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Abstract

In this paper we consider an intra-host model for the dynamics of malaria. The model describes the dynamics of the blood
stage malaria parasites and their interaction with host cells, in particular red blood cells (RBC) and immune effectors. We establish
the equilibrium points of the system and analyze their stability using the theory of competitive systems, compound matrices and
stability of periodic orbits. We established that the disease-free equilibrium is globally stable if and only if the basic reproduction
number satisfies R0 � 1 and the parasite will be cleared out of the host. If R0 > 1, a unique endemic equilibrium is globally stable
and the parasites persist at the endemic steady state. In the presence of the immune response, the numerical analysis of the model
shows that the endemic equilibrium is unstable.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Global stability; Immune response; Reproduction number; Malaria parasites

1. Introduction

Many studies have been conducted using mathematical models for the within-host dynamics of malaria parasites.
The within-host model of malaria infection involves alternating intracellular and extracellular parasite stages inter-
acting with immune system. Human immune response predominantly acts on blood stage parasites, and are directed
against the asexual forms. Gametocytes are benign and provoke little if any immune response [15,17]. The mortality
of a gametocyte may depend on its age rather than on the immune status of individual [7].

The pioneering model is due to [3] in their attempts to address the blood stage asexual cycle of Plasmodium. Their
model is defined by four compartments: density of uninfected red blood cells, density of infected cells, density of free
merozoites and immune cells. They use a system of ordinary differential equations to describe the dynamics of the
densities of these populations. Many other within-host malaria models have been proposed (see [4,6,9,10] based on
the model proposed by [3].
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The human immune response begins a few cycles after the initiation of the intra-erythrocytic phase. It acts in various
ways to constrain the malaria parasite population growth and persistence. This may be reflected by either an increased
death rate of infected red blood cells caused by non-specific (macrophage) response on signaled erythrocytes, or
protection against the re-invading merozoites. It responds via two mechanisms, namely, humoral immunity and cell-
mediated immunity. These two come into play at different stages of the parasite attack. Humoral immunity refers
to immune protection mediated by B lymphocytes which are activated by the presence of merozoites in blood. The
B-cells in turn secrete antibodies into circulation as they remove the merozoites from blood. It is humoral immunity
that is more effective than the cell-mediated immunity [5]. Cell-mediated immunity acts as T lymphocytes secrete
proteins called cytokines to act directly or indirectly against the pathogens and also stimulate cytotoxic T -cells.
Cytotoxic T -cells play an important role of protecting the host cells by clearing (lysis) of infected cells, and thus
reduce the production of merozoites and gametocytes.

The antibodies neutralize merozoites by attaching to their surface binding sites, blocking them from attaching to
target cell receptors and so cell entry is inhibited. Additionally, antibodies are also involved in signalling macrophage
cells of the immune system to engulf the bound merozoites. Since Plasmodium parasite lives inside red cells for much
of its life cycle, it is able to avoid macrophage and antibodies. Thus, preventing cell entry of the merozoites would be
the terminal event for malaria. However, humoral immunity is not entirely effective and so the host cells are infected
with the malaria parasites.

Since malaria infection involves the absorption of the free merozoites into uninfected red blood cells, this results
into a decrease in their density in the blood stream. The destruction of the parasitized red blood cells occurs in the
spleen, where intra-erythrocytic parasites are removed. Some infected red cells leave the spleen intact, a process
known as pitting [13]. This process occurs naturally in vivo when the host immune system can act but fails in vitro
culture conditions in which leukocytes and the spleen are absent. The intracellular parasites depend on the host cell for
survival and reproduction, but the host cell can be damaged either directly by the parasite, or by the immune response
to parasite antigens which are expressed on the surface of infected cells [1]. Thus anemia is an inevitable consequence
of malaria infection.

The interaction of malaria parasites and immune responses occurs on a dynamic land scape, in which a population
of replicating parasites depletes a population of replenishing red blood cells [18]. However, malaria parasite also
uses the parasite protein to stimulate the immune system for production of antibodies which protect the parasite
against attack by the immune system. Knowledge of the factors that limit parasite numbers offers hope of better
designed treatment and intervention strategies [16]. The dynamics of uninfected red blood cells, infected red blood
cells destruction and immune activation are continuous processes which are best modelled by a system of differential
equations. This is important in the analysis and interpretation for effective design of vaccines and drug treatment.

In this paper the model proposed by [3] is amplified incorporating the effect of both humoral and cell-mediated
components of the immune system that target the different stages of parasite. We also modify the blanket death rate
into death due to bursting of the infected red blood cells and natural death rate. There is also absorption of merozoites
into the uninfected red blood cells during the process of infection and this decreases their density in blood.

2. Formulation of the model

In the model, the interaction of malaria parasites, red blood cells and immune response is presented. It is described
by a system of four equations in the four variables that represent the density of uninfected red blood cells, X infected
red blood cells, Y and free merozoites, M and the immune response, I . Uninfected red blood cells are recruited from
the red bone marrow at a constant rate Λ and die at natural rate, μxX or are reduced at rate ksXM by contact with
merozoites. The infected cells may die at natural rate, μ1 or burst at a rate μy to release r merozoites per infected cell.
The merozoites either die at a natural rate μm or are absorbed by uninfected red blood cells at a rate ksXM .

The release of merozoites and their attack on red blood cells triggers an immune response to these (circulating)
stages of the parasite. We incorporate specific immune response whose magnitude is proportional to the density of
immune cells. The immune cells augment the clearance of merozoites and infected red blood cells from the body. The
anti-blood stage immunity is T lymphocyte dependent that are constantly supplied from the thymus. They are recruited
from their resting precursors by contact with the infected red blood cells. Thus, we have clearance rate of free-
merozoites, μhMI due to B-cells and macrophages, clearance rate of infected red blood cells due to T -cells, μcYI .
The rate of change of density of immune cells is described by their proliferation and death rates. They proliferate in
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response to contact with free-merozoites and infected red blood cells at rates λmM and λyY , respectively. The immune
cells death is assumed to occur at a parasite-independent death rate μiI . All the parameters of the model are assumed
to be positive real numbers. With these definitions and assumptions, the interaction involving density of parasites,
density of red blood cells and immune effector cells is given by the following system of differential equations:

dX

dt
= Λ − μxX − ksMX,

dY

dt
= ksMX − (μ1 + μy)Y − μcYI,

dM

dt
= rμyY − ksMX − μmM − μhMI,

dI

dt
= [λyY + λmM]I − μiI. (1)

3. Analysis of the model

The equilibria are obtained by setting the right-hand side of system (1) equal to zero, giving the following:

Λ − μxX − ksMX = 0,

ksMX − (μ1 + μy)Y − μcYI = 0,

rμyY − ksMX − μmM − μhMI = 0,

[λyY + λmM]I − μiI = 0. (2)

From the fourth equation of system (2), we have I = 0, or Y = μi−λmM
λy

.
In the absence of immune response, substitution of I = 0 into the other three equations gives,

Λ − μxX − ksMX = 0,

ksMX − (μ1 + μy)Y = 0,

rμyY − ksMX − μmM = 0. (3)

This gives two equilibria, E0 = (Λ/μx,0,0,0), that represents the state in which there is no infection and is known
as the disease-free equilibrium point. The second equilibrium E1 = (X∗, Y ∗,M∗,0), where

X∗ = μm(μy + μ1)

ks[μy(r − 1) − μ1] ,

Y ∗ = Λ

μ1 + μy

− μmμx

ks[μy(r − 1) − μ1] ,

M∗ = Λ[μy(r − 1) − μ1]
μm(μ1 + μy)

− μx

ks

. (4)

The third equilibrium point E2 = (X̃, Ỹ , M̃, Ĩ ) for immune response Ĩ �= 0 is calculated by substituting for Ỹ =
μi−λmM̃

λy
into the other equations of system (2). This gives

Λ − μxX̃ − ksM̃X̃ = 0,

ksM̃X̃ − (μ1 + μy + μcĨ )(μi − λmM̃)

λy

= 0,

rμy(μi − λmM̃)

λy

− ksM̃X̃ − μmM̃ − μhM̃Ĩ = 0. (5)

This gives the equilibria
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X̃ = (μm + μhĨ )(μy + μ1 + μcĨ )

ks[μy(r − 1) − (μ1 + μcĨ )] ,

Ỹ = 1

λy

[
μi − λm

(
Λ[μy(r − 1) − (μ1 + μcĨ )]
(μm + μhĨ )(μ1 + μy + μcĨ )

− μx

ks

)]
,

M̃ = Λ[μy(r − 1) − (μ1 + μcĨ )]
(μm + μhĨ )(μ1 + μy + μcĨ )

− μx

ks

. (6)

The equilibrium point E2 exists provided the density of the immune cells is not zero and the malaria infection persists
within an infected individual. There will always be specific immune responses to check the infection. This will be
achieved provided the condition λmM̃ +λyỸ > μi holds. The nature of stability of this equilibrium point is established
based on numerical simulations.

3.1. Local and global stability of the disease-free equilibrium E0

We discuss the local stability of the disease-free equilibrium by examining the linearized form of system (1) at the
steady state E0. The Jacobian matrix of system (1) is given by

J =
⎡
⎢⎣

−(μx + ksM
∗) 0 −ksX

∗ 0
ksM

∗ −(μ1 + μy + μcI
∗) ksX

∗ −μcY
∗

−ksM
∗ rμy −(ksX

∗ + μm + μhI
∗) −μhM

∗
0 λyI

∗ λmI ∗ λyY
∗ + λmM∗ − μi

⎤
⎥⎦ . (7)

At the disease-free equilibrium point E0 = (Λ/μx,0,0,0), the system has the Jacobian matrix given by

JE0 =
⎡
⎢⎣

−μx 0 −ksΛ/μx 0
0 −(μ1 + μy) ksΛ/μx 0
0 rμy −(μm + ksΛ/μx) 0
0 0 0 −μi

⎤
⎥⎦ . (8)

It can be seen from the first and fourth columns that the Jacobian matrix has negative eigenvalues −μx and −μi . The
other two can be obtained by reducing the Jacobian matrix (8) into 2 × 2 matrix given by

J ′
E0

=
[−(μ1 + μy) ksΛ/μx

rμy −(μmksΛ/μx)

]
. (9)

The trace of the Jacobian matrix (9) is negative and for stability, we seek J ′
E0

> 0. This gives the expression

(μ1 + μy)(μm + ksΛ/μx) > rμyksΛ/μx that is equivalent to Λks [μy(r−1)−μ1]
μxμm(μ1+μy)

< 1. Let us define the basic repro-
duction number of the infection as

R0 = Λks[μy(r − 1) − μ1]
μxμm(μ1 + μy)

.

We can state the following lemma using R0 < 1 to indicate the stability of E0.

Lemma 1. The disease-free equilibrium E0 is locally asymptotically stable if R0 < 1, and unstable if R0 > 1.

The threshold quantity, R0 is a measure of the number of secondary cells infected by a single infected cell in naive
host [2]. It is an important parameter that plays a big role in the control of the malaria infection. The reduction of
the infection in an individual targets the parameters that will bring its value to less than unity. When the reproduction
number is less than unity, the disease-free equilibrium is locally asymptotically stable, and therefore, the disease dies
out after some period of time. We also note that increased ability of an individual to fight off the infection is attained if:
antibodies and macrophages clear the merozoites before they infect the red blood cells, the cytotoxic immune response
clears the infected red blood cells before their lysis and the number of merozoites released by an infected red blood
cell is reduced.

The global stability of the disease-free equilibrium E0 is established from the following theorem.
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Theorem 3.1. The disease-free equilibrium E0 = (Λ/μx,0,0,0) of system (1) is globally asymptotically stable in T

if R0 � 1, and unstable if R0 > 1.

Proof. Consider the Lyapunov function L = rμyY + (μ1 + μy)M . Its derivative along the solutions of system (1) is

L′ = rμyY
′ + (μy + μ1)M

′

= rμy

(
ksMX − (μ1 + μy)Y − μcIY

) + (μ1 + μy)(rμyY − μmM − μhIM − ksMX)

= rμyksMX − μcIY − (μ1 + μy)(ksX + μhI + μm)M

� rμyksMX − (μ1 + μy)(ksX + μm)M

= rμyksMX − (μ1 + μy)ksXM − μm(μ1 + μy)M

= M
[
ksX

(
μy(r − 1) − μ1

) − μm(μ1 + μy)
]

= μm(μ1 + μy)M

[
ksX(μy(r − 1) − μ1)

μm(μ1 + μy)
− 1

]

= μm(μ1 + μy)M

[
ksΛ(μy(r − 1) − μ1)

μxμm(μ1 + μy)
− 1

]
= μm(μ1 + μy)M[R0 − 1] � 0 if R0 � 1. (10)

We have established that L′ = 0, if R0 � 1 and the equality L′ = 0 holds if and only if R0 = 1 and M = Y =
I = 0. If R0 > 1, then L′ > 0 when X(t) is sufficiently close to Λ/μx except when M = Y = I = 0. Therefore
the largest compact invariant set in T = {(X∗, Y ∗,M∗, I ∗) ∈ T : L′ = 0}, where R0 � 1, is the singleton {E0}. On
the boundary when M = Y = I = 0 (i.e. along X-axis), X′(t) = Λ − μxX(t) and X(t) → Λ/μx as t → ∞. From
Lasalle–Lyapunov theorem (see [8]), every solution that starts in T approaches E0 as t → ∞. This proves the theorem
and thus the disease-free equilibrium is globally asymptotically stable. �
3.2. Local and global stability of the endemic equilibrium E1

The endemic equilibrium E1 = (X∗, Y ∗,M∗,0) is expressed in terms of R0 with the components

X∗ = Λ

R0μx

,

Y ∗ = Λ

(μ1 + μy)R0
(R0 − 1),

M∗ = μx

ks

(R0 − 1). (11)

It is noted from the equations above that the system has no positive endemic equilibrium point if R0 < 1. This is
because both Y ∗ and M∗ will assume negative values which is not biologically realistic. Thus, a positive endemic
equilibrium point is achieved only when R0 > 1.

The local stability of endemic equilibrium at E1 is established from the eigenvalues of the Jacobian matrix (7). We
observe from the last row that this matrix has the eigenvalue Λλy

(μ1+μy)R0
(R0 − 1) + μxλm

ks
(R0 − 1) − μi < 0, and the

remaining eigenvalues derive from the 3 × 3 Jacobian matrix given by

J ′
E1

=
⎡
⎢⎣

−R0μx 0 −ksΛ
μxR0

μx(R0 − 1) −(μ1 + μy)
ksΛ

μxR0

−μx(R0 − 1) rμy −(μm + ksΛ
μxR0

)

⎤
⎥⎦ . (12)

The characteristic polynomial of the Jacobian of the linearized system evaluated at this point is

λ3 + a1λ
2 + a2λ + a3 = 0, (13)

where
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a1 = μ1 + μy + μm + R0μx + ksΛ/R0μx,

a2 = R0μx(μ1 + μy + μm) + ksΛ/R0,

a3 = μm(μ1 + μy)(R0 − 1)μx. (14)

By the Routh–Hurwitz criterion, the eigenvalues of the matrix have negative real parts if and only if the inequalities
a1 > 0, a2 > 0, a3 > 0, a1a2 > a3 hold for the coefficients of the characteristic equation (13).

From Eq. (14), we notice that a1, a2 and a3 are positive. We compute

a1a2 − a3 = (μ1 + μy + μm + R0μx + ksΛ/R0μx)
(
R0μx(μ1 + μy + μm) + ksΛ/R0

)
− μm(μ1 + μy)(R0 − 1)μx

= (
R0μx(μ1 + μy) + ksΛ/R0

)
(μ1 + μy + μm + R0μx + ksΛ/R0μx)

+ μm

[
μx(μ1 + μy) + R0μx(μm + R0μx + ksΛ/R0μx)

]
> 0. (15)

Since also a1 > 0, a2 > 0, a3 > 0, then the characteristic equation (13) has negative real parts, and hence E1 is locally
asymptotically stable as long as the condition λyΛ

(μ1+λy)R0 + λmμx

ks
<

μi

R0−1 holds. The endemic steady state, if it exists
is always locally asymptotically stable. Thus, we have obtained the following result.

Lemma 2. If R0 > 1, then the endemic equilibrium E1 is locally asymptotically stable.

The global stability of the endemic equilibrium can be proved by applying the theory of competitive systems (see
[20] and [11]) and additive compound matrices and differential equations [19] for the analysis of our system. This is
because in the absence of immune cells, and without loss of generality, we can analyze system (1) by ignoring the last
equation for the immune cells.

The second additive compound matrix of the Jacobian matrix (12) is given by

J ′2
E1

=
⎡
⎢⎣

−[R0μx + μ1 + μy] ksΛ
μxR0

ksΛ
μxR0

rμy −[μm + R0μx + ksΛ
μxR0

] 0

μx(R0 − 1) μx(R0 − 1) −[μ1 + μy + μm + ksΛ
μxR0

]

⎤
⎥⎦ . (16)

We begin by giving the definition of a competitive system. Let x �→ f (x) be a smooth vector field defined for x in an
open set D ⊂ Rn. The differential equation

x′ = f (x), x ∈ D, (17)

is said to be competitive in D if, for some diagonal matrix H = diag(ε1, ε2, . . . , εn), where each εi is either 1 or −1,
H(∂f/∂x)H has nonpositive off-diagonal elements for all x ∈ D. If D is convex, the flow of a competitive system
(12) preserves, for t < 0, the partial ordering in Rn defined by the orthant K = {(x1, . . . , xn) ∈ Rn: εixi � 0}.

We choose the matrix H as

H =
[1 0 0

0 −1 0
0 0 1

]
. (18)

Then from the matrix H and the Jacobian given in Eq. (12) we get

H(J ′
E1

)H =
⎡
⎢⎣

−R0μx 0 −ksΛ
μxR0

−μx(R0 − 1) −(μ1 + μy)
−ksΛ
μxR0

−μx(R0 − 1) −rμy −(μm + ksΛ
μxR0

)

⎤
⎥⎦ . (19)

It can easily be seen that the system is competitive in ω, with respect to the partial order defined by the orthant
K = {(X,Y,M) ∈ R3: X � 0, Y � 0, M � 0}. It is also proved in [12] and [20] that three-dimensional competitive
systems that live in convex sets have the Poincaré–Bendixson property. That is, any non-empty compact omega limit
set that contains no equilibria must be a closed orbit.
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The following result is helpful in establishing that the endemic equilibrium E1 is globally asymptotically stable
(see [21]).

Theorem 3.2. Assume n = 3 and D is convex. Suppose that (17) is competitive in D. Then it satisfies the Poincaré–
Bendixson property.

The endemic equilibrium E1 is globally asymptotically stable in the interior of T so that the disease remains
endemic. This is established by proving Theorem 3.3 below.

Theorem 3.3. When R0 > 1, the endemic equilibrium E1 of system (1) is globally asymptotically stable in T̊ . All
solutions with initial data (Λ/μx,0,0,0) approach the disease-free equilibrium E0.

Proof. It can easily be observed that all the trajectories starting from the boundary of ∂T of T enter T̊ of T except
those on the X− axis which converge to E0 along this invariant axis. Thus, E0 is the only ω− limit point on the
boundary of T . It is enough to show that E1 is globally asymptotically stable in T̊ . Since system (1) is competitive,
persistent for R0 > 1 and E1 is locally asymptotically stable, the result follows from Theorem 3.2 if we can show
that system (1) has the property of stability of periodic orbits. This is derived from the criterion in [19] for the
asymptotic orbital stability of a periodic orbit of a general autonomous system. It is sufficient to prove that the linear
non-autonomous system

w′(t) = (
J

′ [2]
E1

(
p(t)

))
w(t) (20)

is asymptotically stable, where J
′[2]
E1

is the second additive compound matrix (16).
From Eq. (20), we have a linear system with respect to the solution p(t) = (X(t), Y (t),M(t)) given by

w′
1(t) = −(R0μx + μ1 + μy)w1(t) + ksΛ

μxR0
w2(t) + ksΛ

μxR0
w3(t),

w′
2(t) = rμyw1(t) −

(
μm + R0μx + ksΛ

μxR0

)
w2(t),

w′
3(t) = μx(R0 − 1)w1(t) + μx(R0 − 1)w2(t) −

(
μ1 + μy + μm + ksΛ

μxR0

)
w3(t). (21)

The following Lyapunov function is constructed in order to prove the asymptotic stability of system (21):

V
(
w1(t),w2(t),w3(t);X(t), Y (t),M(t)

) = sup

{
|w1|, Y (t)

M(t)

(|w2| + |w3|
)}

.

By denoting the left hand derivative of V (t) by D+V , we obtain the following inequalities:

D+
∣∣w1(t)

∣∣ � −(R0μx + μ1 + μy)
∣∣w1(t)

∣∣ + ksΛ

μxR0

∣∣w2(t)
∣∣ + ksΛ

μxR0

∣∣w3(t)
∣∣

� −(
R0μx + μ1 + μy

)∣∣w1(t)
∣∣ + ksΛM(t)

μxR0Y(t)

(
Y(t)

M(t)

(∣∣w2(t)
∣∣ + ∣∣w3(t)

∣∣)), (22)

D+
∣∣w2(t)

∣∣ � rμy

∣∣w1(t)
∣∣ −

(
μm + R0μx + ksΛ

μxR0

)∣∣w2(t)
∣∣, (23)

D+
∣∣w3(t)

∣∣ � μx(R0 − 1)
∣∣w1(t)

∣∣ + μx(R0 − 1)
∣∣w2(t)

∣∣ −
(

μ1 + μy + μm + ksΛ

μxR0

)∣∣w3(t)
∣∣. (24)

From Eqs. (23) and (24) we have

D+
(∣∣w2(t)

∣∣ + ∣∣w3(t)
∣∣)

�
(
rμy + μx(R0 − 1)

)∣∣w1(t)
∣∣ −

(
μm + μx + ksΛ

μxR0

)∣∣w2(t)
∣∣ −

(
μ1 + μy + μm + ksΛ

μxR0

)∣∣w3(t)
∣∣

�
(
rμy + μx(R0 − 1)

)∣∣w1(t)
∣∣ − Φ

[∣∣w2(t)
∣∣ + ∣∣w3(t)

∣∣], (25)

where Φ = min{(μm + μx + ksΛ ), (μ1 + μy + μm + ksΛ )}.

μxR0 μxR0
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Using Eq. (25), we simplify the following expression:

D+
Y(t)

M(t)

(∣∣w2(t)
∣∣ + ∣∣w3(t)

∣∣)
=

(
Y ′(t)
Y (t)

− M ′(t)
M(t)

)
Y(t)

M(t)

(∣∣w2(t)
∣∣ + ∣∣w3(t)

∣∣) + Y(t)

M(t)
D+

(∣∣w2(t)
∣∣ + ∣∣w3(t)

∣∣)

� Y(t)

M(t)

(
rμy + μx(R0 − 1)

)∣∣w1(t)
∣∣ +

(
Y ′(t)
Y (t)

− M ′(t)
M(t)

− Φ

)
Y(t)

M(t)

(∣∣w2(t)
∣∣ + ∣∣w3(t)

∣∣). (26)

We observe from Eqs. (22) and (26) that

D+V (t) � sup
{
h1(t), h2(t)

}
V (t), (27)

where

h1(t) = −(R0μx + μ1 + μy) + ksΛM(t)

μxR0Y(t)
= Y ′(t)

Y (t)
− R0μx (28)

and

h2(t) = Y(t)

M(t)

(
rμy + μx(R0 − 1)

) +
(

Y ′(t)
Y (t)

− M ′(t)
M(t)

− μm − μx − ksΛ

μxR0

)
,

h2(t) = Y ′(t)
Y (t)

+ Λks(R0 − 1)

(μ1 + μy)R0
− μx (29)

since μ1 + μy > μx , and the second and third equations of system (1) are respectively given by ksM(t)X(t)
Y (t)

=
ksM(t)Λ
R0μxY (t)

= Y ′(t)
Y (t)

+ μ1 + μy and M ′(t)
M(t)

= rμy
Y(t)
M(t)

− Λks

R0μx
− μm for I = 0.

Let μ = min{R0μx,
Λks(R0−1)
(μ1+μy)R0

− μx},

sup
{
h1(t), h2(t)

}
� Y ′(t)

Y (t)
− μ. (30)

From Eq. ( 30), we have

ω∫
0

sup
{
h1(t), h2(t)

}
dt �

[
lnY(t)

]ω
0 − μω = −μω < 0. (31)

This shows that the periodic solution (X(t), Y (t),M(t)) is asymptotically stable. �
3.3. Local stability of the endemic equilibrium E2

In this section, we study the stability properties of endemic equilibrium in the presence of the immune response.
The local stability of E2 is established from the Jacobian (7) evaluated at E2 = (X̃, Ỹ , M̃, Ĩ ) for Ĩ �= 0. This is given
by

JE2 =

⎡
⎢⎢⎣

−(μx + ksM̃) 0 −ksX̃ 0
ksM̃ −(μ1 + μy + μcĨ ) ksX̃ −μcỸ

−ksM̃ rμy −(ksX̃ + μm + μhĨ ) −μhM̃

0 λyĨ λmĨ λyỸ + λmM̃ − μi

⎤
⎥⎥⎦ . (32)

In order to determine the determinant of Jacobian matrix JE2 , the following simplified form of system (2) evaluated
at E2 = (X̃, Ỹ , M̃, Ĩ ) is used:
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μx + ksM̃ = Λ

X̃
,

μ1 + μy + μcĨ = ksM̃X̃

Ỹ
,

ksX̃ + μm + μhĨ = rμyỸ

M̃
,

λyỸ + λmM̃ − μi = 0, for Ĩ �= 0. (33)

Then from the Jacobian matrix (32) and relations (33), we have

JE2 =

⎡
⎢⎢⎢⎢⎣

−Λ

X̃
0 −ksX̃ 0

ksM̃ − ksM̃X̃

Ỹ
ksX̃ −μcỸ

−ksM̃ rμy − rμyỸ

M̃
−μhM̃

0 λyĨ λmĨ 0

⎤
⎥⎥⎥⎥⎦ . (34)

This gives a characteristic polynomial of the linearized system given by

P(λ) = det

⎡
⎢⎢⎢⎢⎣

−Λ

X̃
− λ 0 −ksX̃ 0

ksM̃ − ksM̃X̃

Ỹ
− λ ksX̃ −μcỸ

−ksM̃ rμy − rμyỸ

M̃
− λ −μhM̃

0 λyĨ λmĨ −λ

⎤
⎥⎥⎥⎥⎦ . (35)

This simplifies to the equation

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, (36)

where

a1 = Λ

X̃
+ ksM̃X̃

Ỹ
+ rμyỸ

M̃
,

a2 = λmĨμhM̃ + λyĨμcỸ +
(

Λ

X̃
+ ksM̃X̃

Ỹ

)
rμyỸ

M̃
+ Λ

X̃

ksM̃X̃

Ỹ
− rμyksX̃ − ksX̃ksM̃

= λmĨμhM̃ + λyĨμcỸ + Λ

X̃
(μm + μhĨ + μ1 + μy + μcĨ ) + ksX̃

(
Λ

X̃
− ksM̃

)

= λmĨμhM̃ + λyĨμcỸ + Λ

X̃

(
ksM̃X̃

Ỹ
+ μm + μhĨ

)
+ ksμxX̃,

a3 =
(

Λ

X̃
+ ksM̃X̃

Ỹ

)
λmĨμhM̃ + Λ

X̃

ksM̃X̃

Ỹ

rμyỸ

M̃
+ Λ

X̃
μcỸλy Ĩ + μcỸ

(
rμyλmĨ + λyĨ

rμyỸ

M̃

)

+ λyĨμhM̃ksX̃ + rμyksX̃ksM̃ − Λ

X̃
rμyksX̃ − ksX̃ksM̃

ksM̃X̃

Ỹ

= Λ

X̃
λmĨμhM̃ + Λ

X
λyĨμcỸ + μcỸ rμy(λmM̃ + λyỸ )Ĩ

M̃
+ ksX̃μhM̃((λmM̃ + λyỸ ))Ĩ

Ỹ

+ ksX̃ksM̃(μm + μhĨ )
M̃

˜
Y
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= Λ

X̃
(λmĨμhM̃ + λyĨμcỸ ) + λmĨ

(
μcỸ rμy + ksX̃M̃

Ỹ
μhM̃

)
+ rμyỸ

M̃
λyĨμcỸ

+ ksX̃M̃

Ỹ
ksM̃(μm + μhĨ ) + μhM̃λyĨ ksX̃,

a4 = Λ

X̃

ksM̃X̃

Ỹ
λmĨμhM̃ + Λ

X̃
μcỸ

(
rμyλmĨ + λyĨ

rμyỸ

M̃

)
+ Λ

X̃
ksX̃λy ĨμhM̃ − ksX̃ksM̃λyĨμhM̃

− ksX̃μcỸ ksM̃λyĨ

= Λ

X̃

ksM̃X̃

Ỹ
λmĨμhM̃ + Λ

X̃
μcỸ rμyλmĨ + μcỸλy Ĩ

(
Λ

X̃

rμyỸ

M̃
− ksX̃ksM̃

)
+ λyĨμhM̃ksX̃

(
Λ

X̃
− ksM̃

)

= Λ

X̃

ksM̃X̃

Ỹ
λmĨμhM̃ + Λ

X̃
μcỸ rμyλmĨ + λyĨμcỸ

(
μxksX̃ + Λ

X̃
(μm + μhĨ )

)
+ μxλyĨμhM̃ksX̃.

For convenience, we adopt the following notation and then rewrite the coefficients of the characteristic polynomial:

A1 = Λ

X̃
, A2 = ksM̃X̃

Ỹ
, A3 = rμyỸ

M̃
, A4 = λmĨ , A5 = μhM̃, A6 = λyĨ ,

A7 = μcỸ , A8 = ksM̃, A9 = ksX̃, A10 = μm + μhĨ , A11 = rμy.

a1 = A1 + A2 + A3,

a2 = A4A5 + A6A7 + A1(A2 + A10) + μxA9,

a3 = A1(A4A5 + A6A7) + A4(A2A5 + A7A11) + A3A6A7 + A2A8A10 + A5A6A9,

a4 = A1A4(A2A5 + A7A11) + μxA6A9(A5 + A7) + A1A6A7A10.

Then we have

H2 = A1A
2
2 + (

A2
1 + A1A2

)
(A2 + A10) + μx

[
A9(A1 + A2 + A3) + A2A10

] + A7(A2A6 − A4A11)

+ A5(A3A4 − A6A9),

H3 = μxA9(A1 + A2 + A3)

× {
A4A5(A1 + A2) + A2A8A10 + A5A6A9 + A4A7A11 − [

A2A6A7 + A5A6(A1 + A2 + A3)
]}

+ A1A10(A1 + A2 + A3)
{
A4A5(A1 + A2) + A2A8A10 + A5A6A9 + A4A7A11 − A2A6A7

}
+ {

A3A4A5 − (
A6A7(A1 + A3) + A2A8A10 + A5A6A9 + A4A7A11

)}
× {

A4A5(A1 + A2) + A6A7(A1 + A3) + A2A8A10 + A5A6A9 + A4A7A11 − A1A2(A1 + A2 + A3)
}

+ A7(A1 + A2 + A3)
{
A6

[
A4A5(A1 + A2) + A6A7(A1 + A3) + A2A8A10 + A5A6A9 + A4A7A11

]
− A1A4A11(A1 + A2 + A3)

}
.

It is clear that all the coefficients a1, a2, a3, and a4 are positive. The Routh–Hurwitz criterion that are necessary and
sufficient for the local asymptotic stability of the endemic equilibrium E2 are that the coefficients are positive and
the Hurwitz determinants are positive [14]. For a fourth degree characteristic polynomial the Hurwitz determinants
are H1 = a1, H2 = (a1a2 − a3), H3 = (a1a2 − a3)a3 − a2

1a4 > 0, and H4 = a4H3 > 0. However, depending on the
parameter values the Hurwitz conditions H2, H2 and H4 may not be positive and hence all the Hurwitz conditions are
not satisfied. Thus, the endemic equilibrium E2 can be locally unstable for some parameter values.

In the next section, we use numerical analysis to illustrate the long term behavior of the system.

3.4. Numerical analysis

With the initial data and parameters values in Table 1, numerical simulations are carried out to illustrate the behavior
of the system at equilibrium points. Fig. 1 reveals that in the absence of immune response, there is a sudden rise in
the densities of infected red blood cells and merozoites that results in the decrease in the density of uninfected red
blood cells. However, this later on drops down as the death rate of the cells is greater than the recruitment rate. The
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Table 1
Parameter estimates and initial data values for the model of malaria

Parameters and variables Value Ref.

Λ rate of red blood cells production 2.5 × 108 cells/day/ml [10]
μx natural death rate of un infected red blood cells 0.0083/day [3]
κs infection rate of red blood cells by merozoites 2.5 × 10−10/day [10]
μy natural death rate of infected red blood cells 0.025/day [9]
μm natural death rate of free merozoites 48/day [10]
μi natural death rate of immune cells 0.05/day [10]
μ1 differentiation rate of asexual form into merozoites 0.5/day [3]
r merozoites released per dying infected erythrocyte 16 [3,7]
μc activation rate of immune cells by contact with infected cells 10−8/day [10]
μh activation rate of immune cells by contact with merozoites 10−8/day [10]
λy proliferation rate of immune cells in response to infected red blood cells 2 × 10−8/day [10]
λm proliferation rate of immune cells in response to merozoites 3 × 10−8/day [10]
X(0) Initial density of uninfected red blood cells 3 × 1010 cells/ml/day [10]
Y (0) Initial density of infected red blood cells 0 cells/ml/day [10]
M(0) Initial density of free merozoites 2 × 105 cells/ml/day [10]
I (0) Initial density of immune cells 0.0001 cells/ml/day [10]

equilibrium E1 converges to a steady state that is asymptotically stable whereas E2 does not converge to a steady state
and so is unstable (see Figs. 1 and 2).

4. Discussion

Our model captures the dynamics of malaria infection within an infected individual described by a system of
differential equations. We incorporate the effect of both cell-mediated and humoral immune response against the
blood stage of the disease.

We obtained three equilibria. The first equilibrium corresponds to the disease-free or uninfected state, the second
one is the infected state in the absence of the specific immune response and the third one represents the infected state
in which immune cells are present. The conditions for the establishment of the disease based on the eigenvalues of the
system evaluated at the disease-free equilibria revealed that it is locally asymptotically stable if R0 < 1 and unstable
if R0 > 1. Global stability analysis of the model was carried out based on a Lyapunov function and it was established
that the infection disappears from an infected individual if R0 � 1. This can be explained that on average an infected
individual cell produces less than one new infected individual cell over the course of its infectious period, and the
infection cannot grow. Considering an infected individual that initially consists of susceptible and infected red blood
cell populations, there is convergence to a disease-free steady state as infected red blood cells die off and are replaced
by uninfected ones.

The second equilibrium represents a state in which the infection exists in the absence of the specific immune cells.
Its other components are positive only when R0 > 1. The necessary and sufficient conditions for its local stability
provided by Routh–Hurwitz criteria confirm that it is always asymptotically stable if it exists. It is also proved us-
ing the theory of competitive systems that the equilibrium is globally asymptotically stable. Numerical simulations
reveal that the second equilibrium always converges (see Fig. 1) to an endemic steady state. This implies that non-
immunocompetent individuals will be unable to fight off the malaria infection. From Fig. 2 we established that the
third equilibrium E2 does not always converge to a steady state and so is unstable. The reason may be that immuno-
competent individuals are able to withstand the malaria infection and the immune system eventually is able to clear
off the infection.

The stability of the equilibria is important for disease control. This can be achieved through disrupting propagation
of the infection to the point that R0 < 1. This can be achieved through antimalarials that kill infected red blood cells
and merozoites. This having been accomplished, the malaria infection will die out of its own accord, as the system
tends to the “no infection” state at the new stabilized point.
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Fig. 1. Equilibrium point E1 tends to the endemic steady state in the absence of immune response.
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Fig. 2. Equilibrium point E2 does not converge to a steady state in the presence of immune response.
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Appendix A. Compound matrices

In this section, we give the definition of an additive compound matrix. The details of compound matrices and
ordinary differential equations are given in [19].

Definition A.1. Let A be any n×m matrix of real and complex numbers, and let ai1,...,jk
be the minor of A determined

by the rows (i1, . . . , ik) and the columns (j1, . . . , jk), 1 � i1 < i2 < · · · < jk � n, 1 � j1 < j2 < · · · < jk � m. The
kth multiplicative compound matrix of Ak of A is the

( n
k

)× ( m
k

)
matrix whose entries, written in a lexicographic order

are ai1,...,jk
. When A is a n × m matrix with columns a1, a2, . . . , ak , Ak is the exterior product a1 ∧ a2 ∧ · · · ∧ ak .

For the case m = n, the additive compound matrices are defined in the following way.

Definition A.2. If A = aij be an n × n matrix, its kth additive compound A[k] of A is the
(
n
k

) × (
n
k

)
matrix given by

A[k] = D(I + hA)(k)
∣∣
h=0,

where D is the differentiation with respect to h. For any integer i = 1, . . . ,
(
n
k

)
, let (i) = (i1, . . . , ik) be the ith member

in the lexicographic ordering of all k-tuples of integers such that 1 � i1 < i2 < · · · < ik � in. Then

bij =
{

ai1i1 + · · · + aikik if (i) = (j),

(−1)r+sais ,ir if exactly one entry of is in (i) does not occur in (j) and js does not occur in (i),

0 if (i) differs from (j) in two or more entries.

In the special cases k = 1, k = n, we find A[1] = A, A[n] = TrA. For n = 3, the matrices A[k] are as follows:

A[1] = A, A[2] =
⎡
⎣a11 + a22 a23 −a13

a32 a11 + a33 a12
−a31 a21 a22 + a33

⎤
⎦ , A[3] = a11 + a22 + a33.
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