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I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to 
the anomalous magnetic moment of the muon aHVP

μ in lattice QCD. It is based on properties of the Mellin 
transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. 
I show how aHVP

μ is very well approximated by a few moments associated to this Mellin transform and 
how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared 
with the corresponding determinations using experimental data.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. The hadronic vacuum polarization (HVP) contribution to the 
anomalous magnetic moment of the muon, when expressed in 
terms of the HVP self-energy Π(Q 2) in the Euclidean (Q 2 ≥ 0), 
is given by the Feynman parametric integral [1,2]:

aHVP
μ = α

π

1∫
0

dx(1 − x)

[
−Π

(
Q 2 ≡ x2

1 − x
m2

μ

)]
. (1)

The on-shell renormalized function Π(Q 2) obeys the dispersion 
relation

Π
(

Q 2) =
∞∫

4m2
π

dt

t

−Q 2

t + Q 2

1

π
Im Π(t), (2)

and the hadronic spectral function 1
π ImΠ(t) is directly accessible 

to experiment via the one photon e+e− annihilation cross section 
into hadrons (me → 0):

σ(t) = 4π2α

t

1

π
Im Π(t). (3)

Inserting Eqs. (2) and (3) in the r.h.s. of Eq. (1) reproduces the 
standard representation used in all the phenomenological evalua-
tions of aHVP

μ .1

In lattice QCD evaluations of aHVP
μ [4], it seems convenient to 

trade the Feynman x-parameter in Eq. (1) by the Euclidean Q 2

momenta with the results (ω = Q 2

m2
μ
):

1 For a recent review article on the muon g − 2 experiments and theoretical eval-
uations see e.g. Ref. [3].
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aHVP
μ = α

π

∞∫
0

dω

ω

√
ω

4 + ω

(√
4 + ω − √

ω√
4 + ω + √

ω

)2[−Π
(
ωm2

μ

)]
, (4)

= α

π

∞∫
0

dω
1

4

[
(2 + ω)(2 + ω − √

ω
√

4 + ω) − 2
]

×
(

− d

dω
Π

(
ωm2

μ

))
. (5)

Lattice QCD determinations of Π(ωm2
μ) and/or d

dωΠ(ωm2
μ) at a 

sufficiently high enough number of values of ω could, in principle, 
provide an evaluation of these integrals with an accuracy perhaps 
comparable or eventually even better than the phenomenological 
determinations which use experimental data. At present, however, 
this is certainly not the case and so far the lattice determinations 
have to be complemented either by functional forms inspired by 
models or by other methods like Padé approximants [5–7], which 
extrapolate the behaviour of Π(ωm2

μ) and/or d
dω [Π(ωm2

μ)] to the 
regions not covered by the lattice data, in particular the region at 
low ω which is heavily weighted by the kernels in Eqs. (4) and/or 
(5) and, therefore, introduces large uncertainties.

2. I suggest making a new type of evaluation of aHVP
μ which I 

call the moment analysis. It is based on the observation that the 
function d

dωΠ(ωm2
μ) has the Mellin–Barnes integral representa-

tion2

2 For an application of this technique to the evaluation of QED contributions to 
gμ − 2 see Ref. [8].
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− d

dω
Π

(
ωm2

μ

) =
∞∫

4m2
π

dt

t

m2
μ

t

1

2π i

c+i∞∫
c−i∞

ds

×
(

ωm2
μ

t

)−s

�(s)�(2 − s)
1

π
Im Π(t), (6)

which follows from the dispersion relation in Eq. (2) and the iden-
tity:

1

(1 + A)2
= 1

2π i

c+i∞∫
c−i∞

ds(A)−s�(s)�(2 − s). (7)

Inserting this representation in the r.h.s. of Eq. (5) and performing 
the integration over ω results in a useful Mellin–Barnes represen-
tation for aHVP

μ :

aHVP
μ =

(
α

π

)
1

2π i

c+i∞∫
c−i∞

dsF(s)M(s), (8)

where F(s) is a known function:

F(s) = −�(3 − 2s)�(−3 + s)�(1 + s), (9)

and M(s) the Mellin transform of the hadronic spectral function

M(s) =
∞∫

4m2
π

dt

t

(
m2

μ

t

)1−s 1

π
Im Π(t). (10)

The Mellin transform in QCD is finite for s < 1 and singular at 
s = 1 with a residue fixed by perturbative QCD (pQCD). At leading 
order, with three light active quarks u, d and s, and with neglect 
of αs corrections (which in any case can be included if necessary):

MpQCD(s) ∼

s→1

(
α

π

)(
2

3

)
Nc

1

3

1

1 − s
. (11)

The reason why the representation in Eq. (8) is useful is that 

one can easily extract from it the asymptotic expansion for m2
μ

t < 1. 
This expansion is governed by the residues of the singularities of 
the integrand at the left of the fundamental strip (defined in our 
case by Re c ∈ ]0, +1[ [9]). The singularities in question are a single 
leading pole at s = 0 and single and double poles at s = −n with 
n = 1, 2, . . . . The residues of these singularities are given by the 
Mellin transform in Eq. (10) at the values

M(−n) =
∞∫

4m2
π

dt

t

(
m2

μ

t

)1+n 1

π
Im Π(t), n = 0,1,2, . . . , (12)

and, because of the double poles of F(s) at s = −1, −2, . . . , also 
by the first derivative of the Mellin transform

M̃(s) = − d

ds
M(s) =

∞∫
4m2

π

dt

t

(
m2

μ

t

)1−s

log
m2

μ

t

1

π
Im Π(t) (13)

at the values:

M̃(−n) =
∞∫

4m2
π

dt

t

(
m2

μ

t

)1+n

log
m2

μ

t

1

π
Im Π(t), n = 1,2,3, . . . .

(14)
The explicit evaluation of aHVP
μ in terms of the moments 

M(−n) and M̃(−n) proceeds as follows. The singular expansion
of F(s) at the l.h.s. of the fundamental strip is

F(s) � 1

3

1

s
− 1

(s + 1)2
+ 25

12

1

s + 1
− 6

(s + 2)2
+ 97

10

1

s + 2

− 28

(s + 3)2
+ 208

5

1

s + 3
+ · · · , (15)

and from this, the expansion of aHVP
μ in terms of successive mo-

ment approximants can be easily obtained with the result

aHVP
μ =

(
α

π

){
1

3
M(0) + 25

12
M(−1) + M̃(−1)

+ 97

10
M(−2) + 6M̃(−2)

+ 208

5
M(−3) + 28M̃(−3) +O

[
M̃(−4)

]}
. (16)

The M moments give positive contributions while the M̃ mo-
ments give negative contributions which in absolute value are 
larger than those of the corresponding M moments. Numerically, 
because of the ρ-dominance of the hadronic spectral function and 

the fact that m2
μ

M2
ρ

	 1.9 × 10−2 is a small number, only a few mo-

ments are necessary to get an accurate evaluation, a fact which we 
next illustrate within the framework of a realistic phenomenologi-
cal toy model.

3. The model in question is the one described in Ref. [11].3 The 
evaluation of aHVP

μ in this model gives:

aHVP
μ (phen. model) = 6.936 × 10−8, (17)

in agreement with the determination from e+e− data [12]

aHVP
μ

(
e+e−) = (6.923 ± 0.042) × 10−8. (18)

The shape of the Mellin transform and its derivative in this model 
are shown in Fig. 1. As seen in these figures these Mellin trans-
forms are sharply decreasing functions for negative s-values, and 
very smooth compared to the shape of the hadronic spectral func-
tion. The results in this model, corresponding to the successive 
moment approximants in Eq. (16), are:(

α

π

)
1

3
M(0) = 8.071 × 10−8, (19)

(
α

π

)[
1

3
M(0) + 25

12
M(−1) + M̃(−1)

]
= 7.240 × 10−8, (20)

(
α

π

)[
1

3
M(0) + 25

12
M(−1) + M̃(−1)

+ 97

10
M(−2) + 6M̃(−2)

]
= 7.022 × 10−8. (21)

The first approximation exceeds the phenomenological result by 
less than 16%, the second approximation by 4%, and the third ap-
proximation by 1%. In fact the fourth approximation results in an 
overestimate by only 0.4% which is already of the same order of 
accuracy as the present experimental determination in Eq. (18)
(0.6%). This gives an idea of how many moments should be de-
termined in order to be competitive with the determinations of 
aHVP
μ which use experimental data.

3 With some modifications kindly contributed by Laurent Lellouch.
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Fig. 1. The Mellin transforms M(s) and |M̃|(s) in the toy model of Ref. [11].
4. The leading term in the moment expansion in Eq. (16) coin-
cides with a rigorous upper bound discussed a long time ago [10]:

aHVP
μ <

(
α

π

)
1

3

∞∫
4m2

π

dt

t

m2
μ

t

1

π
Im Π(t)

=
(

α

π

)
1

3

(
−m2

μ

d

dQ 2
Π

(
Q 2))

Q 2=0
. (22)

It overestimates the phenomenological determination of aHVP
μ by 

less than 20% (which is not bad for a rigorous bound) but what 
is more important here is the fact that it provides an excellent 
first check between lattice QCD evaluations and phenomenological 
determinations. Indeed, the second expression in the r.h.s. is the 
slope of Π(Q 2) at the origin, a quantity which can be evaluated in 
lattice QCD and the accuracy of its determination compared to the 
one of the phenomenological determination of the first moment 
of the spectral function, the first term in the r.h.s. It is difficult to 
imagine that, unless lattice QCD does better than phenomenology 
in this simple case, it will ever reach a competitive accuracy of the 
full determination of aHVP

μ .
In general, the moments M(−n) correspond to successive 

derivatives of the HVP self-energy Π(Q 2) at the origin: for n =
0, 1, 2, . . . ,

M(−n) =
∞∫

4m2
π

dt

t

(
m2

μ

t

)1+n 1

π
Im Π(t)

= (−1)n+1

(n + 1)!
(
m2

μ

)n+1
(

∂n+1

(∂ Q 2)n+1
Π

(
Q 2))

Q 2=0
, (23)

providing thus a series of further tests of lattice QCD results to 
be compared with the moments obtained from experimental or 
phenomenological input of the hadronic spectral function.

The determination of the log weighted moments M̃(−n) in 
Eq. (14) in terms of the HVP self-energy function Π(Q 2) is more 
delicate. It requires the evaluation of integrals of the type

Σ(−n) ≡
∞∫

4m2
π

dQ 2
(

m2
μ

Q 2

)n+1(
−Π(Q 2)

Q 2

)
, n = 1,2,3, . . . .

(24)

To see this in detail let me discuss the evaluation of the first two 
moments M̃(−1) and M̃(−2). (The generalization to the evalua-
tions of higher M̃ moments is straightforward.)
One first observes that

M̃(−n) = − log
4m2

π

m2
μ

M(−n)

+
∞∫

4m2
π

dt

t

(
m2

μ

t

)n

log
4m2

π

t

1

π
Im Π(t), (25)

which translates the problem to the evaluation of log 4m2
π

t weighted 
moments, which are smaller in magnitude. Using the dispersion 
relation in Eq. (2) one can then show that

Σ(−1) ≡
∞∫

4m2
π

dQ 2
(

m2
μ

Q 2

)2(
−Π(Q 2)

Q 2

)

=
∞∫

4m2
π

dt

t

(
m2

μ

t

)2

log
4m2

π

t

1

π
Im Π(t) + m2

μ

4m2
π

M(0)

−
∞∫

4m2
π

dt

t

(
m2

μ

t

)2

log

(
1 + 4m2

π

t

)
1

π
Im Π(t), (26)

where the wanted log 4m2
π

t weighted moment is the first term in 
the r.h.s. and the rest of the contributions can be expressed in 
terms of normal M moments. From Eqs. (25) and (26) there fol-
lows then that:

M̃(−1) = − log
4m2

π

m2
μ

M(−1) + Σ(−1) − m2
μ

4m2
π

M(0)

+ 4m2
π

m2
μ

M(−2) + · · · . (27)

Integrating next Π(Q 2) with an extra power of m2
μ

Q 2 gives the new 
relation

Σ(−2) ≡
∞∫

4m2
π

dQ 2
(

m2
μ

Q 2

)3(
−Π(Q 2)

Q 2

)

= −
∞∫

4m2
π

dt

t

(
m2

μ

t

)3

log
4m2

π

t

1

π
Im Π(t)

+ 1

2

(
m2

μ

4m2
π

)2

M(0) − m2
μ

4m2
π

M(−1)

+
∞∫

4m2

dt

t

(
m2

μ

t

)3

log

(
1 + 4m2

π

t

)
1

π
Im Π(t), (28)
π
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and, from this and Eq. (25):

M̃(−2) = − log
4m2

π

m2
μ

M(−2) − Σ(−2)

+ 1

2

(
m2

μ

4m2
π

)2

M(0) − m2
μ

4m2
π

M(−1)

+ 4m2
π

m2
μ

M(−3) + · · · . (29)

From the relations above one concludes that the quantities to 
be evaluated in lattice QCD are, therefore, the Euclidean moment 
integrals in Eq. (24). Contrary to the direct evaluation of aHVP

μ
in Eqs. (4) and/or (5), the moments Σ(−1), Σ(−2), ... are not 
weighted by a heavily peaked kernel at small Q 2 values and, fur-
thermore, the threshold of integration is at the rather large value 
Q 2 = 4m2

π instead of zero, which makes them rather accessible to 
a lattice QCD evaluation. The determination of these integral mo-
ments and their comparison with the corresponding phenomeno-
logical expressions in terms of the hadronic spectral function given 
above, can provide valuable further tests.

5. One can finally proceed to the evaluation of successive ap-
proximations to aHVP

μ by replacing the expansion in terms of the 
M moments and log weighted M̃ moments in Eqs. (20) and (21)
by the corresponding one in terms of the ordinary moments M
and the integral Σ moments in Eq. (24) discussed above. This leads 
to the following results:

• 1st Approximation(
α

π

)
1

3
M(0) = 8.071 × 10−8. (30)

• 2nd Approximation(
α

π

){(
1

3
− m2

μ

4m2
π

)
M(0)

+
(

25

12
− log

4m2
π

m2
μ

)
M(−1) + Σ(−1) + 4m2

π

m2
μ

M(−2)

}

= 7.265(34) × 10−8. (31)

• 3rd Approximation

(
α

π

){(
1

3
− m2

μ

4m2
π

+ 3

(
m2

μ

4m2
π

)2)
M(0)

+
(

25

12
− log

4m2
π

m2
μ

− 6
m2

μ

4m2
π

)
M(−1)

+
(

97

10
− 6 log

4m2
π

m2
μ

+ 4m2
π

m2
μ

)
M(−2)
+Σ(−1) − 6Σ(−2)

+ 4m2
π

m2
μ

(
6 − 1

2

4m2
π

m2
μ

)
M(−3)

}

= 7.027(6) × 10−8. (32)

The numerical results are those obtained in the phenomenological 
toy model described above with the quoted uncertainties in the 
second and third approximations corresponding to the size of the 
first contributions which have not been retained in the expansions 
of the log(1 + 4m2

π
t ) terms in Eqs. (26) and (28).

The relevant quantities to be determined in lattice QCD in order 
to construct the three successive approximations above are there-
fore:

M(0)︸ ︷︷ ︸
10.424

; Σ(−1)︸ ︷︷ ︸
1.223

, M(−1)︸ ︷︷ ︸
0.278

; Σ(−2)︸ ︷︷ ︸
0.113

,

M(−2)︸ ︷︷ ︸
0.012

and M(−3)︸ ︷︷ ︸
0.001

, (33)

where the numbers below the braces are those (in 10−5 units) 
obtained in the phenomenological toy model.

My conclusion is that the moment analysis approach described 
above may gradually lead to an accurate determination of aHVP

μ , 
providing at the same time many tests of lattice QCD evaluations 
to be confronted with phenomenological determinations using ex-
perimental data.
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