
Journal of Computational and Applied Mathematics 11 (1984) 283-296 283
North-Holland

Recent advances in methods for numerical
solution of O.D.E. initial value problems

T.D. BUI
Dept. of Computer Science, Concordia University, Montreal, Quebec, Canada

A.K. O P P E N H E I M
Dept. of Mechanical Engineering, University of California, Berkeley, CA, U.S.A.

D.T. P R A T T
Dept. of Mechanical Engineering, University of Washington, Seattle, WA, U.S.A.

Received 9 December 1983
Revised 2 June 1984

Abstract." This is a review paper which describes recent advances in numerical methods and computer codes for solving
initial value problems of ordinary differential equations. Particular emphasis is placed upon stiff systems.

Keywords: Initial value problems in O.D.E., stiff systems, measuring stiffness, Runge-Kutta methods, multi-step
methods, exponential,fitted methods, computer codes for O.D.E.,

1. Introduction

In mathematical modeling of physical systems, very often we are required to solve an initial
value problem (IVP), consisting of a system of ordinary differential equations (ODE) which could
be written as:

y ' = f (x , y) , x ~ [a , b] , y . f ~ R u, (1.1)

y (a) given.

A typical program (code) steps through [a, b] and produces approximate solutions at certain
mesh points. Proceeding from y. (the approximate value to y(x .)) it computes Y.+I at x.+ ~ = x.
+ h.+~; h.+~ or simply h is the step-size.

If we define z . (x) as the solution of the following problem:

z ' = f (x , z .) , z . (x .) = y . . (1.2)

Then the program will actually approximate this local solution over the step-size h by y,, + v Thus
the error T.+~ = z . (x .+l)-y .+~ is the local truncation error. Almost all existing codes try to
control this local error so that at each step

-y.+,ll (1.3)
T. + 1 expressing the tolerance.

0377-0427/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publ isher Connector

https://core.ac.uk/display/81944195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

284 T.D. Bui et al. / O.D.E. initial oalue problems

However, it should be noted, the user is really interested in controlling the true or global error:
IlY(X,,+l) -Y,,+lll.

2. Stiff phenomena

It is customary to define stiff phenomena in terms of the eigenvalues of the Jacobian.
However, there are some difficulties with this approach both conceptually and practically. We
first define stiffness in terms of the eigenvalues of the Jacobian as follows:

Definition: The system (1.1) is stiff if:
(i) Real)~i < 0, i = 1, 2 N;

(ii) S =- maxilReal Xil/minilReal Xi] >> 1,
where S is the so-called stiffness ratio.

Comments on the definition of stiffness
(a) Condition (i) does not cover linear problems with variable coefficients and nonlinear

problems where one (or more) of the eigenvalues may cross into the region of the positive real
axis temporarily.

(b) Condition (ii) becomes ambiguous when the real part of an eigenvalue approaches zero. In
this case, the stiffness ratio may be large yet the problem is not stiff since it can be solved
effectively by methods with bounded region of stability (explicit methods).

(c) In practice, it is desirable to know if a system is stiff in certain intervals of integration, so
that a proper method for stiff equations could be used effectively. Recently, some interest has
been paid to developing type-insensitive codes in which implicit (for stiff) and explicit (for
non-stiff) methods are used alternatively depending on the stiffness of the problem [40,41].
Monitoring the eigenvalues of the Jacobian at every step of integration is very expensive.
However, an estimate of the Lipschitz constant proves to be a very practical way to determine the
stiffness of a problem.

(d) A proper way to describe stiffness is as follows: it occurs when stability rather than
accuracy dictates the step size. For example, when solving the constant coefficient linear system
y ' = Ay + g(x), accuracy may pose a severe restriction on the step size when g(x) is a nasty
function, then stability becomes less important and the problem is not stiff.

(e) In some cases, the system (1.1) can be partitioned into stiff and non-stiff sub-systems. This
partitioning process allows an efficient numerical method to the problem, since the stiff and
non-stiff components are now treated separately (see [17] for more details).

3. Measuring stiffness

In this section we describe a quantitative approach to determine stiffness of a given problem.
Unfortunately, the concept of stiffness is rather vague because in practice it involves a number of
phenomena. As mentioned earlier, classical measures of stiffness are useful but are known to
ignore several important factors. This section presents an approach to refine these measures [42].
We distinguish two kinds of methods for solving the initial value problems of ODE's: explicit
methods and implicit methods.

T.D. Bui et al. / O.D.E. initial value problems 285

Most methods of order p have local truncation error at x n of the form:

L T E (x .) = ~hP+ ly'P+ l'(x .) + O(hp+ 2). (3.1)

~" is a constant. The numerical problem also involves a tolerance ~ and a norm in which error is to
be measured. We demand that

IILTE(x,)[I ~< ~'. (3.2)

The largest step-size, which would satisfy the local accuracy test (3.2) is given by:

= (3 . 3)
I~'1" IlY tp+ ') (x .)11

Approximation (3.3) is not valid when y(P+l)(x) vanishes or h is not sufficiently small. In the
later case, the leading term in (3.1) does not dominate the remaining terms.

For explicit methods based on polynomial approximations the region of absolute stability is
bounded by a half-disc of radius r. Thus, for a stable integration with step-size h we must have:

Ihhl ~< r (3.4)

for all eigenvalues h of the Jacobian fv(x,,, y(x,,)) ~ f~", which have nonpositive realparts .
Let PL(f~",) = maxl~.l (with Re(X) < 0), then the largest stable step size, hst~b, is:

r
hstab = PL(f;)" (3.5)

A suitable measure of stiffness is then [42]:

hacc/hstab = ,Tl/p+lpL (f)n) l ly (p+l) (xn) l l - l /p+l(I~'l--l/P+ l r)" (3 .6)

Remarks. (a) Reducing I-, decreases stiffness.
(b) Lowering the order p, increases stiffness.
(c) Along the integration curve ~ and r remain unchanged, while #L(~,)lly(P+l}(x,)ll -l/p+1

computed along the solution curve gives a fair measure of stiffness.
(d) The above criterion is also applicable when we wish to compare stiffness of two problems if

both are integrated within the same tolerance using the same class of methods.
For implicit methods, (3.4) is no longer valid since they have no stability restrictions. The

implicit equation defining Y~+1 can be written as:

y = hyf(x,,+a, y) + rp,,, (3.7)

where y is a constant and '/', lumps together information at the previous steps. In order for the
simple iteration

ym+, = hvf(x .+, , ym) + ¢i". (3.8)

to work for all starting values y0 near a solution y*, it is required that:

hlYIp(f~,(x,,+~, y*)) < 1 (3.9)

or [42]:

hl'ylt < 1 (3.10)

286

where

hence

thus:

T.D. Bui et al. / O.D.E. initial value problems

L = l [L (x . , y (x .)) [[,

1
h+te+= ImlllL(x,, yCx,)) l I , (3.11)

() h+,e r = ~'/P+ll[fy(X., y (x .)) l I • Ily~p+'}(x.)ll - ' /p+' I~] -1/p+1 ivl- • (3.12)

4. Runge-Kutta methods

The Runge-Kut ta methods (explicit, semi-implicit, and fully implicit) are one-step methods.
An s-stage RK method is given by the following formula:

S

y.+, = y . + h . Y~ biki, (4.1a)
i=l (s)

k , = f x . + c ~ h . , y . + h . ~ _ . B o k j , i = 1 , 2 s. (4.1b)
j = l

An explicit RK method has s' = i - 1 and k, = f (x . , y.); a semi-implicit method has s' = i;
and a fully implicit method has s ' = s. This means that the matrix B~j has a strictly lower
triangular form for explicit RK methods, a lower triangular form for semi-implicit, and a full
matrix for fully implicit cases.

4.1. Schemes for local error estimates

The RK method is said to be of order p + 1 if the local truncation error Y,+I - z (x ,+ ,) is
O(hp+2~ where z (x) is the local solution to the system:

z ' = f (x , z) , z (x ,) = y , . (4.2)

An imbedded procedure uses a pair of formulae, one of order p + 1 and the other order p. The
two formulae have the same set of k, 's so that the solution ~, +, of order p is calculated with very
little extra work:

$*

.9.+, = y . + h. Y'~ b~k i. (4.3)
i ~ l

Note that s* may be different from s - - t he number of stages for the formula of order p + 1. The
estimated error is

est -IIY,+, -.9,+,11. (4.4)

• his scheme has the advantage of a built-in error estimating capability.
Another approach, which was very popular in the past, and recently has received further

attention, is the step-halving procedure. This involves solving the differential equation using step
size h. to obtain y.+~, then solving it again with twice the step size ½h., to obtain y* .+p The

T.D. Bui et al. / O.D.E. initial value problems 287

difference between y*÷, and Yn+, gives an estimate of the local truncation error. It is a general
belief that the step-halving procedure requires more work than the imbedded approach. However,
it has been shown recently that this is not always true (see [33] for details regarding single-step
methods).

4.2. Explicit R u n g e - K u t t a methods

For non-stiff or mildly stiff problems, the explicit RK methods have been very useful. This is
because they require very little overhead. One of the most popular methods in this class is
Fehlberg's imbedded pair of fourth and fifth-order formulae which requires six stages per step. A
good implementation by Shampine and Watts [43,44] called RKF45 was published in 1977.
Recently, this code was revised to include some additional capabilities and imProvements. This
new code called DERKF forms part of a new package called DEPAC developed at Sandia
National Laboratories by a group led by Shampine and Watts [45].

The second code of this class is DVERK (available in the IMSL Library) [30]. This code was
written by Hull, Enright, and Jackson [29] based on Verner's fifth- and sixth-order imbedded pair
of formulae which require eight stages per step.

Runge-Kutta codes with variable orders seem to be useful. A complete set of imbedded RK
formulae with order 1 through 6 requiring 9 stages was developed by Bettis of the University of
Texas [3]. Recently, Verner [49] developed complete sets of formulae with orders 1 through 5,
requiring six stages, orders 1 through 6 requiring eight stages, orders 1 through 7 requiring ten
stages, and orders 1 through 9 requiring thirteen stages. Verner's development seems to be
optimal as far as the number of stages per step is concerned. However, no computer code was
developed based on these formulae.

4.3. Fully implicit R u n g e - K u t t a methods

For stiff and very stiff problems, it is obvious that explicit RK methods are inefficient as a
consequence of their bounded regions of stability. It is well known that fully implicit RK
methods could be developed for high orders of accuracy and possessing strong stability proper-
ties. However, a straightforward implementation of these implicit methods involves solving large
systems of nonlinear algebraic equations. For a system of N differential equations, the modified
Newton method for solving (4.1b), in the implicit case, is as follows:

Let

rb i = k, - y , + h , f l i jk j , (4.5)

here for simplicity, we assume an autonomous form. The modified Newton method requires
solving repeatedly the linear system:

G . 6 k = - ~ (4.6)

where G = I - h , (A ® J) - - t h e so-called iteration matrix.
I = I, ® I u with I, = s x s unit matrix.

I u = N x N unit matrix.
A = matrix of fl, j (dimension s).

288 T.D. Bui et al. / U.D.E. initial value problems

J = Jacobian matrix evaluated at the previous step.
k=(k,,...,k,)T.
a=(@ ,,..., !Ds)T.

The solution of the linear system (6.6) by the LU decomposition requires s3N3 + s2N2 operations
(multiplications and divisions). This is excessively large. Recently, some ingenious approaches
have been devised to overcome this drawback [4,7]. The main idea of these schemes is to decouple
the system of sN nonlinear algebraic equations to s systems of N equations each. To accomplish
this, we define a similarity transformation T so that T-‘AT is a lower triangular matrix.
Therefore, the transformed system is clearly uncoupled into s systems of N equations. Further
computations could be saved if all the diagonal elements of the lower triangular matrix are the
same, then the same iteration matrix G occurs for each of the s systems. Butcher [7] was the first
to notice this. He defined a similarity transformation T based on the Laguerre polynomials so
that the transformed system has a bi-diagonal structure having constant h for each entry in the
main diagonal and -h for each element in the subdiagonal. A code, STRIDE, developed by
Burrage, Butcher and Chipman in 1979 [9] is based on these ideas. The code contains a set of
s-stage formulae of order s with s varies from 1 to 15. Some formulae are not A-stable; however,
they are all damped at infinitely and the stability regions are quite acceptable. The code was
constructed to be of collocation type and output values are produced by interpolating the
underlying collocation polynomials. This code is believed to be suitable for stiff problems.

Another idea, which seems to be even more efficient than Bucher’s transformation, is to
transform the system into Hessenberg matrix. Let T be a similarity transformation so that

x, a** 0
A-= T-‘AT=

1 J

. . . (4.7)

0 As
. . .

where Xi can be complex and distinct. Therefore G = Z - h(A @ J) is a block diagonal matrix
with the ith block being (I - h,XiJ). If LU decomposition is used, we need s times of
decomposition for each iterative step. The idea is then to form a Hessenberg matrix in the
following way:

Let (I - h,XiJ) = h,X,((l/h,X,)Z - J) = pil(piZ - J) where pi = l/h,Xi, then (piZ -J) can
be factorized into Hessenberg form:

(J-p,Z)=LHL-‘. (4.8)

This is done only once since

(J-piZ)=L[H-(pi-pI)Z]L-‘.

Therefore we just factorize (J - pII), then for other blocks we only need to calculate H - (pi -
/+)I, and the LU decomposition of the Hessenberg matrix H will be done only once. This
approach is much more efficient than the decomposition of s blocks into LU forms. This
approach was first suggested by Enright [15] and later advocated by Varah [48] for possible
effective implementation of implicit RK methods based on Gauss quadrature formulae
(Gauss-Legendre, Gauss-Radau, Gauss-Lobatto). The advantage of this scheme is that methods
based on Gauss quadrature are of order 2s or 2s + 1 while Butcher’s method discussed before is
only of order s or s + 1. The disadvantage is due to the fact that complex arithmetic is involved.

T.D. Bui et al. / O.D.E. initial value problems 289

4.4. Semi-implicit Runge-Kutta methods

In this class, the drawback of having to solve sN nonlinear equations is avoided by imposing
that the matrix A be lower triangular form. This automatically results in s systems of N nonlinear
equations. Further, by choosing ft, = fl for all i, the same iteration matrix is obtained for each
system. This is called diagonally implicit RK methods. A code called DIRK based on this class
for s = 1, 2, and 3 was developed by Alexander [1]. This code uses the step-halving procedure for
error controls. The underlying formulae for DIRK are due to Crouzeix [12] and Alexander [1].
They are all A- or L-stable.

Norsett [38] has derived an L-stable, second-order formula with imbedded error estimate
requiring three stages. Houbak and Thomsen [28] implemented this method into a code called
SPARKS, which is specifically designed for large systems having sparse Jacobians.

4.5. Rosenbrock methods

an autonomous form, it is given by

i - 1

o r

The Rosenbrock method could be viewed as one iteration of the semi-implicit RK method. In

k , = f (y~ + h~ ~.,j~l fl~jkj) + flh~J~k~ (4.9a)

(I - flh~J,)k, = f y~ + h~ f l i j k j , for i = 1 s. (4.9b)

This is a linear system of equations. However, there are s systems of N linear equations. It is
important to note that in the implicit (or semi-implicit) case, the Jacobians are not required to be
exact since they are only needed for the convergence of the modified Newton iteration. However,
in the Rosenbrock methods, the Jacobians appear in the order conditions. Therefore, approxi-
mate Jacobians (via finite differences) will directly affect the order of Rosenbrock methods.

There are some computer codes based on this class. Villadsen and Michelsen [50] wrote a code
called STIFF 3, which implements a 3-stage third-order L-stable method. Bui [6] has written a
program called LSTIFF which implements s-stage formulae of order s for s = 2, 3, 4; they are all
L-stable. Both codes use the step-halving procedure for error estimates and step-size control.

The original Rosenbrock procedure has been modified by Warner, called ROW-methods, by
adding an extra term. This extra term was added to extend the stability properties of the
Rosenbrock methods. ROW-methods are given by:

(I - flh~J~)k,= f y~ + h n ~ fl, jkj + h~J~ ~., "tijkj, for/--- 1 s. (4.10)
j=l j=l

Codes based on ROW-methods have been developed by Kaps and Rentrop [32] called GRKA
and by Gottwald and Warner [20] called ROW4A. They both contain a pair of imbedded 3rd-
and 4th-order formulae (for error estimate); however, only the third order formula is damped at
infinity. Actually, ROW4A uses the same pair of formulae in GRK4A but a 'back-step' strategy
was included. This back-step strategy is to avoid stepping over sharp peaks or quasi-discontinui-

290 T.D. Bui et al. / O.D.E. initial value problems

ties. Recently, Kaps and Wanner [31,34] have been active in developing high order ROW-meth-
ods. They have also developed order conditions of ROW-methods for non-autonomous systems.
This is, however, not a trivial problem since the number of order conditions increases drastically
for non-autonomous ROW-methods. To facilitate the development, they have used Hairer's
concepts of monotonically labelled trees and partitioned trees (L- and P-trees), which are useful
for developing order conditions in many classes of methods (see [21,22] for details).

5. Multi-step methods

The general linear multistep method may be written as

k k

E = h. E Y.-,+1) (5.1)
i = 0 i = 0

: + # L where ak0 4:0 and akk
The two best known subclasses are: the Adams class with ak0 = - a k l = 1, aki = 0 for all i > 1

and the backward differentiation formula with ilk0 ~ 0 and flki = 0 for all i > 0. One disadvantage
with variable order codes based on multistep methods is that they always start the integration
with low order formulae. This makes restarting (over discontinuities) more expensive.

5.1. Codes based on Adams method

The Adams-Bashforth formula of order k can be expressed as

k

y.+, =y. + h. (5.2)
i ~ l

This is an explicit formula which is generally used as a predictor for the implicit
Adams-Moul ton equation of order k + 1:

Yn+l =Yn + hn ~ B;fn--i+, + B~'Ofn+, • (5.3)
i=l

Current Adams codes would perform as follows: predict Yf+l by (5.2), evaluate f n + l -
f (x ,+ l , y f+ l) . Then correct the value Yn+l by (5.3) and follows with another evaluation of
f (x , ÷ 1, Y, +1)- This scheme is referred to as PECE (Predict, Evaluate, Correct, Evaluate) method,
and it is intended for nonstiff problems. Shampine and Gordon [43] have written a variable order
code with formulae up to order 12 based on this approach. This code was published in their book
[43]. A new version of the code called DEABM was written as part of DEPAC developed at
Sandia Laboratories mentioned earlier.

Gear's well-known code, DIFSUB [19], and its successors, GEAR [23], EPISODE [27], and
LSODE [25], written by Hindmarsh, contain different implementations of the Adams formulae
which are available in the nonstiff option of the code selected by the user. The stiff option of
these codes will be discussed below. The code DGEAR in the IMSL library [30] is based on the
GEAR code.

T.D. Bui et al. / O.D.E. initial value problems 291

5.2. Codes based on backward differentiation formulae

As mentioned earlier, well-known codes, such as EPISODE, contain two families of formulae,
one for non-stiff and the other for stiff systems. The formulae are Adams methods and the stiff
formulae are given by

k

Y,+a = E ak,Y,-,+l + h,flkof,+l" (5.4)
i=1

This equation can be solved easily for f, +1 in terms of the previous and current values of y; thus,
it is called backward differentiation formula (BDF). For k = 1, 2 the formulae are L-stable, for
3 ~< k ~< 6, the formulae are stiffly stable of order k. Therefore, the main drawback of the BDF's
is when they are used to solve problems having complex eigenvalues lying near the imaginary axis
(for example, problem B5 in the stiff test sets proposed by Enright et al. [16]). The unstable
regions extended into the left-half plane get substantially larger for higher k so that most codes
implementing BDF restrict k ~< 6.

The codes DIFSUB, GEAR, LSODE, and DGEAR (in IMSL) are all similar in the stiff
option of the packages. In these codes, the stepsize h, is fixed for a prescribed number of steps.
The values of Yi at points which are not former mesh points are obtained by interpolating the
previously calculated values of yi. A modified version of LSODE, called DEBDF, was developed
as a member of the Sandia DEPAC package [45].

EPISODE is different from other packages, in that the step-size h, is allowed to change at each
step. This feature makes EPISODE much more effective for problems with sharp fronts (for
example, problems involving chemical kinetics systems with diurnally varying reaction rates,
which vary like a square wave). GEAR, DIFSUB are completely unreliable for such problems.
The fixed stepsize-interpolation strategy does have the advantage that the a 's and/3 's for each
family can be computed and stored in tables once and for all, since they do not vary with n.
Whereas, in EPISODE, at each step, the a 's and/3 's must be calculated for the formula in use.
Furthermore, in EPISODE the iteration matrix involved in the modified Newton scheme for
solving the BDF's must be frequently computed and decomposed because the scalar coefficient
of the Jacobian has become out of date; whereas, other packages would not require this since the
coefficient is varying less frequently. In summary, the variable step strategy of EPISODE permits
it to solve certain class of problems effectively. However, the additional overhead involved in
computing the coefficients a 's , /3 's and in reevaluating the iteration matrix can cause EPISODE
to perform less efficiently than GEAR (DIFSUB, LSODE) for smoothly decaying or linear
systems.

Some special codes, EPISODEB, GEARB [241 and an option of the code DEBDF are
developed for systems with the Jacobian matrix having a banded structure. These systems appear
for example in the method of lines and finite differences to solve PDE's. These packages take
advantage of the structure of the Jacobian and reduce both time and space complexities of the
modified Newton method for solving the BDF's, therefore EPISODEB could solve a larger
banded system than EPISODE.

For large stiff systems of ODE's having a sparse Jacobian structure the code GEARS written
by Sherman and Hindmarsh [46] uses the Yale sparse matrix package. The code GEARZ written
by Carver [10] uses the Curtis-Reid sparse matrix routines and finally the code FACSIMILE
developed by Curtis [13] uses Duffs MA28 sparse matrix routines.

292 T.D. Bui et a L / O.D.E. initial value problems

Recently Hindmarsh [26] put together a collection of codes called ODEPACK. One of the
most recent additions to ODEPACK is code LSODA. This code automatically determines
whether or not a problem is stiff and switches to the most appropriate set of formulae.

6. Other multi-step methods

The cyclic composite multistep method described by
i i

~'~ aijyms÷j = h ~ fl,jf,,s÷j for i = 1 s,
j ~ i - k j = l

was studied by Tendler, Bickart, and Picel [47]. These formulae define a block of s forward values
of y: Y,,,,+1 Yo,+l)s with each application of the procedure. The matrix fl~j has a lower
triangular form, thus we have to solve s systems of N nonlinear equations instead of solving sN
nonlinear equations. A code named STINT was written by the authors which uses stiffly stable
formulae of orders 1 to 7 with better stability properties than BDF's.

The multistep, second derivative methods were investigated by Enright [14]. Formulae of
orders 2 to 7 based on the form:

k

y,+, =y, + h ~ ilk,f,-,+, + h2VkoY~'+l,
i=O

were developed and implemented in a code SDBASIC. These formulae are all stiffly stable with
better stability properties than BDF codes.

Cash [11] uses an extended BDF of the type
k

y. . , = E +h(&oL÷, +/3k,L+2).
i--I

His program includes the conventional BDF's as a predictor and the above extended BDF as the
corrector. He was able to develop L-stable schemes of orders up to 4 and A(a)-stable schemes of
orders up to 9. Recently, he extended the above formula to include second derivatives. He was
then able to obtain L-stable formulae up to order 6 and A(a)-stable for formulae order 7 to 9.

The major drawback of multistep methods in general is that they are more expensive to get
started. All of the codes mentioned in this section start with a low order method and a very small
step-size, then gradually increase the order and the step-size as the integration progresses.

7. Exponential-fitted methods

Liniger and Willoughby [36] coined the term 'exponential-fitted' to describe a class of
algorithms designed to exactly satisfy the stability test equation y ' = Ay for systems having one or
more large negative eigenvalues--that is, for stiff systems of ODE's. The derivation presented
here is a considerably modified version of Liniger and Willoughby's concepts, drawing on
subsequent work by Lambert [35], by Brandon [2,5] and by Pratt [39].

Following Lambert, we derive some simple exponential-fitted algorithms for curve-fitting by
assuming an interpolating function and determining the free parameters by the method of

T.D. Bui et al. / O.D.E. initial value problems 2 9 3

undetermined coefficients.
Let us assume a three-parameter exponential interpolant.

1 (x) = A + Be ~ (7.1)

which interpolates the solution of (1.1) over the interval (x,, x, + h) as follows:

I (O) = y , = y (x ,) , (7.2a)

I'(O) = f~ = (d y / d x)x,,, (7.2b)

I(h) = y,+ , = y(x . + h). (7.2c)

The first two requirements determine two of the three free parameters:

A =y , - L / C , (7.3a)

B = f , / C . (7.3b)

So that, with (7.3) substituted in (7.1), together with (7.2c), there follows:

[eCh-- 11 (7.4) Y,+I =y . + hf. ~-~ .

Miranker (1981) [37] refers to (7.4) as a 'filtered Euler' approximation. We note that the free
parameter C has yet to be determined.

Three possible ways for determining C are of interest.

l ' (h) = f , + l --' C = h 2 1 l n (f ,+ i / f ,) ,

I ' (-h)=f ,_~ ~ C=h2~_~ ln (f , / f ,_~) ,

I " (0) = f " ~ C = f ~ / f , .

(7.5a)

(7.5b)

(7.5c)

With the substitution of (7.5a), (7.4) is an implicit, single-step integration algorithm. With
either (7.5b) or (7.5c), (7.4) is an A-stable explicit integration algorithm.

Note that the explicit stiffness measure (3.6) does not apply to (7.4) because it has an infinite
stability radius for negative C.

It is also interesting to note that, for the conventional assumption of a three parameter
polynomial interpolant, the requirements (7.2) and (7.5) result in three familiar second-order
integration algorithms: (7.5a) gives the implicit Adams-Moulton method or trapezoidal rule,
(7.5b) and (7.5c) result in the explicit Adams-Bashforth and Taylor's methods, respectively.

Our strategy is to take advantage of the filtering or damping factor in (7.4) only when the
parameter C is negative, and to use conventional, low-order 'polynomial-fitted' methods when C
is positive. To achieve this, we define a 'tunable trapezoid' approximation,

y,+, =y . + h[Uf,+l +(1 - U)f ,] (7.6)

where the component-specific ' tuning factor' U is a degree-of-implicitness factor, which is
permitted to vary between one-half (trapezoidal rule) and unit (implicit Euler approximation).

Equating (7.6) to (7.4) and solving for U, there results

1 1
v = + c < o (7.7)

I - - e c h '

when C >/0, we use U = ½, and revert to the trapezoidal rule.

2 9 4 T.D. But et aL / O . D . E . initial value problems

With (7.7) to define U in (7.6), together with either of the two explicitly determined constants
C, (7.5b) or (7.5c), this yields an exponential-fitted implicit method, in which the degree-of-im-
plicitness factor U is determined explicitly.

Liniger and Willoughby give an estimate of the leading-term local truncation error for (7.6),

L T E - h 2 f ' (O) (½ - U) , U * ½ , O < O < h . (7.8)

1 h3f,,tO ~ When U = ½(C > 0), the trapezoidal rule leading term LTE estimate, LTE - ~ t), ap-
plies.

A predictor-corrector version of the XFTR (exponential-fitted trapezoidal rule) is appropriate
when the system is nonstiff: Equation (7.4) is used as a predictor, with C determined by (7.5b or
7.5c); the corrector, (7.6) with U determined by (7.7), is iterated to convergence by some form of
functional iteration: Jacobi, Gauss-Siedel or Jacobi-Newton.

Accuracy is monitored by (7.8), similar to (3.1), with hac c given by
1/2 _-(,)

h.co IIf'(o)(- u) l l

and h,e r is determined by the rate of convergence of the particular convergence method chosen.
Brandon [5] uses the full-step/half-step algorithm to find h.~, but also (conservatively)

assumes effective second-order accuracy to determine h,c c. When (h.~:/h~ter) is greater than
unity, Newton iteration is used directly on (7.6) without a predictor to achieve convergence.

With C determined by (7.5b), it is unnecessary to evaluate the Jacobian except for occasional
updating if Newton iteration is used to converge (7.6). If (7.5c) is used to determine C, the
Jacobian must be computed at the beginning of each timestep, as with implicit or semi-implicit
RK methods.

Brandon evaluated the Jacobian at every iteration of every step in order to improve the
accuracy of U by recomputing (7.7) with the implicit approximation:

/f~ f--~+l ,'f:+l } (7.|0) c = ½tS. +

However, the LTE estimate (7.8) is not significantly improved by the use of (7.10), so that this
practice does not appear to be in general computationally efficient.

Computer codes based on this class of methods were written by Brandon [5] called IMP and
by Pratt [39] called CREK-1D. Both codes were developed for solving chemical kinetic problems.

We first observe that all the problems of the test set by Enright et al. [16] are simple to
compute the particle derivatives. The chemical kinetics problems can be written in general as:

y ' = Ap , y(O) given,
. r - l M r . . where A is an M × N matrix and ps = Kjlb=lY~ , j = 1 N, while % >i 0 and kj > 0 are rate

constants. Comparing this equation to equations (1)-(3b) in Pratt's paper [39], we see that they
are equivalent, matrix A containing terms dependent on the temperature.

For problems of this kind, the computation of partial derivatives is quite simple, since

Ops/O y, = rs.,(PJYi).
The Rosenbrock and implicit XFTR methods do not require, therefore, much extra work due to
the construction of the Jacobian matrix.

T.D. Bui et al. / O.D.E. initial value problems 295

Acknowledgments.

The work of T.D. Bui was supported by the Natural Sciences and Engineering Research
Council of Canada under Grant No. A-9265, and the Programme de Formation de Chercheurs et
d'Action Concertre (FCAC) of Qurbec under Grant No. EQ-1438. The work of A.K. Oppenheim
was supported by the Office of Energy Research, Basic Energy Science, Engineering, Mathe-
matics, and Geosciences Division of the U.S. Department of Energy under Contract No.
DE-AC03-76SF00098, and by the National Science Foundation under Grant CPE-8115163. The
work of D.T. Pratt was supported by the NASA-Lewis Research Center under Grant No.
NAG3-227.

References

[1] R. Alexander, Diagonally implicit Runge-Kutta methods for stiff ODEs, SIAM, J. Numer. Anal. 6 (1977)
1006-1021.

[2] P.D. Babcock, L.F. Stutzman and D.M. Brandon, Improvements in a single-step integration algorithm, Simulation
33 (1979) 1-10.

[3] D.G. Bettis, Efficient embedded Runge-Kutta methods, Numerical Treatment of Differential Equations, Lecture
Notes in Mathematics 631 (Springer, New York, 1978) 9-18.

[4] T.A. Bickart, An efficient solution process for implicit Runge-Kutta methods, S l A M J. Numer. Anal 6 (1977)
1022-1027.

[5] D.M. Brandon, A new single-step implicit integration algorithm with A-stability and improved accuracy,
Simulation 23 (1974) 17-29.

[6] T.D. Bui and T.R. Bui, Numerical methods for extremely stiff systems of ordinary differential equations, Appl.
Math. Modeling 3 (1979) 355-358.

[7] J.C. Butcher, On the implementation of implicit Runge-Kutta methods, BIT 16 (1976) 237-240.
[8] J.C. Butcher, A transformed implicit Runge-Kutta method, Math. Comput, 26 (1979) 731-738.
[9] J.C. Butcher, K. Burrage and F.H. Chipman, STRIDE: Stable Runge-Kutta integrator for differential equations,

Report 150, Dept. of Mathematics, Univ. of Auckland, Auckland New Zealand, 1979.
[10] M.B. Carver, In search of a robust integration algorithm for general library use: some tests, results and

recommendations, working papers for the 1979 SIGNUM meeting on numerical ODEs, Report 963, Dept. of
Computer Science, Univ. of Illinois, Illinois, 1979.

[11] J.R. Cash, The integration of stiff initial value problems in ODEs using modified extended backward differentia-
tion formulae, Dept. of Math., Imperial College, London, England, 1983.

[12] M. Crouzeix, Sur la B-stabilit6 des m~thodes de Runge-Kutta, Numer. Math. 32 (1979) 75-82.
[13] A.R. Curtis, The FACSIMILE numerical integrator for stiff initial value problems, AERE-R.9352, A.E.R.E.

Harwell, Oxfordshire, 1978.
[14] W.H. Enright, Second derivative multistep methods for stiff ordinary differential equations, S l A M J. Numer.

Anal. 2 (1974) 321-331.
[15] W.H. Enright, Improving the efficiency of matrix operations in the numerical solution of stiff ordinary differential

equations, ACM Trans. Math. Software 4 (1978) 127-136.
[16] W.H. Enright, T.E. Hull and B. Lindberg, Comparing numerical methods for stiff systems of ODEs, BIT 15

(1975) 10-48.
[17] W.H. Enright and M.S. Kamel, Automatic partitioning of stiff systems and exploiting the resulting structure,

ACM Trans. Math. Software 5 (1979) 374-385.
[18] G.E. Forsythe, M.A. Malcolm and C.B. Moler, Computer Methods for Mathematical Computations (Prentice-Hall,

Englewood Cliffs, N J, 1977).
[19] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs,

NJ, 1971).
[20] B.A. Gottwald and G. Wanner, A reliable Rosenbrock integrator for stiff differential equations, Computing 26

(1981) 355-362.

296 T.D. Bui et al. / O.D.E. initial value problems

[21] E. Hairer and G. Wanner, Multistep-multistage-multiderivative methods for ordinary differential equations.
Computing 11 (1973) 287-303.

[22] E. Hairer and G. Wanner, A theory for Nystr6m methods, Numer. Math. 25 (1976) 383-400.
[23] A.C. Hindmarsh, GEAR: Ordinary differential equation system solver, Report UCID-30001, Lawrence Livermore

Laboratory, Livermore, California, 1974.
[24] A.C. Hindmarsh, GEARB: Solution of ordinary differential equations having banded Jacobian, Report UCID-

30059, Lawrence Livermore Laboratory, Livermore, California, 1976.
[25] A.C. Hindmarsh, LSODE and LSODI, Two new initial value ordinary differential equation solvers..4CM-SIG-

NUM Newsletter 15 (1980) 10-11.
[26] A.C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers, in: R.S. Stepleman, Ed., Numerical

Methods for Scientific Computation (1983) to appear.
[27] A.C. Hindmarsh and G.D. Byrne, EPISODE: An effective package for the integration of systems of ordinary

differential equations, Report UCID-30112, Lawrence Livermore Laboratory, Livermore, California, 1977.
[28] N. Houbak and P.G. Thomsen, SPARKS: A FORTRAN subroutine for the solution of large systems of stiff

ODEs with sparse Jacobians, Report NI-79-02, Institute for Numerical Analysis, Tech. Univ. of Denmark,
Lungby, Denmark.

[29] T.E. Hull, W.H. Enright and K.R. Jackson, User's guide to DVERK--a subroutine for solving non-stiff ODEs.
Report 100, Dept. of Computer Science, Univ. of Toronto, Toronto, Canada, 1976.

[30] International Mathematical and Statistical Library, Houston, Texas.
[31] P. Kaps, Rosenbrock type methods, Numerische Verfahren zum L6sen von steifen Anfangswertproblemen,

Mathematisches Forschungsinstitut Oberwoifach, 1981.
[32] P. Kaps and P. Rentrop, Generalized Runge-Kutta methods of order four with step size control for stiff ordinary

differential equations, Numer. Math. 33 (1979) 55-68.
[33] P. Kaps, S. Pooh and T.D. Bui, Rosenbrock methods for stiff ODEs--a comparison of Richardson extrapolation

and embedding technique, Computing (1984) to appear.
[34] P. Kaps and G. Wanner, A study of Rosenbrock-type methods of high order, Numer. Math. 38 (1982) 279-298.
[35] J.D. Lambert, Computational Methods in Ordinary Differential Equations (Wiley, London, England, 1973).
[36] W. Liniger and R.A. Willoughby, Efficient Integration methods for stiff systems of ordinary differential

equations, SIAM J. Numer. Anal. 7 (1970) 47-66.
[37] W.L. Miranker, Numerical Methods for Stiff Equations and Singular Perturbation Problems (Reidel, Boston, MA,

1981).
[38] S.P. Norsett, Semi-explicit Runger-Kutta methods, Mathematics and Computation Report 6, Univ. of Trondheim,

Trondheim, Norway, 1974.
[39] D.T. Pratt, CREK-1D: A computer code for transient, gas-phase combustion kinetics, Dept. of Mech. Eng., Univ.

of Washington, WA, 1983.
[40] L.F. Shampine, Type-insensitive ODE codes based on implicit A-stable formulas, Math. Comput. 36 (1981)

499-510.
[41] L.F. Shampine, Type-insensitive codes based on implicit A(a)-stable formulas, Math. Comput. 39 (1982)

109-123.
[42] L.F. Shampine, Measuring stiffness, Sandia National Lab. report SAND 83-119, 1983.
[43] L.F. Shampine and M.K. Gordon, Computer Solution of Ordinary Differential Equations: The Initial Value Problem

(Freeman, San Francisco, CA, 1975).
[44] L.F. Shampine and H.A. Watts, The art of writing a Runge-Kutta code, III. Appl. Math. and Comput. 5 (1979)

93-121.
[45] L.F. Shampine and H.A. Watts, DEPAC--Design of a user oriented package of ODE solvers, Report SAND

79-2374, Sandia National Laboratories, Albuquerque, New Mexico, 1980.
[46] A.H. Sherman and A.C. Hindmarsh, GEARS: A package for the solution of sparse stiff ordinary differential

equations, in: A.M. Erisman et al., eds., Electrical Power Problems: The Mathematical Challenger (SIAM,
Philadelphia, PA, 1980).

[47] J.M. Tender, T.A. Bickart and Z. Piel, A stiffly stable integration process using cyclic composite methods, ACM
Trans. Math. Software 4 (1978) 339-368.

[48] J.M. Varah, On the efficient implementation of implicit Runge-Kutta methods, Math. Comput. 33 (1979)
557-561.

[49] J.H. Verner, Families of imbedded Runge-Kutta methods, SLAM, J. Numer. Anal. 16 (1979) 857-875.
[50] J. Villadsen and M.L. Michelsen, Solution of Differential Equation Models by Polynomial Approximation (Prentice-

Hall, Englewood Cliffs, NJ, 1978).

