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Abstract." This is a review paper which describes recent advances in numerical methods and computer codes for solving 
initial value problems of ordinary differential equations. Particular emphasis is placed upon stiff systems. 
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1. Introduction 

In mathematical modeling of physical systems, very often we are required to solve an initial 
value problem (IVP), consisting of a system of ordinary differential equations (ODE) which could 
be written as: 

y ' = f ( x , y ) ,  x ~ [ a , b ] ,  y . f ~ R  u, (1.1) 

y ( a ) given. 

A typical program (code) steps through [a, b] and produces approximate solutions at certain 
mesh points. Proceeding from y. (the approximate value to y(x . ) )  it computes Y.+I at x.+ ~ = x.  
+ h.+~; h.+~ or simply h is the step-size. 

If we define z . (x)  as the solution of the following problem: 

z ' = f ( x , z . ) ,  z . ( x . ) = y . .  (1.2) 

Then the program will actually approximate this local solution over the step-size h by y,, + v Thus 
the error T.+~ = z . (x .+l)-y .+~ is the local truncation error. Almost all existing codes try to 
control this local error so that at each step 

-y.+,ll (1.3) 
T. + 1 expressing the tolerance. 
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However, it should be noted, the user is really interested in controlling the true or global error: 
IlY(X,,+l) -Y,,+lll. 

2. Stiff phenomena 

It is customary to define stiff phenomena in terms of the eigenvalues of the Jacobian. 
However, there are some difficulties with this approach both conceptually and practically. We 
first define stiffness in terms of the eigenvalues of the Jacobian as follows: 

Definition: The system (1.1) is stiff if: 
(i) Real )~i < 0, i = 1, 2 . . . . .  N; 

(ii) S =- maxilReal Xil/minilReal Xi] >> 1, 
where S is the so-called stiffness ratio. 

Comments on the definition of stiffness 
(a) Condition (i) does not cover linear problems with variable coefficients and nonlinear 

problems where one (or more) of the eigenvalues may cross into the region of the positive real 
axis temporarily. 

(b) Condition (ii) becomes ambiguous when the real part of an eigenvalue approaches zero. In 
this case, the stiffness ratio may be large yet the problem is not stiff since it can be solved 
effectively by methods with bounded region of stability (explicit methods). 

(c) In practice, it is desirable to know if a system is stiff in certain intervals of integration, so 
that a proper method for stiff equations could be used effectively. Recently, some interest has 
been paid to developing type-insensitive codes in which implicit (for stiff) and explicit (for 
non-stiff) methods are used alternatively depending on the stiffness of the problem [40,41]. 
Monitoring the eigenvalues of the Jacobian at every step of integration is very expensive. 
However, an estimate of the Lipschitz constant proves to be a very practical way to determine the 
stiffness of a problem. 

(d) A proper way to describe stiffness is as follows: it occurs when stability rather than 
accuracy dictates the step size. For example, when solving the constant coefficient linear system 
y ' =  Ay + g(x),  accuracy may pose a severe restriction on the step size when g(x)  is a nasty 
function, then stability becomes less important and the problem is not stiff. 

(e) In some cases, the system (1.1) can be partitioned into stiff and non-stiff sub-systems. This 
partitioning process allows an efficient numerical method to the problem, since the stiff and 
non-stiff components are now treated separately (see [17] for more details). 

3. Measuring stiffness 

In this section we describe a quantitative approach to determine stiffness of a given problem. 
Unfortunately, the concept of stiffness is rather vague because in practice it involves a number of 
phenomena. As mentioned earlier, classical measures of stiffness are useful but are known to 
ignore several important factors. This section presents an approach to refine these measures [42]. 
We distinguish two kinds of methods for solving the initial value problems of ODE's: explicit 
methods and implicit methods. 
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Most methods of order p have local truncation error at x n of the form: 

L T E ( x . )  = ~hP+ ly'P+ l'( x . )  + O( hp+ 2). (3.1) 

~" is a constant. The numerical problem also involves a tolerance ~ and a norm in which error is to 
be measured. We demand that 

IILTE(x,)[I ~< ~'. (3.2) 

The largest step-size, which would satisfy the local accuracy test (3.2) is given by: 

= ( 3 . 3 )  
I~'1" IlY tp+ ' ) (x .  )11 

Approximation (3.3) is not valid when y(P+l)(x) vanishes or h is not sufficiently small. In the 
later case, the leading term in (3.1) does not dominate the remaining terms. 

For explicit methods based on polynomial approximations the region of absolute stability is 
bounded by a half-disc of radius r. Thus, for a stable integration with step-size h we must have: 

Ihhl ~< r (3.4) 

for all eigenvalues h of the Jacobian fv(x,,, y(x,,)) ~ f~", which have nonpositive realparts .  
Let PL(f~",) = maxl~.l (with Re(X) < 0), then the largest stable step size, hst~b, is: 

r 
hstab = PL(f;)"  (3.5) 

A suitable measure of stiffness is then [42]: 

hacc/hstab = ,Tl/p+lpL ( f )n) l ly (p+l) (xn) l l - l /p+l(  I~'l--l/P+ l r  )" (3 .6)  

Remarks. (a) Reducing I-, decreases stiffness. 
(b) Lowering the order p, increases stiffness. 
(c) Along the integration curve ~ and r remain unchanged, while #L(~,)lly(P+l}(x,)ll -l/p+1 

computed along the solution curve gives a fair measure of stiffness. 
(d) The above criterion is also applicable when we wish to compare stiffness of two problems if 

both are integrated within the same tolerance using the same class of methods. 
For implicit methods, (3.4) is no longer valid since they have no stability restrictions. The 

implicit equation defining Y~+1 can be written as: 

y = hyf(x,,+a, y) + rp,,, (3.7) 

where y is a constant and '/', lumps together information at the previous steps. In order for the 
simple iteration 

ym+, = hvf(x .+, ,  ym) + ¢i". (3.8) 

to work for all starting values y0 near a solution y*, it is required that: 

hlYIp(f~,(x,,+~, y*)) < 1 (3.9) 

or [42]: 

hl'ylt < 1 (3.10) 
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where 

hence 

thus: 
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L = l [ L ( x . , y ( x . ) ) [ [ ,  

1 
h+te+= ImlllL(x,,  yCx,) ) l  I , (3.11) 

( ) h+,e r = ~'/P+ll[fy(X., y ( x . ) ) l  I • Ily~p+'}(x.)ll - ' /p+'  I~] -1/p+1 ivl-  • (3.12) 

4. Runge-Kutta methods 

The Runge-Kut ta  methods (explicit, semi-implicit, and fully implicit) are one-step methods. 
An s-stage RK method is given by the following formula: 

S 

y.+, = y .  + h .  Y~ biki, (4.1a) 
i=l ( s )  

k , = f  x . + c ~ h . , y . + h . ~ _ . B o k j  , i = 1 , 2  . . . . .  s. (4.1b) 
j = l  

An explicit RK method has s' = i - 1 and k, = f ( x . ,  y.); a semi-implicit method has s' = i; 
and a fully implicit method has s ' =  s. This means that the matrix B~j has a strictly lower 
triangular form for explicit RK methods, a lower triangular form for semi-implicit, and a full 
matrix for fully implicit cases. 

4.1. Schemes for local error estimates 

The RK method is said to be of order p + 1 if the local truncation error Y,+I - z ( x ,+ , )  is 
O(hp+2~ where z (x )  is the local solution to the system: 

z ' = f ( x , z ) ,  z ( x , ) = y , .  (4.2) 

An imbedded procedure uses a pair of formulae, one of order p + 1 and the other order p. The 
two formulae have the same set of k, 's  so that the solution ~, +, of order p is calculated with very 
little extra work: 

$* 

.9.+, = y .  + h.  Y'~ b~k i. (4.3) 
i ~ l  

Note that s* may be different from s - - t he  number of stages for the formula of order p + 1. The 
estimated error is 

est -IIY,+, -.9,+,11. (4.4) 

• his scheme has the advantage of a built-in error estimating capability. 
Another approach, which was very popular in the past, and recently has received further 

attention, is the step-halving procedure. This involves solving the differential equation using step 
size h.  to obtain y.+~, then solving it again with twice the step size ½h., to obtain y* .+p  The 
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difference between y*÷, and Yn+, gives an estimate of the local truncation error. It is a general 
belief that the step-halving procedure requires more work than the imbedded approach. However, 
it has been shown recently that this is not always true (see [33] for details regarding single-step 
methods). 

4.2. Explicit  R u n g e - K u t t a  methods 

For non-stiff or mildly stiff problems, the explicit RK methods have been very useful. This is 
because they require very little overhead. One of the most popular methods in this class is 
Fehlberg's imbedded pair of fourth and fifth-order formulae which requires six stages per step. A 
good implementation by Shampine and Watts [43,44] called RKF45 was published in 1977. 
Recently, this code was revised to include some additional capabilities and imProvements. This 
new code called DERKF forms part of a new package called DEPAC developed at Sandia 
National Laboratories by a group led by Shampine and Watts [45]. 

The second code of this class is DVERK (available in the IMSL Library) [30]. This code was 
written by Hull, Enright, and Jackson [29] based on Verner's fifth- and sixth-order imbedded pair 
of formulae which require eight stages per step. 

Runge-Kutta  codes with variable orders seem to be useful. A complete set of imbedded RK 
formulae with order 1 through 6 requiring 9 stages was developed by Bettis of the University of 
Texas [3]. Recently, Verner [49] developed complete sets of formulae with orders 1 through 5, 
requiring six stages, orders 1 through 6 requiring eight stages, orders 1 through 7 requiring ten 
stages, and orders 1 through 9 requiring thirteen stages. Verner's development seems to be 
optimal as far as the number of stages per step is concerned. However, no computer code was 
developed based on these formulae. 

4.3. Fully implicit R u n g e - K u t t a  methods 

For stiff and very stiff problems, it is obvious that explicit RK methods are inefficient as a 
consequence of their bounded regions of stability. It is well known that fully implicit RK 
methods could be developed for high orders of accuracy and possessing strong stability proper- 
ties. However, a straightforward implementation of these implicit methods involves solving large 
systems of nonlinear algebraic equations. For a system of N differential equations, the modified 
Newton method for solving (4.1b), in the implicit case, is as follows: 

Let 

rb i = k,  - y ,  + h ,  f l i jk j  , (4.5) 

here for simplicity, we assume an autonomous form. The modified Newton method requires 
solving repeatedly the linear system: 

G . 6 k =  - ~  (4.6) 

where G = I -  h , (  A ® J ) - - t h e  so-called iteration matrix.  
I = I, ® I u with I, = s x s unit matrix. 

I u = N x N unit matrix. 
A = matrix of fl, j (dimension s). 
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J = Jacobian matrix evaluated at the previous step. 
k=(k,,...,k,)T. 
a=(@ ,,..., !Ds)T. 

The solution of the linear system (6.6) by the LU decomposition requires s3N3 + s2N2 operations 
(multiplications and divisions). This is excessively large. Recently, some ingenious approaches 
have been devised to overcome this drawback [4,7]. The main idea of these schemes is to decouple 
the system of sN nonlinear algebraic equations to s systems of N equations each. To accomplish 
this, we define a similarity transformation T so that T-‘AT is a lower triangular matrix. 
Therefore, the transformed system is clearly uncoupled into s systems of N equations. Further 
computations could be saved if all the diagonal elements of the lower triangular matrix are the 
same, then the same iteration matrix G occurs for each of the s systems. Butcher [7] was the first 
to notice this. He defined a similarity transformation T based on the Laguerre polynomials so 
that the transformed system has a bi-diagonal structure having constant h for each entry in the 
main diagonal and -h for each element in the subdiagonal. A code, STRIDE, developed by 
Burrage, Butcher and Chipman in 1979 [9] is based on these ideas. The code contains a set of 
s-stage formulae of order s with s varies from 1 to 15. Some formulae are not A-stable; however, 
they are all damped at infinitely and the stability regions are quite acceptable. The code was 
constructed to be of collocation type and output values are produced by interpolating the 
underlying collocation polynomials. This code is believed to be suitable for stiff problems. 

Another idea, which seems to be even more efficient than Bucher’s transformation, is to 
transform the system into Hessenberg matrix. Let T be a similarity transformation so that 

x, a** 0 
A-= T-‘AT= 

1 J 

. . . (4.7) 

0 As 
. . . 

where Xi can be complex and distinct. Therefore G = Z - h(A @ J) is a block diagonal matrix 
with the ith block being (I - h,XiJ). If LU decomposition is used, we need s times of 
decomposition for each iterative step. The idea is then to form a Hessenberg matrix in the 
following way: 

Let (I - h,XiJ) = h,X,((l/h,X,)Z - J) = pil(piZ - J) where pi = l/h,Xi, then (piZ -J) can 
be factorized into Hessenberg form: 

(J-p,Z)=LHL-‘. (4.8) 

This is done only once since 

(J-piZ)=L[H-(pi-pI)Z]L-‘. 

Therefore we just factorize (J - pII), then for other blocks we only need to calculate H - (pi - 
/+)I, and the LU decomposition of the Hessenberg matrix H will be done only once. This 
approach is much more efficient than the decomposition of s blocks into LU forms. This 
approach was first suggested by Enright [15] and later advocated by Varah [48] for possible 
effective implementation of implicit RK methods based on Gauss quadrature formulae 
(Gauss-Legendre, Gauss-Radau, Gauss-Lobatto). The advantage of this scheme is that methods 
based on Gauss quadrature are of order 2s or 2s + 1 while Butcher’s method discussed before is 
only of order s or s + 1. The disadvantage is due to the fact that complex arithmetic is involved. 



T.D. Bui et al. / O.D.E. initial value problems 289 

4.4. Semi-implicit Runge-Kutta methods 

In this class, the drawback of having to solve sN nonlinear equations is avoided by imposing 
that the matrix A be lower triangular form. This automatically results in s systems of N nonlinear 
equations. Further, by choosing ft, = fl for all i, the same iteration matrix is obtained for each 
system. This is called diagonally implicit RK methods. A code called DIRK based on this class 
for s = 1, 2, and 3 was developed by Alexander [1]. This code uses the step-halving procedure for 
error controls. The underlying formulae for DIRK are due to Crouzeix [12] and Alexander [1]. 
They are all A- or L-stable. 

Norsett [38] has derived an L-stable, second-order formula with imbedded error estimate 
requiring three stages. Houbak and Thomsen [28] implemented this method into a code called 
SPARKS, which is specifically designed for large systems having sparse Jacobians. 

4.5. Rosenbrock methods 

an autonomous form, it is given by 

i - 1  

o r  

The Rosenbrock method could be viewed as one iteration of the semi-implicit RK method. In 

k , = f (  y~ + h~ ~.,j~l fl~jkj ) + flh~J~k~ (4.9a) 

( I -  flh~J,)k, = f y~ + h~ f l i j k j  , for i = 1 . . . . .  s. (4.9b) 

This is a linear system of equations. However, there are s systems of N linear equations. It is 
important to note that in the implicit (or semi-implicit) case, the Jacobians are not required to be 
exact since they are only needed for the convergence of the modified Newton iteration. However, 
in the Rosenbrock methods, the Jacobians appear in the order conditions. Therefore, approxi- 
mate Jacobians (via finite differences) will directly affect the order of Rosenbrock methods. 

There are some computer codes based on this class. Villadsen and Michelsen [50] wrote a code 
called STIFF 3, which implements a 3-stage third-order L-stable method. Bui [6] has written a 
program called LSTIFF which implements s-stage formulae of order s for s = 2, 3, 4; they are all 
L-stable. Both codes use the step-halving procedure for error estimates and step-size control. 

The original Rosenbrock procedure has been modified by Warner, called ROW-methods, by 
adding an extra term. This extra term was added to extend the stability properties of the 
Rosenbrock methods. ROW-methods are given by: 

( I -  flh~J~)k,= f y~ + h n ~ fl, jkj + h~J~ ~., "tijkj, for/--- 1 . . . . .  s. (4.10) 
j=l j=l 

Codes based on ROW-methods have been developed by Kaps and Rentrop [32] called GRKA 
and by Gottwald and Warner [20] called ROW4A. They both contain a pair of imbedded 3rd- 
and 4th-order formulae (for error estimate); however, only the third order formula is damped at 
infinity. Actually, ROW4A uses the same pair of formulae in GRK4A but a 'back-step' strategy 
was included. This back-step strategy is to avoid stepping over sharp peaks or quasi-discontinui- 
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ties. Recently, Kaps and Wanner [31,34] have been active in developing high order ROW-meth- 
ods. They have also developed order conditions of ROW-methods for non-autonomous systems. 
This is, however, not a trivial problem since the number of order conditions increases drastically 
for non-autonomous ROW-methods. To facilitate the development, they have used Hairer's 
concepts of monotonically labelled trees and partitioned trees (L- and P-trees), which are useful 
for developing order conditions in many classes of methods (see [21,22] for details). 

5. Multi-step methods 

The general linear multistep method may be written as 

k k 

E = h. E Y.-,+1) (5.1) 
i = 0  i = 0  

: + # L  where ak0 4:0 and akk 
The two best known subclasses are: the Adams class with ak0 = - a k l  = 1, aki = 0 for all i > 1 

and the backward differentiation formula with ilk0 ~ 0 and flki = 0 for all i > 0. One disadvantage 
with variable order codes based on multistep methods is that they always start the integration 
with low order formulae. This makes restarting (over discontinuities) more expensive. 

5.1. Codes based on Adams method 

The Adams-Bashforth formula of order k can be expressed as 

k 

y.+, =y. + h. (5.2) 
i ~ l  

This is an explicit formula which is generally used as a predictor for the implicit 
Adams-Moul ton  equation of order k + 1: 

Yn+l =Yn + hn ~ B;fn--i+, + B~'Ofn+, • (5.3) 
i=l 

Current Adams codes would perform as follows: predict Yf+l by (5.2), evaluate f n + l -  
f ( x ,+ l , y f+ l ) .  Then correct the value Yn+l by (5.3) and follows with another evaluation of 
f ( x , ÷  1, Y, +1)- This scheme is referred to as PECE (Predict, Evaluate, Correct, Evaluate) method, 
and it is intended for nonstiff problems. Shampine and Gordon [43] have written a variable order 
code with formulae up to order 12 based on this approach. This code was published in their book 
[43]. A new version of the code called DEABM was written as part of DEPAC developed at 
Sandia Laboratories mentioned earlier. 

Gear's well-known code, DIFSUB [19], and its successors, GEAR [23], EPISODE [27], and 
LSODE [25], written by Hindmarsh, contain different implementations of the Adams formulae 
which are available in the nonstiff option of the code selected by the user. The stiff option of 
these codes will be discussed below. The code DGEAR in the IMSL library [30] is based on the 
GEAR code. 
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5.2. Codes based on backward differentiation formulae 

As mentioned earlier, well-known codes, such as EPISODE, contain two families of formulae, 
one for non-stiff and the other for stiff systems. The formulae are Adams methods and the stiff 
formulae are given by 

k 

Y,+a = E ak,Y,-,+l + h,flkof,+l" (5.4) 
i=1 

This equation can be solved easily for f,  +1 in terms of the previous and current values of y; thus, 
it is called backward differentiation formula (BDF). For k = 1, 2 the formulae are L-stable, for 
3 ~< k ~< 6, the formulae are stiffly stable of order k. Therefore, the main drawback of the BDF's 
is when they are used to solve problems having complex eigenvalues lying near the imaginary axis 
(for example, problem B5 in the stiff test sets proposed by Enright et al. [16]). The unstable 
regions extended into the left-half plane get substantially larger for higher k so that most codes 
implementing BDF restrict k ~< 6. 

The codes DIFSUB, GEAR, LSODE, and DGEAR (in IMSL) are all similar in the stiff 
option of the packages. In these codes, the stepsize h,  is fixed for a prescribed number of steps. 
The values of Yi at points which are not former mesh points are obtained by interpolating the 
previously calculated values of yi. A modified version of LSODE, called DEBDF, was developed 
as a member of the Sandia DEPAC package [45]. 

EPISODE is different from other packages, in that the step-size h, is allowed to change at each 
step. This feature makes EPISODE much more effective for problems with sharp fronts (for 
example, problems involving chemical kinetics systems with diurnally varying reaction rates, 
which vary like a square wave). GEAR, DIFSUB are completely unreliable for such problems. 
The fixed stepsize-interpolation strategy does have the advantage that the a 's  and/3 's  for each 
family can be computed and stored in tables once and for all, since they do not vary with n. 
Whereas, in EPISODE, at each step, the a 's  and/3 's  must be calculated for the formula in use. 
Furthermore, in EPISODE the iteration matrix involved in the modified Newton scheme for 
solving the BDF's must be frequently computed and decomposed because the scalar coefficient 
of the Jacobian has become out of date; whereas, other packages would not require this since the 
coefficient is varying less frequently. In summary, the variable step strategy of EPISODE permits 
it to solve certain class of problems effectively. However, the additional overhead involved in 
computing the coefficients a 's , /3 's  and in reevaluating the iteration matrix can cause EPISODE 
to perform less efficiently than GEAR (DIFSUB, LSODE) for smoothly decaying or linear 
systems. 

Some special codes, EPISODEB, GEARB [241 and an option of the code DEBDF are 
developed for systems with the Jacobian matrix having a banded structure. These systems appear 
for example in the method of lines and finite differences to solve PDE's. These packages take 
advantage of the structure of the Jacobian and reduce both time and space complexities of the 
modified Newton method for solving the BDF's, therefore EPISODEB could solve a larger 
banded system than EPISODE. 

For large stiff systems of ODE's having a sparse Jacobian structure the code GEARS written 
by Sherman and Hindmarsh [46] uses the Yale sparse matrix package. The code GEARZ written 
by Carver [10] uses the Curtis-Reid sparse matrix routines and finally the code FACSIMILE 
developed by Curtis [13] uses Duffs  MA28 sparse matrix routines. 
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Recently Hindmarsh [26] put together a collection of codes called ODEPACK. One of the 
most recent additions to ODEPACK is code LSODA. This code automatically determines 
whether or not a problem is stiff and switches to the most appropriate set of formulae. 

6. Other multi-step methods 

The cyclic composite multistep method described by 
i i 

~'~ aijyms÷j = h ~ fl,jf,,s÷j for i = 1 . . . . .  s, 
j ~ i - k  j = l  

was studied by Tendler, Bickart, and Picel [47]. These formulae define a block of s forward values 
of y: Y,,,,+1 . . . . .  Yo,+l)s with each application of the procedure. The matrix fl~j has a lower 
triangular form, thus we have to solve s systems of N nonlinear equations instead of solving sN 
nonlinear equations. A code named STINT was written by the authors which uses stiffly stable 
formulae of orders 1 to 7 with better stability properties than BDF's. 

The multistep, second derivative methods were investigated by Enright [14]. Formulae of 
orders 2 to 7 based on the form: 

k 

y,+, =y,  + h ~ ilk,f,-,+, + h2VkoY~'+l, 
i=O 

were developed and implemented in a code SDBASIC. These formulae are all stiffly stable with 
better stability properties than BDF codes. 

Cash [11] uses an extended BDF of the type 
k 

y. . ,  = E +h(&oL÷,  +/3k,L+2). 
i--I 

His program includes the conventional BDF's as a predictor and the above extended BDF as the 
corrector. He was able to develop L-stable schemes of orders up to 4 and A(a)-stable schemes of 
orders up to 9. Recently, he extended the above formula to include second derivatives. He was 
then able to obtain L-stable formulae up to order 6 and A(a)-stable for formulae order 7 to 9. 

The major drawback of multistep methods in general is that they are more expensive to get 
started. All of the codes mentioned in this section start with a low order method and a very small 
step-size, then gradually increase the order and the step-size as the integration progresses. 

7. Exponential-fitted methods 

Liniger and Willoughby [36] coined the term 'exponential-fitted' to describe a class of 
algorithms designed to exactly satisfy the stability test equation y '  = Ay for systems having one or 
more large negative eigenvalues--that is, for stiff systems of ODE's. The derivation presented 
here is a considerably modified version of Liniger and Willoughby's concepts, drawing on 
subsequent work by Lambert [35], by Brandon [2,5] and by Pratt [39]. 

Following Lambert, we derive some simple exponential-fitted algorithms for curve-fitting by 
assuming an interpolating function and determining the free parameters by the method of 
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undetermined coefficients. 
Let us assume a three-parameter exponential interpolant. 

1 ( x ) = A  + Be ~ (7.1) 

which interpolates the solution of (1.1) over the interval (x,,  x, + h) as follows: 

I ( O ) = y , = y ( x , ) ,  (7.2a) 

I'(O) = f~ = (d y / d x  )x,,, (7.2b) 

I( h ) = y,+ , = y(  x .  + h ). (7.2c) 

The first two requirements determine two of the three free parameters: 

A =y ,  - L / C ,  (7.3a) 

B = f , / C .  (7.3b) 

So that, with (7.3) substituted in (7.1), together with (7.2c), there follows: 

[eCh-- 11 (7.4) Y,+I =y .  + hf. ~-~ . 

Miranker (1981) [37] refers to (7.4) as a 'filtered Euler' approximation. We note that the free 
parameter C has yet to be determined. 

Three possible ways for determining C are of interest. 

l ' ( h ) = f , + l  --' C = h 2 1  l n ( f ,+ i / f , ) ,  

I ' ( -h )=f ,_~  ~ C=h2~_~ ln ( f , / f ,_~) ,  

I " ( 0 ) = f "  ~ C = f ~ / f , .  

(7.5a) 

(7.5b) 

(7.5c) 

With the substitution of (7.5a), (7.4) is an implicit, single-step integration algorithm. With 
either (7.5b) or (7.5c), (7.4) is an A-stable explicit integration algorithm. 

Note that the explicit stiffness measure (3.6) does not apply to (7.4) because it has an infinite 
stability radius for negative C. 

It is also interesting to note that, for the conventional assumption of a three parameter 
polynomial interpolant, the requirements (7.2) and (7.5) result in three familiar second-order 
integration algorithms: (7.5a) gives the implicit Adams-Moulton method or trapezoidal rule, 
(7.5b) and (7.5c) result in the explicit Adams-Bashforth and Taylor's methods, respectively. 

Our strategy is to take advantage of the filtering or damping factor in (7.4) only when the 
parameter C is negative, and to use conventional, low-order 'polynomial-fitted' methods when C 
is positive. To achieve this, we define a 'tunable trapezoid' approximation, 

y,+, =y .  + h[Uf,+l +(1 - U)f , ]  (7.6) 

where the component-specific ' tuning factor' U is a degree-of-implicitness factor, which is 
permitted to vary between one-half (trapezoidal rule) and unit (implicit Euler approximation). 

Equating (7.6) to (7.4) and solving for U, there results 

1 1 
v =  + c < o  (7.7) 

I - -  e c h  ' 

when C >/0, we use U = ½, and revert to the trapezoidal rule. 
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With (7.7) to define U in (7.6), together with either of the two explicitly determined constants 
C, (7.5b) or (7.5c), this yields an exponential-fitted implicit method, in which the degree-of-im- 
plicitness factor U is determined explicitly. 

Liniger and Willoughby give an estimate of the leading-term local truncation error for (7.6), 

L T E - h 2 f ' ( O ) ( ½ - U ) ,  U * ½ ,  O < O < h .  (7.8) 

1 h3f,,tO ~ When U = ½(C > 0), the trapezoidal rule leading term LTE estimate, LTE - ~ t ), ap- 
plies. 

A predictor-corrector version of the XFTR (exponential-fitted trapezoidal rule) is appropriate 
when the system is nonstiff: Equation (7.4) is used as a predictor, with C determined by (7.5b or 
7.5c); the corrector, (7.6) with U determined by (7.7), is iterated to convergence by some form of 
functional iteration: Jacobi, Gauss-Siedel or Jacobi-Newton. 

Accuracy is monitored by (7.8), similar to (3.1), with hac c given by 
1/2  _-( , ) 

h.co IIf'(o)(  - u ) l l  

and h,e r is determined by the rate of convergence of the particular convergence method chosen. 
Brandon [5] uses the full-step/half-step algorithm to find h.~,  but also (conservatively) 

assumes effective second-order accuracy to determine h,c c. When (h.~:/h~ter) is greater than 
unity, Newton iteration is used directly on (7.6) without a predictor to achieve convergence. 

With C determined by (7.5b), it is unnecessary to evaluate the Jacobian except for occasional 
updating if Newton iteration is used to converge (7.6). If (7.5c) is used to determine C, the 
Jacobian must be computed at the beginning of each timestep, as with implicit or semi-implicit 
RK methods. 

Brandon evaluated the Jacobian at every iteration of every step in order to improve the 
accuracy of U by recomputing (7.7) with the implicit approximation: 

/f~ f--~+l ,'f:+l } (7.|0) c =  ½tS. + 

However, the LTE estimate (7.8) is not significantly improved by the use of (7.10), so that this 
practice does not appear to be in general computationally efficient. 

Computer codes based on this class of methods were written by Brandon [5] called IMP and 
by Pratt [39] called CREK-1D. Both codes were developed for solving chemical kinetic problems. 

We first observe that all the problems of the test set by Enright et al. [16] are simple to 
compute the particle derivatives. The chemical kinetics problems can be written in general as: 

y '  = Ap ,  y(O) given, 
. r - l M  r . .  where A is an M × N matrix and ps = Kjlb=lY~ , j = 1 . . . .  N, while % >i 0 and kj  > 0 are rate 

constants. Comparing this equation to equations (1)-(3b) in Pratt's paper [39], we see that they 
are equivalent, matrix A containing terms dependent on the temperature. 

For problems of this kind, the computation of partial derivatives is quite simple, since 

Ops/O y, = rs.,( PJYi  ). 
The Rosenbrock and implicit XFTR methods do not require, therefore, much extra work due to 
the construction of the Jacobian matrix. 
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