) = n/2 . Let

0,wr(x,,---,x,)=0

L1<wt(x,,x,) <%
'fi=1+_fc(.xl,“‘,x”)= ( 1 ) 2

0,wt(x,,--,x,)>%
b+1e {0,1}, wi(x,,--+,x,) =2

2

Suppose that there exists ge B, , so as to f,g=0 and deg(g)<n/2 . Then g(x)=0 , when
1<wr(x,,--,x,)<nf2.Let d =n/2—1, then

g(xl’m’xn) =8t 219'3” 8%+ 21sl‘<,/’Sngffxij +."+leil<iz<m<iuﬁn giu"z“‘/’u x[l xiz X

When wt(x,,---,x,)=1, g(x)=0=g,+g,. Thenforany 1<i<n, g, =g,.
When wi(x,,--+,x,)=2, g(x)=0=g,+g,+g,+g, -
Then forany 1<i< j<n, g, =g, . Inthe same way, when wi(x,,---,x,)=d, g(x)zOzz

& -
; . . )
Then forany 1<j <i, <---<i; <n, g, . =g, Thus

supp(/ ) Ssupp(x

g(xl,-~-,x,,) = g0(1+219§nxi +ZISi<j§nxixf +"'+Zlgil<iz<m<id3nxi1xfz mx!}/) :

If g,=1#0,then g(x,,--,x,) =1+zlgl_gnx, +Zl§i<jgnx,xj +---+Z:lgil<iz<m<l_ugnx,.lx,.2 X
When wi(x,, ++,x,) =n/2,

glx) = zSupp(l);supp(X) &= (2"/2 —D=1=0.

It has been already known that there exists (x,,---,x,), so as to wt(x,,---,x,)=n/2 and f(x,"--,x,)=0,
thus f,(x,,---,x,)=1. But this contradicts the fact that f,g=0. So g, =0 and g(x)=0 . Hence, when
AI(f)=n/2 , it must be g=0 or deg(g)=n/2 if (1+f°)g=0 . That is, degg® > AI(f) for any
g€ AN(1+ f) . Then by Theorem 1, EAI(f)=n/2, this finishes the proof. o

Theorem 3 Let » be any even such that »>2 and « a primitive element of the field F,'. Let f be the
Boolean function on F," whose support is {0} U {¢/' |i =0,1,---,2""' =2} . Then EAI(f)=n/2.

Proof. In [5], it has been proved that AI(f)=n/2. Note f is 1-CM, so it is just need to prove that
Vge AN(f¢), deg(g)=n/2.
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Let g be any Boolean function of algebraic degree at most n/2—1. Let g(x) = zl_:l g,x" be its univariate
representation in the field F,', where g, € F,' is null if the 2-weight w,(i) of i is at least n/2 (which
implies in particular that g, =0).

If g is an annihilator of f“, then we have g(a')=0 for every i=0,1,---,2""" =2, that is, the vector
(go,--~,g2"72) belongs to the Reed-Solomon code over F,’" of zeroes 1,0{,-",0(2"4‘2. If g is non-zero, then
by definition, we have

g() 0 S R 2
gy | [t e o2t
g(al”—z) laz”—l aZ(Z”—Z) ...a(z”fz)(z”fz) &,

which implies (since for every 0<1i, j <2" -2, the sum Z/:)z """ equals 1 if i = j and 0 otherwise):

& 1 b ! g™
_21ony ol _(2-2 -
g, o o . o ) g(az )
. == . . . x|
(22 ol (2o (722" -2 -
&y s o X ) g ) o X ) g(az 2)

Suppose that at least 2" of the g, ’s are null. Then, g(azﬂ'l),g(azﬂ ), g ) satisfy a
homogeneous system of linear equations whose matrix is a 2" x2""' Vandermonde matrix and whose
determinant is therefore non-null. This implies that g(azﬂ"'), g(azﬂ ),---,g(a* *) are null. And therefore g
must then be null, a contradiction. Hence the vector (g, --, gz,,_z) has weight at least 2"'  Moreover,
suppose that this vector has Hamming weight 2" exactly. Since the number of integers of 2-weight at most
[n/2]-1 is not strictly greater than 2", then g(x)zzo<,-<2~_2 %mqn_l)/zxi and n is odd, but this
contradicts the fact that g(0)=0. We deduce that the vector (g,,"--,g, ) has Hamming weight strictly

-2

greater than 2", leading to a contradiction with the fact that g has algebraic degree at most
deg(g)<nf/2-1. Hence g(x)=0, that is, there does not exist a non-zero annihilator of f* of algebraic
degree at most n/2—1. Thus EAI(f)=n/2. o

3.3. A new method to analyze the structure of AN(f)

The annihilators of Boolean functions play a very important part in algebraic attacks. If the Boolean
functions f and 1+ f have annihilators with lower algebraic degree, it will effectively improve efficiency of
algebraic attacks. Consequently, we wish that we can find an effective algorithm to obtain annihilators of a
Boolean function and judge a Boolean function whether exists annihilators with lower algebraic degree. In
search of annihilators with lower algebraic degree, it’s very useful to analyze the structure of the annihilators
of Boolean functions. Next, by using relation between annihilator sets of f and f“, we present a new method
to characterize the structure of the annihilators of Boolean functions.

Let S c F)', and define

f(x),xe S

fs(x)={f(x)+1,xe s

387
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Denote A (x)=) )ESH; (x,+a +1), then f*(x)=f(x)+A, (x).
Theorem 4 Let  be any positive integer, and I = {x e E|\wt(x)<r, f(x)=0} .Then
AN =, (AN(F)
Proof: One hand, if ge AN(f),then fg=0.Thus g =0 when xe supp(f).Let S, ={xe I|g(x) =1} c
I and ¢(x) = g(x)*, then

0,xel

(x) = {g(x),xe I

So  @(x)f'(x)=0 , that is @(x)e AN(f') . Then g(x)e USCI (AN(f")° . Hence
AN(f) e, ,(AN(f"))* . On the other hand, if ge|J, (AN(f"))° , there exists S, 1, so as to
ge (AN(f ))%n . Then g% € AN(f"), thatis, g% ' =0 . Note that (g*)" =g, S, I and for any xe I,
f(x)=0.Then gf =0.So ge AN(f).Hence USCI(AN(fI))S cC AN(Yf).

Therefore AN(f)= USC[ (AN(f"))* , it completes the proof. o

Theorem 4 presents a new method to characterize the structure of AN(f) . This method conduces to obtain
all the elements of AN(f). According to the definition of the set / in theorem 4, if xe F;’ and wt(x)<r,
then f'(x)=1. Hence, AN(f") is more easily to gain than AN(f) . After finding all the elements of
AN(f"), for any S/ and ge AN(f"), we compute g°(x)=g(x)+A, (x), then we will obtain all the
elements of AN(f). Note that the number of subset of / increases with index growth of |I , SO r can not
choose too large. This method is quite possible to offer a faster way to compute Al, once there is an effective
way to obtain lower elements in AN(f”")* . That is our future study.

4. Conclusion

In this paper, we study some results on EAI of Boolean functions. By the relation between annihilator sets
of f and f°, we present a sufficient and necessary condition to judge AI(f)=EAI(f) for the first time.
Next, we prove that two classes of Boolean functions with MAI also have optimal EAI. Finally, we analyze
the structure of the annihilators of Boolean functions with the algebraic complement. Furthermore, there are
still some problems need to be studied. For example, how to improve the efficiency of the sufficient and
necessary condition presented in this paper, and how to construct Boolean functions with maximum EAI to
resist fast algebraic attacks.
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