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Some criteria for testing whether certain types of entire functions are prime 
or not are given in this paper. Most of the studies are based upon the distribu- 

tion of the zeros of the function or its derivative. 

I. INTRODUCTION 

According to [I], an entire function F(z) -f(g) (z) is said to possessf(x) 
as left factor andg(z) as right factor, when they are both non-linear and entire. 
A prime (pseudo-prime) function F(z) is one which cannot be factorized in 
the formf(g) (x), wheref and g are non-linear entire functions (polynomials). 

Generally it is not easy to tell whether a given function is prime (pseudo- 
prime) or not. In [8], Rosenbloom stated that ez + x is prime and that the 
proof is complicated. Later on, Gross [6] proved it and generalized the 
previous result by showing that every entire function of the form ez + P(z) 
is prime, where P(z) is a non-constant polynomial. The methods used in [l] 
and [6] depend heavily on the fact e* is a periodic function. 

In this paper we shall study some similar classes of functions from another 
viewpoint. Our emphasis will be put on the distribution of the zeros of a 
given function. 

Here some new results which cannot be obtained by using the methods 
in [I] and [6] will be achieved. We shall denote byL and R the classes of all 
entire functions which possess no non-linear polynomials as their left and 
right factors respectively. 

II. LEMMAS AND MAIN RESULTS 

We begin with some of the lemmas in the proof of our theorems. 

LEMMA 1 (Briot and Bouquet [3]). g a solution of an algebraic diSfeventia1 
equation of the JirSt order, P(w, w’) = 0, is un;form in the plane, then the 
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solution is a rational function or a rational function of ebz (b a constant), or an 
elliptic function. 

LEMMA 2. Let P(z) and Q(z) (+ constant) be polynomials, and g(z) a 
non-constant entire function. Then P(z) eytz) + Q(z) EL. 

Proof. Assume that the Lemma is false. Then there exist a non-linear 
polynomial PI(z) = a,,zn + alzn-l + ... + a, and a transcendental entire 
function h(a) such that 

P,(h) (z) = P(z) e”(z) + Q(z). (l-1) 
Then 

or 

a,hn(z) + a,h+l(z) + ... + a, = P(x) eyfz) + Q(z). U-2) 

a,hn(.z) + a,h+l(z) + ... + a, - Q(z) = P(z) egCZ). (I-3) 

Now it is easy to see that Clunie’s Theorem [4] is applicable to Eq. (l-3). 
It follows that the leftside of (l-3) can be expressed in a binomial form. 
Thus we have 

a,{h(x) + c>” = P(z) egCz), (l-4) 
where c is a constant. 

From this and (2) we deduce 

b,h+l(z) + b,h+z(x) + .*. + b,-,h(z) = Q(z) - a, - a@, (l-5) 

where b, (i = 1, 2 ,..., n - 1) are constants. 
This is impossible because the leftside of (l-5) is either transcendental 

entire or identically equal to zero, and, on the other hand, the rightside of 
(l-5) is a non-zero polynomial. Our Lemma is thus proved. 

LEMMA 3 (Polya [7]). Suppose that f (z), g(z) are entire functions and that 
v(z) = g( f (z)) has jinite order. Then either f is a polynomial or g(x) has zero 
order. 

The following lemma which will play a big role in the proofs of our 
theorems is due to Edrei [5]. 

LEMMA 4. Let f (z) be an entire function. Assume that there is an unbounded 
sequence {ai}Tza=l such that all but a jinite number of the roots of the equations 
f (2) = ai (i = 1, 2,...) lie on a straight line; then f (z) is a polynomial of degree 
not greater than two. 

THEOREM 1. Let F be an entire function of finite order with infinitely many 
zeros. Assume that all but a finite number of the zeros of F lie on a straight line. 
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Then F is pseudo-prime. Furthermore the only possible right factors are polyno- 
mials of degree two. 

Proof. Assume that F = f (g). If f and g are not polynomials, then by 
virtue of Lemma 3 f has zero order. Therefore F has infinitely many zeros 
(a3:==, . Hence all except a finite number of the roots of the equations 
g(z) = ai (i = 1, 2,...) lie on a straight line. It follows from Lemma 4 that g 
is a polynomial of degree two. Thus the theorem is proved. 

In a similar manner, we can obtain the following: 

THEOREM 2. Let F be an entire function of Jinite order with F’ has infkitely 
many zeros. Assume that all but a$nite number of the zeros of F’ lie on a straight 
line. Then F is pseudo-prime. 

Furthermore the only possible right factors of F are polynomials of degree two. 

As an illustration we prove the following: 

THEOREM 3. F(z) = ez + z is prime. 

Proof. It is trivial to check that F satisfies the assumptions of Theorem 2; 
therefore F is pseudo-prime. By Lemma 2 F EL. It follows from this and 
Lemma 4 that F = f (z2 + c), an even function where f is entire and c is a 
constant, if F is not prime. This leads to a contradiction because ez + z is not 
an even function, and our proof is complete. 

THEOREM 4. Let P(z) be a non-zero polynomial, and c a non-zero constant; 
then P(z) ez + cP(z) is prime. 

Proof. The argument will be the same as above. We omit the details. 

THEOREM 5. Let P(z) be a polynomial, and let c be a non-zero constant; then 

is prime 

F(z) = sz [P(z) ez + cP(z)] dz 
0 

Proof. We note that F(z) has the form PI(x) e” + P&z), where Pi 
(i = 1, 2) are polynomials. Then by Lemma 2 F EL. This and Theorem 2 
shows that the only possible factorizations of F will be of the form 
F(z) = f (z” + c), where f is an entire function and c is a constant. That is 

PI(Z) + P2(4 =f(x2 + 4 (1) 
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so 
Pl(- x) ecz + P2(- X) =f(x’ + C). 

Combining (1) and (2) yields 

PI(x) ez + P2(x) = Pl(- x) e-2 $- P2(- z) 

or 

PI(x) ez + P2(x) - P2(- x) = Pl(- x) e-z. 
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(4 

(3) 

It is easily verified that (3) is impossible to hold by virtue of Lemma 2 
or simply by considering the behavior of both sides when x + CO (along 
positive real axis). Thus the proof is complete. 

EXAMPLE. (z - 1) ez + x2/2 + c is prime. 

THEOREM 6. Let m, n be two positive integers. Then F(z) = em2 f ie-nz is 
pseudo-prime. Furthermore F E R and every possible right factor of F must be a 
rational function of ebz (b is an integer). 

Proof. We now prove the case F(z) = em2 + ie+“, that is 

F(z) = emz(l + ie-fnz+%Jz) 

which will satisfy the hypothesis of Theorem 1. Therefore F is pseudo-prime. 
Since em2 + ie@” is not an even function, hence F E R. 

Now assume that there exists a polynomial P(z) of degree k 3 2 and an 
entire function g(z) such that the following relation holds: 

P(g) = eTnz + ie@*. (4) 

By differentiating (4), 

g’p’kd = memZ - nie-nz (5) 

Solving for em2 and e-nz from (4) and (5) we obtain 

em2 = Q&5 g’), (6) 

eez = Q2(g, g’), (7) 

where Qi(x, y), Q&x, y) are two polynomials in x and y. Then we have 

[Qdg, g’)l” = [Q&r g’)l-” (8) 
or 

Qdg, g’) = 0, 
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where Qa(x, y) is a non-constant polynomial in x and y. By Lemma 1, it 
follows that g must be a rational function of ear (b is a constant). Furthermore 
by a result of the impossibility of certain identity from Borel’s [2] we can 
conclude that b must be an integer. This completes the proof. 

COROLLARY. With the above hypothesis let n = 2km, k 3 1. Then F is a 
prime. 

Proof. We only need to show in the present case that F EL. 
Suppose that 

e-mz + ienz = P(g(x)) 

for some polynomial P(x) of degree d 3 2. Then 

(9) 

e-m(z+ni/m) + ien@+lrilm) = P (g (x + -$)). 

Thus we have 

-ems +ienz=P(g(z+g)), 

(9) and (11) yield 

(1 + i) em2 = P (g(z+$)). 

(10) 

(11) 

(12) 

This implies that g(z) - g(z + vi m never vanishes. Therefore we get / ) 

or 

g (z + s) - g(z) = ceBz (13) 

g (z + $) = g(z) + ceBz, 

where c is a constant and /3 is an integer (by Theorem 6). 
We may write 

(14) 

where A, are non-zero constants and jIk are integers. We are going to show 
that n, = 0. If n, > 0, then we can assume flk in the following order: 

PO -=I /3, -=c ... -=L Alo * (15) 

Also 
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where ci is a constant, cy( are roots of P(a) = 0. From this and (13) we get 

P (g (2~ + $)) = c( g - cePz - al)( g - cesz - a2) . .. (g - ceEz - ad). 

(17) 

It follows from (14), (16), and (17) that 

cl(g - cef13 - aI) ... (g - ceEz - %) - c1(g - %)b - 4 ... (g - 4 

-= -(I + c) eniz. (18) 

Substituting (14) into this and again using the impossibility of certain 
identity of Borel’s to compare the types of both sides of (18) we find 

Pi = h (19) 

for some i and j with i # j, which gives a contradiction to (15). 
Thus we have to conclude that 71s = 0. 
Therefore 

g(x) = AoeEoz. (20) 

But then (9) will be impossible to hold. 
Our assertion is thus proved. 

THEOREM 7. F(z) = sin z - z is prime. 

Proof. Suppose the theorem is false; then we have F = f(g), where f and g 
are non-linear entire. If f is transcendental, then by Theorem 2, g is a poly- 
nomial of degree two. Therefore F = h(z2 + c), where h is an entire function 
and c is constant. Then F would be an even function but it is not the case. 
Thus F E R. 

Now we proceed to show that F EL. If g is transcendental, then f is a 
polynomial of degree k > 2. Therefore F’ = f ‘(g) g’ or 

cos x - 1 = g’f’(g) = cog’(g - CJl ... (g - CJk, (21) 

where ci (i = 0, 1, 2 ,..., k) are constants and n, (i = 1, 2,..., K) are positive 
integers. 

By observing the fact that g’ in (21) must be a perfect square and comparing 
the power expansions of both sides of (21) one can conclude that (21) is 
impossible; hence f E L. 

Thus the Theorem is proved. 
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