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Abstract

Bone is a complex tissue whose composition and properties vary with age, sex, diet, tissue type, health and disease. In this review, we
demonstrate how infrared spectroscopy and infrared spectroscopic imaging can be applied to the study of these variations. A specific example of
mice with Fabry disease (a lipid storage disease) is presented in which it is demonstrated that the bones of these young animals, while showing
typical spatial variation in mineral content, mineral crystal size, and collagen maturity, do not differ from the bones of age- and sex-matched wild
type animals.
© 2006 Elsevier B.V. All rights reserved.
Keywords: Infrared microscopic imaging; Bone; Hydroxyapatite; Fabry disease

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
2. Bone structure and function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
3. Infrared spectroscopic imaging of bone properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
4. Analysis of Fabry's and wildtype mice bones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945
5. Conclusions and perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946
1. Introduction

Bone is a dynamic tissue whose composition changes with
development, environment, genetics, health and disease. The
composition, architecture, and geometry all contribute to the
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mechanical integrity of the bone. While there are numerous
techniques to determine overall geometry and density of human
and mouse bones[1,2], fewer techniques exist that enable
characterization of architectural variation in bone mineral and
matrix composition [3]. We have used infrared microspectro-
scopy and infrared microscopic imaging to characterize both
healthy bone and disease bone in humans and in animals [4].
Our methodology is based on analysis of parameters that have
been used for infrared characterization of bone and tooth
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Fig. 1. Typical Infrared spectra from the central cortex of a normal (wildtype)
8 month old mouse tibia. The regions of interest are labeled.
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mineral properties over almost the past century (for review, see
[3–5]. This article summarizes the infrared spectroscopic
methods used to study bone mineral changes in health and
disease, with a specific example take from the study of a lipid
storage disease in which globotriaosylceramide (Gb3) accumu-
lates in tissues. To appreciate these analyses, it is important to
first review the structure and function of bone.
Table 1
Parameters used in the IR analysis of mineralized tissues

Parameter Region analyzed (cm−1)

Mineral (phosphate ν1, ν3)/matrix
(amide I) peak area ratio

900–1200/1585–1720

Carbonate (ν2)/phosphate (ν1, ν3)
peak area ratio

860–890/900–1200

Carbonate (ν2)/amide I peak area ratio 860–890/1585–1720
Fractional Carbonate A substitution I872/860–890
fractional Carbonate B substitution I878/860–890
Crystallinity Peak area 1030/1020 or I1030/I1020
Acid phosphate content Peak area 1117/900–1200 or

I1117/I960
Collagen maturity Peak area 1660/1686 or I1660/I1690

I= intensity at wavenumber indicated.
2. Bone structure and function

The bones of the body are generally classified based on shape
(long and flat), the mechanism by which they are formed, or the
actual arrangement of the components. The long bones (like the
femur and tibia) are tubes filled with marrow and capped with
cartilaginous structures. The cortices (compact bone) which
surround the marrow cavity contains sheets of mineralized bone
surrounding blood vessels (Haversian canals), with the outer-
most sheet corresponding to the oldest, most mature bone.
Connecting the walls of the tubes are finer structures, known as
trabeculae, or woven bone. While the cortices provide most of
the mechanical strength to the long bones, the flat bones, such as
those in the skull or ribs, have a very thin cortex filled with
woven bone, hence that woven bone provides a great deal more
strength. The trabeculae bone in the cortices also contributes to
the strength, as it provides struts that share the load applied to the
bones, and it is these elements that disappear in conditions
associated with bone fragility (increased tendency to fracture)
such as osteoporosis.

Each type of bone consists primarily of mineral (a micro-
crystalline analogue of the geologic mineral hydroxyapatite) and
an extracellular matrix (predominately type I collagen). The
chemical formula of hydroxyapatite mineral is Ca10(PO4)6
(OH)2, but physiologic mineral found in both bones and teeth is
poorly crystalline, and contains many lattice vacancies and
substitutions [6] so that chemical analysis of the calcium/phos-
phorus ratio of bone is generally not equal to the predicted
1.67:1. Depending on diet and type of bone (cortical/trabecular),
how much it remodels, what its functions are, etc., the most
common substituents are carbonate (which substitutes for both
phosphate and hydroxyl ions in the lattice [7], magnesium,
fluoride, strontium, and citrate [8].

The organic matrix of bone is mainly type I collagen, a fib-
rous protein that provides the tissue with elasticity and flexi-
bility, and also serves as the template upon which the mineral is
deposited. There are three types of cells within the bone, osteo-
blasts, which are bone forming cells, osteocytes, which formerly
were osteoblasts, but once surrounded by mineral take on the
function of communication and responsiveness to load, and bone
remodeling cells, or osteoclasts [9]. The matrix also contains
about 5% noncollagenous proteins. These proteins [10] regulate
both the structure and function of the tissues and their com-
ponent cells, and the process of mineralization. As discussed
below, we have used mutant mice in which one or more matrix
proteins were ablated (knockouts, KO), or overexpressed
(transgenic, TG) to characterize the effects of these proteins
on bone using IR imaging and IR microspectroscopy. Studies
of the effects of these proteins in mutants lacking enzymes that
modify them [11], or mutants having abnormal enzyme
expression, have indicated the importance of matrix modifica-
tion for mineralization [12–14]. In addition to the extracellular
matrix proteins, there are also lipids, both within the cell
membranes, inside the cell, and within the matrix. The
properties of the lipids in bones and teeth were reviewed else-
where [15].

3. Infrared spectroscopic imaging of bone properties

The properties of bone that determine its mechanical strength
(and hence bones most important functional characteristic) are
its geometry (shape and connectivity), whether it contains flaws
(such as micro-cracks [16]), and its material properties [17].
These material properties include mineral content, mineral and
matrix composition, cellular activity, and distribution of crystal
sizes [18]. Most of these material properties with the exception
of cellular activity can be determined by infrared microscopy
and infrared microscopic imaging.

As discussed throughout the reviews in this volume, the
paradigm shift that occurred when an array detector was coupled
with an infrared microscope, enabling multiple spectra to be
collected from the same type of tissue sections that were



Table 2
IR analyses of long bones of mutant and transgenic mice

Animal model Finding relative to WT Reference

Type X collagen transgenic No bone or cartilage phenotype [25]
Osteocalcin KO Cortical bone increased mineral

content, decreased crystal size
[26]

Matrix glia protein KO Trabecular mineral content
increased, crystal size increased

[27]

Biglycan KO Cortical & Trabecular bone—
decreased mineral content,
increased crystal size

[28]

Osteopontin KO Increased mineral content,
increased crystal size

[29]

Osteonectin KO Increased mineral content,
increased crystal size

[30]

Dentin matrix protein 1 KO Decreased mineral content,
increased crystal size

[31]

Tissue non-specific alkaline
phosphatase KO

Decreased mineral content [12,13]

IGF-binding protein 5, TG Lower mineral content—no
change in crystal size

[32]

Vitamin D receptor TG No change in mineral properties [33]
TGF-beta KO Decreased mineral content,

decreased crystal size
[34]

Table 3
IR parameters in tibias of α-galactosidase (Fabry) KO mice and WT controls

Min/Matrix 1030/1020 1660/1690

Proximal
Cortex Fabry 7.55±1.29 1.29±0.03 ⁎ 1.81±0.31
WT 6.47±1.01 1.23±0.07 1.75±0.14
Distal Cortex
Fabry 8.94±0.23 ⁎⁎ 1.30±0.02 1.73±0.16
WT 9.79±0.75 1.30±0.03 1.84±0.18
Trabeculae
Fabry 8.07±1.07 1.19±0.04 1.59±0.14
WT 7.57±0.69 1.17±0.04 1.65±0.18

⁎ P<0.10 vs. WT based on Student's t-test.
⁎⁎ P<0.05 vs. WT based on Student's t-test.
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routinely used for histology and immunohistochemistry, but
without the need for destructive staining. Fig. 1 shows a typical
spectrum taken from the cortex of a healthy wildtype mouse
bone. The absorbances of interest are illustrated here and their
origin for bone analyses is listed in Table 1. For studies using
infrared microscopy and imaging, the samples have to be
sufficiently thin to allow the transmittance of light. For this
purpose the bone must be sectioned with a microtome, generally
using a diamond knife. When the studying sections of bone, to
insure that there are no variations because the sections were not
cut uniformly, the general practice is to express all parameters as
ratios. The IR parameters that have been validated for imaging of
bone include the mineral/matrix ratio (the ratio of the integrated
v1,v3 phosphate band/amide I band) that is linearly related to the
Fig. 2. Unsubtracted bone spectra in tissues fixed in glycolmethacrylate (GMA), and
(PMMA) and glycolmethacrylate (GMA).
mineral (ash) content of mixtures of hydroxyapatite and collagen
[19,20], the carbonate/phosphate ratio that is related to the che-
mically determined extent of carbonate substitution, the 1030/
1020 peak height ratio, that is related to the crystallite size in the
long (c-axis) dimension as determined by X-ray diffraction line
broadening [21], and the peak height ratios for the different types
of carbonate substitution [22]. In addition, we have defined a
parameter that is related to the maturity of the collagen fibrils
[23] and to the extent of collagen cross-linking in the section
being examined, although the precise chemical composition of
the contributing cross-links remains to be elucidated. Also, al-
though used less frequently to look at bone, relevant parameters
can be obtained from the 2853/2890 lipid/protein ratio [24] and a
variety of absorbance ratios used to characterize DNA and
sulfate constituents of tissues that will not be discussed here.

The findings of our analyses of transgenic, knockout, and
diseased human bones were recently reviewed in detail [4,5]
and are summarized in Table 2. To illustrate the techniques
and demonstrate the types of information that can be acquired
from IR imaging spectroscopy of bone, we will discuss one
mouse model from which the data have not previously been
reported, and indicate how infrared imaging spectroscopy was
the spectra of the individual embedding media, Spurr, polymethylmethacrylate



Fig. 3. Typical image and pixel distribution of mineral:matrix content in proximal (a, c) and distal (b, d) cortical bone of WT (a, b) and Fabry's (c, d) mice tibia. Pixel
numbers are shown on the x and y axes; 1 pixel = 6.25 um.
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used to determine whether there were bone changes in these
animals.

4. Analysis of Fabry's and wildtype mice bones

A deficiency in the lysosomal hydrolase-galactosidaseA
(α-gal A; EC 3.2.1.22) leads to impaired catabolism of
-galactosyl-terminal lipids such as globotriaosylceramide
(Gb3). Individuals with this deficiency have vascular occlusions
that cause cardiovascular, cerebrovascular, and renal disease
[35,36], and there have been some suggestions that bone disease
is also involved [37–40]. However, since the condition is
associated with many complicating factors, there have been no
detailed analyses of bone in Fabry disease. A few cases
Fig. 4. Image and pixel distribution of crystallinity parameter in cortical (l
involving avascular necrosis (AVN) of the femoral head have
been reported, and recently in one case report the presence of
trihexose ceramide in both the normal and necrotic bone was
found based on lipid analyses [40].

Oshima et al. [41] reported the development of mice
lacking galactosidase A. These mice accumulate Gb3
(ceramide-trihexoside) in their liver and kidneys as early as
at 10 weeks of age. We performed infrared imaging analysis
on the bones of these animals, and age-, background-, and sex-
matched controls to determine whether there were any
detectable bone abnormalities.

Bones of three male KO and four male wildtype (WT)
animals at 8 weeks of age were examined by infrared imaging
using a BioRad Infrared Imaging System (BioRad, Cambridge,
eft) and trabecular (right) bone of WT (a) and Fabry's mice (b) tibia.
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MA). To analyze bone by infrared imaging, thin sections (1–6
μm thick) are required. Since bone is a hard tissue, it is difficult
to cut, even with a diamond knife, thus for sectioning it must be
embedded in an even harder substance [42]. For the study of the
Fabry mice bones, because we were trying to preserve lipids, we
compared embedding in Spurr's medium, polymethylmethacry-
late (PMMA) and glycolmethyacrylate (GMA) (Fig. 2). While
all three embedding media had spectra that did not overlap the
majority of the mineral bands GMA had less interference in the
areas of lipid analyses. Sections 3–4 um thick were used for all
analyses.

After collection of data from multiple areas (400 μm×
400 μm) in the cortex, trabecular bone, and epiphysial growth
plate (the cartilaginous area from which long bone growth and
development commences), the GMA contribution was sub-
tracted from all the spectra using Isys software (Spectral Dimen-
sions, OlneyMD), and themineral/matrix ratio, 1030/1020 ratio,
and 1660/1690 ratios were calculated using the same software as
described elsewhere [30]. The BioRad detector did not allow
collection of 870 cm−1 data for analyses of carbonate content. A
lipid (methylene)/protein (methyl) ratio was also calculated
using Isys. Images of each parameter using the same color scale
were generated in Isys, and pixel histograms for each parameter
produced. Means and standard deviations for each parameter
were calculated, and compared among animals using ANOVA
(Table 3).

The mineral/matrix ratio (Fig. 3, Table 3) was not signi-
ficantly different when the Fabry's bones were compared to the
WT in the proximal cortical and trabecular bone, however the
Fabry distal cortex, which represents older bone had a lower
mineral/matrix ratio than the WT. Typical pixel histograms are
shown along with their respective images for each parameter.
There was a tendency (P=0.06) for the crystallinity to be
increased in the Fabry proximal end of the cortical bone relative
to the WT proximal cortices, while both the ends of the cortical
bone in the Fabry mice had a tendency to be higher in crys-
tallinity (crystal size/perfection) than the WT proximal bone. In
the trabeculae, the crystallinity was not significantly increased in
the Fabry's bones as compared to the WT, however the dis-
tributions were consistently sharper (Fig. 4, Table 3). The col-
lagen maturity (1660/1690 ratio) was not altered in any of the
sites examined (Table 3). Imaging suggested that there were a
few pixels with elevated lipid/protein ratio in the Fabry bones
that were not seen in the WT (data not shown).

The absence of large differences in the mineral properties of
the bones of these animals may reflect the similar lack of major
bone phenotype in human patients with Fabry's disease, and
may also be related to the developmental age of these animals. It
is interesting to note that there was also no significant dental
phenotype in the Fabry mice at 5 weeks [43]. This too may be
related to developmental age, as the cerebrosides accumulate
with age, and a similar accumulation in the vascularity of mine-
ralized tissues may take a greater time to develop. Based on
studies of transgenic mice overexpressing α-galactosidase A, it
does not appear that the enzyme is expressed in bone cells,
although it is expressed in bone marrow [44], which may also
explain the lack of phenotype.
The results, however do illustrate how infrared imaging
microscopy can be applied to the analyses of bones in metabolic
diseases, as well as in KO and TG and osteoporotic tissues.
5. Conclusions and perspective

Infrared spectroscopic imaging has changed the way bone
phenotype can be characterized. While the Fabry mice described
here did not showmany significant changes in their bonemineral
properties, changes in matrix properties were readily defined.
Future studies will need to look at older mice, and the mecha-
nical properties of these bones. However, the quantitative in-
formation achievable from this technique, as opposed to the
qualitative information that is obtained with the use of special
stains is immediately apparent. The limitation, of course, is the
need to embed and section the tissues. Dr. Nancy Camacho, who
has another chapter in this volume, is probing the use of near IR
to examine the surface of bone through skin, hence without the
need to sacrifice, let alone embed the bone. Dr. Ed Draper,
similarly is developing non-invasive Raman spectroscopy [45]
using a pico-second Kerr gate that enables data to be required
1mmbelow the skin. These techniques may, in the future, enable
imaging spectroscopy without the need for biopsies, but the
additional information that can be obtained by infrared and
Raman imaging will continue to provide important insight into
the bone changes and how they are related to the presence and
absence of specific bone cell and matrix molecules and the
treatments for different bone diseases.
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