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Abstract

In this paper conditions are derived for the existence of a common solution X to the ma-
trix equations AiXBj = Cij , (i, j) ∈ �, where the matrices Ai, Bj , Cij and X have suitable
dimensions and the (i, j)’s are index pairs in some set �. The purpose of this paper is to
present, for certain specific sets of index pairs �, verifiable necessary and sufficient solvability
conditions that are stated directly in terms of the matrices and that do not use Kronecker
products.
© 2003 Elsevier Inc. All rights reserved.

Keywords: Common solution; Radical; Matrix equations

1. Introduction

In this paper we study the set of linear matrix equations

AiXBj = Cij , (i, j) ∈ �,

where Ai, Bj and Cij are given matrices, with X the unknown matrix and where � de-
notes a set of index pairs. We assume that all the matrices have suitable dimensions.

In this paper we are concerned with conditions for the existence of a matrix X

being a common solution to all the matrix equations simultaneously. We do not want
to use Kronecker products, but we want to derive conditions in which the matrices
occur directly. This may give more insight in why a common solution exists. Also if
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the existence of a common solution is part of a larger problem, then conditions stated
directly in terms of the matrices might be more preferable. See for instance [7,8].

Our approach is in contrast with the approach in [9], in which the same set of
linear equations is studied as in this paper. Opposite to our paper, the results in [9]
are not just simply stated in terms of the original matrices, but require the use of
generalized inverses. Further, the conditions for existence of a common solution in
[9] are obtained, and have to be verified, in a finite iterative process. It can be shown
that the process can be described in a much simpler way than given in [9] and that the
outcome of the process crucially depends on the choice for a solution of the equation
in the first induction step. These aspects are not mentioned and as such the results in
[9] seem to be incomplete.

For the case that � = {(1, 2), (2, 1)} or, which after a renumbering is the same, for
� = {(1, 1), (2, 2)}, we have presented verifiable necessary and sufficient conditions
for the existence of a common solution in [7]. In this paper we recall these condi-
tions and extend the conditions in two directions. First, we recall from [8] necessary
and sufficient conditions for the existence of a common solution for the case that
� = {(i, j) | i, j ∈ k, i /= j} for an arbitrary integer k � 2, where k = {1, 2, . . . , k}.
We have included these results for completeness and general interest. Secondly, for
the case that � = {(i, i) | i ∈ k}, i.e. � = {(i, j) | i, j ∈ k, i = j}, for an arbitrary in-
teger k � 2, we present necessary and sufficient conditions provided some additional
assumption is satisfied.

The outline of this paper is as follows. In Section 2 we review some known results,
introduce the radical of a family of linear subspaces and we present some useful
observations. In Section 3 we recall the results for the case that � = {(i, j) | i, j ∈
k, i /= j}. We use the notion of radical to formulate the assumption under which we
can prove our result for the case that � = {(i, i) | i ∈ k}. We derive this result in Sec-
tion 4. It consists of verifiable necessary and sufficient conditions for the existence
of a common solution to the above linear matrix equations. We conclude the paper
with some remarks concerning possible further research in Section 5.

2. Known results, radicals, useful observations

2.1. Known results

To derive the solvability conditions in this paper we use the next three lemmas. In
the lemmas A, B, C and D are given matrices of suitable dimensions.

Lemma 2.1. The following statements are equivalent:

1. There is a matrix X such that AXB = C.
2. im C ⊆ im A and ker B ⊆ ker C.
3. UC = 0 and CV = 0 for all matrices U and V such that UA = 0 and BV = 0.
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Proof. See any textbook on matrix theory. For instance, [1] or [4]. See also [5]. �

Lemma 2.2. There is a matrix X such that AX = C and XB = D if and only if
im C ⊆ im A, ker B ⊆ ker D and AD = CB.

Proof. See [4, p. 25]. �

Lemma 2.3. rank

[
C A

B 0

]
= rank

[
0 A

B 0

]
if and only if C ker B ⊆ im A.

Proof. See [7]. �

2.2. Radical of a family of subspaces

Most of the material in this subsection can be found in [6]. Let L = {Li | i ∈ k}
be a family of linear subspaces in some vector space X. We say that the family L
is independent in X if Li ∩ (

∑
j∈k,j /=i Lj ) = 0 for all i ∈ k. It can be shown that

L is an independent family if and only if any vector a ∈ ∑
j∈k Lj can uniquely be

decomposed as a = ∑
j∈k aj with ai ∈ Li for all i ∈ k. Following [6] we define the

radical of the family L to be the subspace

L∨ =
∑
i∈k


Li ∩


 ∑

j∈k,j /=i

Lj





 .

Clearly, L is an independent family if and only if L∨ = 0. In [6] it is shown that
the radical L∨ is the smallest subspace L0 in X with the property that the family of
quotient spaces {(Li + L0)/L0 | i ∈ k} in X/L0 is independent. If L∨ ⊆ Li for
all i ∈ k, the above implies that there exists a full column rank matrix L partitioned as
L = [L0, L1, . . . , Lk] with L∨ = im L0 and Li = im[L0, Li] for all i ∈ k. Finally,
we note that L∨ ⊆ Li for all i ∈ k if and only if L∨ = ⋂

i∈k Li .

2.3. Some useful observations

In the proof of our result in Section 4 we make use of the following observations.
In the observations all matrices have suitable dimensions.

1. If Q is a matrix of suitable dimensions then
(i) C ker B ⊇ CQ ker BQ,
(ii) if ker B ⊆ ker C then ker BQ ⊆ ker CQ.

2. [C1, C2] ker [B1, B2] = [C1, C1 + C2] ker [B1, B1 + B2]
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(The inclusion ⊇ follows from (i) above with C = [C1, C2], B = [B1, B2] and

Q =
[
I I

0 I

]
where I is an identity matrix of suitable dimensions. The

other inclusion ⊆ follows with C = [C1, C1 + C2], B = [B1, B1 + B2] and Q =[
I −I

0 I

]
).

3. If B1 has full column rank then [C1, C2] ker [B1, 0] = im C2.

3. � = {(i, j) | i, j ∈ k with i /= j}

In this section we consider the k2 − k linear matrix equations AiXBj = Cij for
i, j ∈ k with i /= j , and we present verifiable necessary and sufficient conditions
for the existence of a common solution. To state and derive the conditions we de-
note

B = [B1, B2, . . . , Bk]and A =




A1
A2
...

Ak


 .

Furthermore, for i ∈ k we denote

B̌i = [B1, . . . , Bi−1, Bi+1, . . . , Bk], �i = [Ci1, . . . , Cii−1, Cii+1, . . . , Cik],

Ǎi =




A1
...

Ai−1
Ai+1

...

Ak




, �i =




C1i

...

Ci−1i

Ci+1i

...

Cki




and

�i =




0 · · · 0 −C1i 0 · · · 0
...

...
...

...
...

0 · · · 0 −Ci−1i 0 · · · 0
Ci1 · · · Cii−1 0 Cii+1 · · · Cik

0 · · · 0 −Ci+1i 0 · · · 0
...

...
...

...
...

0 · · · 0 −Cki 0 · · · 0




.
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Now we can recall the next result from [8]. We have included the result and its
proof for reasons of completeness.

Theorem 3.1. There exists a matrix X such that AiXBj = Cij for all i, j ∈ k with
i /= j if and only if im �i ⊆ im Ǎi , ker B̌i ⊆ ker �i , and �i ker B ⊆ im A for all
i ∈ k.

To prove the above theorem we follow the line of Mitra [2] and we need some
additional notation. In the remainder of this section we assume that U is a matrix
such that im A ⊆ ker U , and that U is partitioned as U = [U1, U2, . . . , Uk] in such a
way that the products UiAi are defined for i ∈ k. Similarly, we assume that V is a ma-
trix such that ker B ⊆ im V and that V is partitioned as V T = [V T

1 , V T
2 , . . . , V T

k ] (T
means transpose) such that the products BiVi are defined for all i ∈ k. Furthermore,
given matrices Y1, Y2, . . . , Yk , we denote

C(Y1, Y2, . . . , Yk) =




Y1 C12 · · · C1k

C21 Y2 · · · C2k

...
...

...

Ck1 Ck2 · · · Yk


 .

Proof of Theorem 3.1
(only if)-part.

Assume that X satisfies AiXBj = Cij for all i, j ∈ k with i /= j . Given any
i ∈ k, it is immediate from the definitions that ǍiXBi = �i and AiXB̌i = �i . So,
from Lemma 2.1 it follows that im �i ⊆ im Ǎi and ker B̌i ⊆ ker �i for all i ∈ k.
Furthermore, it is clear that there are matrices Y1, Y2, . . . , Yk such that AXB =
C(Y1, Y2, . . . , Yk). For instance, take Yi = AiXBi for all i ∈ k. Using Lemma 2.1
it therefore follows that there are matrices Y1, Y2, . . . , Yk such that UC(Y1, Y2, . . . ,

Yk) = 0 and C(Y1, Y2, . . . , Yk)V = 0. By the definition of C(Y1, Y2, . . . , Yk) the lat-
ter two equations mean that −UiYi = ∑

j∈k,j /=i UjCji and −YiVi = ∑
j∈k,j /=i CijVj

for all i ∈ k.
Now assume that i = 1. (Other values of i can be treated in a similar way.)

Then it follows that there exists a matrix Y1 that is a common solution to a pair
of linear matrix equations of the same type as in Lemma 2.2. From Lemma 2.2
it therefore follows that U1(C12V2 + C13V3 + · · · + C1kVk) = (U2C21 + U3C31 +
· · · + UkCk1)V1. This expression can also be written as U�1V = 0, or, equivalently,
as �1 ker B ⊆ im A. Since the above procedure may be repeated for any value of
i ∈ k the proof of the (only if)-part is now completed.
(if)-part.

Because im �1 ⊆ im Ǎ1, there exists a matrix Z1 such that Cj1 = AjZ1 for all
j = 2, 3, . . . , k. Hence, there exists a matrix Z1 such that U2C21 + U3C31 + · · · +
UkCk1 = (U2A2 + U3A3 + · · · + UkAk)Z1 = −U1A1Z1. Here the last equality is
due to the fact that U1A1 + U2A2 + · · · + UkAk = UA = 0. So, it follows that
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im(U2C21 + U3C31 + · · · + UkCk1) ⊆ im U1. Similarly, ker B̌1 ⊆ ker �1 implies
that ker V1 ⊆ ker(C12V2 + C13V3 + · · · + C1kVk).

Finally, as already indicated in the (only if)-part, it follows from �1 ker B ⊆ im A

that U1(C12V2 + C13V3 + · · · + C1kVk) = (U2C21 + U3C31 + · · · + UkCk1)V1. By
Lemma 2.2 it is now clear that there exists a matrix Y1 such that −U1Y1 = U2C21 +
U3C31 + · · · + UkCk1 and −Y1V1 = C12V2 + C13V3 + · · · + C1kVk.

Clearly, the above can be repeated for any value of i ∈ k showing that there
exist matrices Y1, Y2, . . . , Yk such that −UiYi = ∑

j∈k,j /=i UjCji and −YiVi =∑
j∈k,j /=i CijVj for all i ∈ k. Hence, there are matrices Y1, Y2, . . . , Yk such that

UC(Y1, Y2, . . . , Yk) = 0 and C(Y1, Y2, . . . , Yk)V = 0. By Lemma 2.1 it follows that
the matrices Y1, Y2, . . . , Yk are such that AXB = C(Y1, Y2, . . . , Yk) for some matrix
X. From the definition of C(Y1, Y2, . . . , Yk) it is now immediate that this matrix X

satisfies AiXBj = Cij for all i, j ∈ k with i /= j . This concludes the proof of the
(if)-part. �

Using Lemma 2.3 the next corollary follows immediately from Theorem 3.1.

Corollary 3.2. There exists a matrix X such that AiXBj = Cij for all i, j ∈ k with
i /= j if and only if for all i ∈ k,

rank Ǎi = rank[Ǎi �i], rank B̌i = rank

[
B̌i

�i

]
,

rank

[
0 A

B 0

]
= rank

[
�i A

B 0

]
.

For k = 2 the result in Theorem 3.1 can be rewritten into the next result presented
in [7].

Corollary 3.3. There exists a matrix X such that A1XB2 = C12 and A2XB1 = C21
if and only if im C12 ⊆ im A1, im C21 ⊆ im A2, ker B1 ⊆ ker C21, ker B2 ⊆ ker C12
and [

C12 0
0 −C21

]
ker[B2 B1] ⊆ im

[
A1
A2

]
.

4. � = {(i, i) | i ∈ k}

In this section we consider the k linear matrix equations AiXBi = Cii for i ∈
k. We denote Li = im Bi , i ∈ k, and we write L∨ for the radical of the family
{Li | i ∈ k}. Our standing assumption throughout this section is that L∨ = ⋂

i∈k Li .
Under this assumption we are able to derive verifiable necessary and sufficient con-
ditions for the existence of a common solution X to the above equations.
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Theorem 4.1. Under the assumption that L∨ = ⋂
i∈k Li the following holds.

There is a matrix X such that AiXBi = Cii for all i ∈ k if and only if im Cii ⊆
im Ai , ker Bi ⊆ ker Cii for all i ∈ k and



C11 0 · · · 0
0 C22 · · · 0
...

...
. . .

...

0 0 · · · Ckk


 ker




B1 −B2 0 · · · 0
0 B2 −B3 · · · 0
...

...
. . .

. . .
...

0 0 · · · Bk−1 −Bk


 ⊆ im




A1
A2
...

Ak


 .

Proof
(only if)-part.

Assume that X satisfies AiXBi = Cii for all i ∈ k. By Lemma 2.1 this means
that im Cii ⊆ im Ai , ker Bi ⊆ ker Cii for all i ∈ k. This proves the first 2k subspace
inclusions mentioned in the conditions of the theorem. To prove the last subspace
inclusion consider the vector


u1
u2
...

uk


 ∈ ker




B1 −B2 0 · · · 0
0 B2 −B3 · · · 0
...

...
. . .

. . .
...

0 0 · · · Bk−1 −Bk


 .

Then B1u1 = B2u2 = · · · = Bkuk =: b. Because X is a common solution it follows
that 


C11 0 · · · 0
0 C22 · · · 0
...

...
. . .

...

0 0 · · · Ckk







u1
u2
...

uk


 =




A1XB1u1
A2XB2u2

...

AkXBkuk


 =




A1
A2
...

Ak


Xb ∈ im




A1
A2
...

Ak


 .

Hence, also the last subspace inclusion follows and the proof of the (only if)-part is
completed.
(if)-part.

Because of the assumption that L∨ = ⋂
i∈k Li it follows that L∨ ⊆ Li for all

i ∈ k. In Section 2 we have seen that then there exists a full column rank matrix
L = [L0, L1, . . . , Lk] such that L∨ = im L0 and Li = im [L0, Li] for all i ∈ k.
Recall that [L0, Li] has full column rank and that Li = im Bi for all i ∈ k. It follows
that there exist full column rank matrices Qi such that BiQi = [L0, Li] for all i ∈ k.
Correspondingly, partition CiiQi = [C̄ii , Ĉii] for all i ∈ k. We claim that


C11 0 · · · 0
0 C22 · · · 0
...

...
. . .

...

0 0 · · · Ckk


 ker




B1 −B2 0 · · · 0
0 B2 −B3 · · · 0
...

...
. . .

. . .
...

0 0 · · · Bk−1 −Bk


 ⊇ im




C̄11

C̄22
...

C̄kk


 .
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For reasons of simplicity and space limitations we prove this claim for k = 3 only.
For other values of k similar proofs can be given. In the proof below the observations
of Section 2.3 will be used. First note that


C11 0 0

0 C22 0
0 0 C33


 ker

[
B1 −B2 0
0 B2 −B3

]

⊇

C11Q1 0 0

0 C22Q2 0
0 0 C33Q3


 ker

[
B1Q1 −B2Q2 0

0 B2Q2 −B3Q3

]

=

C̄11 Ĉ11 0 0 0 0

0 0 C̄22 Ĉ22 0 0
0 0 0 0 C̄33 Ĉ33




× ker

[
L0 L1 −L0 −L2 0 0
0 0 L0 L2 −L0 −L3

]
.

Now adding in both matrices in the above expression the first column to the third,
and next the third to the fifth, we obtain that the above subspace is equal to


C̄11 Ĉ11 C̄11 0 C̄11 0

0 0 C̄22 Ĉ22 C̄22 0
0 0 0 0 C̄33 Ĉ33


 ker

[
L0 L1 0 −L2 0 0
0 0 L0 L2 0 −L3

]

Because the matrix [L0, L1, L2, L3] has full column rank the matrix
[
L0 L1 0 −L2 0
0 0 L0 L2 −L3

]

also has full column rank. Therefore, it follows that the last subspace above is equal
to

im


C̄11

C̄22

C̄33


 ,

which proves our claim for the case k = 3. With our claim for general k, it now
follows that

im




C̄11

C̄22
...

C̄kk


 ⊆ im




A1
A2
...

Ak


 .
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Because L0 has full column rank, also automatically

ker L0 ⊆ ker




C̄11

C̄22
...

C̄kk


 .

Furthermore, since im Cii ⊆ im Ai , ker Bi ⊆ ker Cii for all i ∈ k, it follows that
im CiiQi ⊆ im Ai , ker BiQi ⊆ ker CiiQi for all i ∈ k. Hence, we have that im Ĉii ⊆
im Ai for all i ∈ k, and since Li has full column rank we also automatically have
ker Li ⊆ ker Ĉii for all i ∈ k. By lemma 2.1 it follows that there are matrices X0,

X1, . . . , Xk such that


A1
A2
...

Ak


X0L0 =




C̄11

C̄22
...

C̄kk




and AiXiLi = Ĉii for all i ∈ k. Because [L0, L1, . . . , Lk] has full column rank it is
now possible to define the matrix X as follows:

X[L0, L1, . . . , Lk] = [X0L0, X1L1, . . . , XkLk].
Then we have AiX[L0, Li] = Ai[X0L0, XiLi] = [AiX0L0, AiXiLi] = [C̄ii , Ĉii]
for all i ∈ k. Recall that rank Bi = rank[L0, Li] and that [L0, Li] has full column
rank for all i ∈ k. This means that there are full row rank matrices R1, R2, . . . , Rk

such that Bi = [L0, Li]Ri for all i ∈ k. Furthermore, the matrices R1, R2, . . . , Rk

are such that RiQi = I and Cii = [C̄ii , Ĉii]Ri for all i ∈ k. To see the latter, note
that Bi = [L0, Li]Ri = BiQiRi for all i ∈ k. Hence, for all i ∈ k we have Bi(I −
QiRi) = 0, implying that im (I − QiRi) ⊆ ker Bi for all i ∈ k. Since ker Bi ⊆
ker Cii for all i ∈ k, it follows that also Cii(I − QiRi) = 0 for all i ∈ k. This clearly
implies that Cii = CiiQiRi = [C̄ii , Ĉii]Ri for all i ∈ k. So, it follows that AiXBi =
AiX[L0, Li]Ri = [C̄ii , Ĉii]Ri = Cii for all i ∈ k. This concludes the proof of the
(if)-part. �

In this section we developed necessary and sufficient conditions for the existence
of a common solution to the k matrix equations AiXBi = Cii for i ∈ k. We were
able to derive the conditions by assuming that

∑
i∈k


im Bi ∩


 ∑

j∈k,j /=i

im Bj





 =

⋂
i∈k

im Bi. (1)

For k = 2 the assumption is always satisfied. Indeed, then the left hand side and the
right hand side are both equal to im B1 ∩ im B2. From Theorem 4.1 it therefore easily
follows that there is a matrix X such that A1XB1 = C11 and A2XB2 = C22 if and
only if im Cii ⊆ im Ai , ker Bi ⊆ ker Cii for i = 1, 2, and
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[
C11 0

0 C22

]
ker

[
B1 −B2

] ⊆ im

[
A1
A2

]
.

This result is comparable with Corollary 3.3 and the result presented in [7].
Of course, we also can derive the “dual” solvability conditions when we assume

that

⋂
i∈k


ker Ai +


 ⋂

j∈k,j /=i

ker Aj





 =

∑
i∈k

ker Ai. (2)

5. Conclusions and remarks

In this paper we presented conditions for the existence of a common solution X to
the matrix equations AiXBj = Cij , (i, j) ∈ �, where the matrices Ai, Bj , Cij and
X have suitable dimensions and either � = {(i, j) | i, j ∈ k, i /= j} or � = {(i, i) | i ∈
k}, i.e. � = {(i, j) | i, j ∈ k, i = j}, in which k = {1, 2, . . . , k}. The purpose of this
paper has been to derive for these two sets � necessary and sufficient conditions for
the existence of a common solution to the equations AiXBj = Cij , (i, j) ∈ �, that
can be verified and that are stated directly in terms of the known matrices and that
do not use Kronecker products.

For the case that � = {(i, j) | i, j ∈ k, i /= j} we have been completely successful
and have been able to derive verifiable necessary and sufficient conditions for the
existence of a common solution. For the case that � = {(i, i) | i ∈ k} we have derive
verifiable necessary and sufficient conditions for the existence of a common solution
provided the additional assumption (1) is satisfied. Dual conditions can be obtained
when assumption (2) is satisfied.

It is still an open problem which are the necessary and sufficient conditions for
the existence of a common solution in the case that neither assumption (1) nor
assumption (2) is satisfied.

A further point of research might be the characterization of all solutions X, in par-
ticular the maximal rank ones, common to the equations AiXBj = Cij , (i, j) ∈ �,
given that at least one common solution exists. See for instance [2] for the case
k = 2.

In this paper all equations were considered to be equations over a field. It might
be interesting to see how the results of this paper can be extended to equations over
a ring. See for instance [3] for the case k = 2.
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