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Abstract In recent years a substantial body of evidence has
accumulated to support the notion that signaling pathways
known to be important during embryonic development play
important roles in regulating self-renewing tissues. Moreover,
the same pathways are often deregulated during tumorigenesis
due to mutations of key elements of these pathways. The Notch
signaling cascade meets all of the above-mentioned criteria. We
discuss here the pleiotropic roles of the Notch signaling pathway
in three different self-renewing organs (intestine, hematopoietic
system and skin) and how its deregulation is involved in tumori-
genesis.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. The Notch pathway

The Notch pathway is evolutionarily conserved and found in

organisms as diverse as worms and humans. The consequences

of partial loss-of-function (haplo-insufficiency) of the Notch

gene were first described in Drosophila in the early 20th century

when fruit flies were observed with notches at the margins of

their wing blades. The gene causing this particular phenotype

was cloned in the mid 1980s (nearly 70 years later) and encodes

a single pass transmembrane (TM) receptor, harboring a large

extracellular domain involved in ligand binding and a cyto-

plasmic domain involved in signal transduction. Drosophila

has one Notch receptor that is bound by two TM bound li-

gands while mammals possess 4 Notch receptors (Notch1–4)

and five ligands (Jagged1, and 2 and Delta-like 1, 3 and 4)

[1]. The receptors are synthesized as single precursor proteins

that are cleaved during transport to the cell surface where they

are expressed as heterodimers. Notch signaling is initiated by

ligand–receptor interaction between two neighboring cells

resulting in two successive proteolytic cleavages. The first is
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mediated by a metalloprotease of the ADAM family (TACE,

tumor necrosis factor-a-converting enzyme), which cleaves

the receptor in the extracellular domain, close to the TM do-

main. The released extracellular domain is then transendocyto-

sed by the ligand-expressing cell. The second cleavage occurs

within the TM domain and is mediated by the c-secretase

activity of a multi-protein complex consisting of presenilin,

nicastrin, APH1 and PEN2 [2]. This final cleavage liberates

the cytoplasmic domain of the Notch receptor (NICD), which

subsequently translocates to the nucleus where it binds to its

downstream transcription factor CSL (CBF1 in humans,

Suppressor of Hairless in Drosophila and LAG in Caenorhab-

ditis. elegans, also known as RBP-J in mice) and thereby acti-

vates transcription (Fig. 1). To date only a few Notch target

genes have been identified, some of which are dependent on

Notch signaling in multiple tissues, while others are tissue spe-

cific. Members of the basic helix-loop-helix transcription fac-

tor family, Hairy enhancer of split (Hes) are among the best

known Notch target genes. They negatively regulate transcrip-

tion of genes including the achete scute gene family, which is

well known for mediating neuronal differentiation [3]. Other

Notch target genes include the related Herp (Hes-related

repressor protein) transcription factor family, the cell cycle

regulator Cdkn1a (also known as cyclin dependent kinase

inhibitor (CDKI)p21), the gene for Notch regulated ankyrin

repeat protein (Nrarp), Deltex1 and the pre-T-cell receptor a
gene (reviewed in [1]).

Notch signaling has been shown to regulate a broad range of

events during embryonic and post-natal development, includ-

ing proliferation, apoptosis, border formation, and cell fate

decisions [4]. In self-renewing organs in vertebrates and during

tumorigenesis, inhibition of differentiation, lineage specifica-

tion at developmental branch points and induction of differen-

tiation are relevant functions of Notch signaling (Fig. 2). The

ability of the Notch pathway to inhibit differentiation was first

proposed for the nervous and the hematopoietic systems. The

classical example of Notch signaling regulating binary cell fate

decisions at developmental branch points is the development of

the peripheral nervous system in flies. Equipotent precursors

give rise to two alternative cell fates (epidermal versus neuro-

nal) depending on whether an uncommitted progenitor cell re-

ceives a strong Notch signal or not. In a different context

(keratinocytes, for example), Notch induces terminal differenti-

ation (Fig. 2C). Thus, the question arises; how can the Notch

pathway that is not only evolutionarily but also mechanistically

conserved, lead to so many different and sometimes opposing

outcomes? One obvious, but also superficial explanation is that
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Notch signaling. Notch signaling is initiated between neighboring cells upon ligand receptor interactions resulting in two successive
proteolytic cleavages. The first cleavage within the extracellular domain is mediated by TACE, while the second cleavage occurs within the TM
domain is mediated by the c-secretase activity of a multi-protein complex including Presenilins, Nicastrin, APH-1 and PEN-2. The liberated NICD
translocates into the nucleus and heterodimerizes with the transcription factor CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG
in C. elegans). This interaction leads to transcriptional activation by displacing co-repressors and simultaneously recruiting co-activators (CoA)
including mastermind-like proteins (such as MAML1).
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Notch function is context dependent. We need a better under-

standing of the intersecting pathways that interact with and/

or influence Notch signaling in a given tissue or cell population

to better define ‘‘context’’. Alternatively, different Notch recep-

tors induce different gene expression programs or Notch func-

tion might be controlled at the level of Notch ligands. In the

next paragraphs we will discuss examples of various Notch

functions within different self-renewing organs and how dereg-

ulation of this pathway contributes to cancer.
2. Notch: a gate-keeper of intestinal progenitor cells

The mammalian intestine is a prototype self-renewing organ

as the intestinal epithelium has one of the highest turnover

rates in the body and comprises stem cells, transit amplifying

(TA) cells and terminally differentiated cells (Fig. 3A). The

gut resembles a tube containing two major parts; the small

and the large intestine, each of which can be further divided

into anatomically different structures with different functions

(absorption of nutrients and compaction of stools). The small

intestine is much longer in length than the large intestine, and

contains finger like protrusions called villi that dramatically in-

crease the cell surface area to more efficiently absorb nutrients,

as well as invaginations called Crypts of Lieberkühn (Fig. 3A).
By contrast, the large intestine lacks villi and comprises only

crypts. The epithelia of both comprises four different cell lin-

eages: absorptive enterocytes, mucus secreting goblet cells,

hormone secreting enteroendocrine cells and lysozyme and

cryptidin producing Paneth cells (Fig. 3A). For reasons of sim-

plicity we will concentrate on the small intestine. Paneth cells

are the only terminally differentiated cells found at the bottom

of the crypts. Intestinal stem cells are thought to localize just

above the Paneth cells within the crypts and give rise to prolif-

erating TA cells, which constitute the majority of cells within

the crypt compartment. TA cells migrate upward and stop pro-

liferating upon reaching the top of the crypts where they differ-

entiate into the different cell lineages. The enterocytes,

enteroendocrine and goblet cells continue migrating upwards

towards the tips of the villi, and then undergo apoptosis and

are shed into the lumen of the intestine, a process called

exfoliation [5].

Due to the very high turnover rate of the intestinal epithe-

lium, processes such as proliferation, differentiation, migration

and cell death must be tightly regulated in order to ensure

homeostasis. Despite the diversity of cellular responses, these

processes are apparently controlled by a relatively small num-

ber of signaling pathways, including Wnt, TGFb/BMP,

Hedgehog and Notch. We will focus here on the functions of

the Notch pathway within the intestine. Those readers



Fig. 2. Pleiotropic effects of Notch signaling. The four major roles of the Notch cascade that are relevant within self-renewing tissues or during
tumorigenesis are schematically illustrated. (A) Gate-keeper function: Notch maintains stem and/or TA cells in an undifferentiated state. In the
intestine for example, Notch prevents crypt progenitor cells (TA) from differentiating. (B) Binary cell fate decisions: In the lymphoid system Notch
specifies the T cell lineage at the expense of the B cell lineage from a (at least) bi-potent early thymocyte progenitor. (C) Induction of differentiation.
In the skin, Notch induces terminal differentiation events of TA cells, and during thymocyte differentiation Notch1 promotes differentiation of pro-T-
cells into pre-T cells. (D) Tumorigenesis: overexpression of Notch within hematopoietic BM cells or in T cell progenitors results in T cell leukemias
and as such Notch functions as an oncogene. However, in the skin Notch functions as a tumor suppressor since loss of Notch signaling results in the
development of basal cell carcinoma-like tumors.
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interested in the function of the other signaling pathways are

referred to other recently published reviews [5,6].

The first, direct genetic evidence implicating Notch signaling

in homeostasis of the mammalian intestine derives from induc-

ible gut specific inactivation of the CSL/RBP-J gene that medi-

ates Notch signaling of all Notch receptors in the mouse.

Postnatal inactivation of CSL/RBP-J within the crypt com-

partment results in the complete loss of proliferating TA cells

followed by their conversion into mucus secreting goblet cells

[7]. In reciprocal experiments expression of a dominant active

form of the Notch1 receptor (NICD) in the gut inhibits differ-

entiation of crypt progenitor cells [8]. The intestines of these

mice consist primarily of undifferentiated TA cells. These reci-

procal loss- and gain-of-function data demonstrate that Notch

functions as a gate-keeper for intestinal crypt progenitor cells

in mice (Fig. 3A). Indirect evidence supporting such an impor-

tant role for Notch is derived from toxicology studies of c-

secretase inhibitors, which are currently being developed by

pharmaceutical companies to inhibit the protease activity (c-

secretase) of the presenilin multi-protein complex for the treat-

ment of Alzheimer’s disease. The primary target of these drugs

is the disease-causing amyloid precursor protein. However

Notch receptors are also cleaved by this protease upon li-

gand-mediated activation resulting in liberation of the NICD

(Fig. 1). However, rodents treated with c-secretase inhibitors

exhibit unwanted side effects such as a large increase in goblet

cells (goblet cell metaplasia) within the crypt compartment due

to the inhibition of Notch signaling [7,9,10]. The fact that loss

of Notch signaling results in goblet cell differentiation at the
expense of enterocytes suggests an additional function for

Notch signaling in lineage specification of enterocytes. Support

for this comes from gene-targeted mice for Hes1 (a well known

Notch target gene). Fetal intestines of Hes1 mutant mice exhi-

bit increased mucus secreting and enteroendocrine cells at the

expense of absorptive enterocytes [11]. The reciprocal pheno-

type is observed in intestines of gene-targeted mice for the

Math1 gene, which is transcriptionally repressed by Hes1 as

their intestines are only populated by enterocytes, suggesting

that Math1 is required for the secretory cell lineages (goblet

and enteroendocrine cells) [6] (Fig. 3A). Taken together these

results indicate that Notch has at least two functions during

intestinal homeostasis; one to maintain undifferentiated crypt

progenitor cells, and the other is to control binary cell fate

decisions of progenitor cells that have to choose between the

secretory and adsorptive cell fates, most likely by Notch in-

duced expression of Hes1.

Another well known signaling cascade that has been impli-

cated in the maintenance of crypt progenitors is the Wnt path-

way. Loss of Wnt signaling in the intestine results in loss of the

proliferative crypt compartment [5]. Thus the Notch and the

Wnt pathways synergize as gate-keepers of self-renewal in

the intestinal epithelium (Fig. 3A).

Recent gene profiling experiments have revealed a highly

conserved expression pattern between crypt cell progenitors

and colorectal cancer cells [12]. This symmetry also applies

to the Notch and Wnt pathways as multiple Notch and Wnt

signaling components are expressed both in adenomas of

APC min (multiple intestinal neoplasia) mice as well as in wild



Fig. 3. Notch functions within self-renewing tissues. (A) Notch signaling in the small intestine. Schematic representation of the crypt/villus of the
small intestine. Stem cells (in grey) and transient amplifying (TA) cells (in purple) localize to the crypt compartment, which is maintained by both
Notch and Wnt signaling. All differentiating TA cells, with exception of Paneth cells which localize to the bottom of the crypt, migrate upwards and
stop cycling at the crypt/villus boundary. Migration of non-proliferating differentiated cells continues towards the tip of the villus where they are shed
into the lumen of the intestine. One function of Notch signaling within the small intestine is to maintain proliferative crypt progenitors in the
undifferentiated state, while a second function is to influence a binary cell fate decision of TA cells that have to choose between the adsorptive and the
secretory lineages such as goblet cells and enteroendocrine cells. This process seems to be regulated by the Notch target gene Hes1, which
transcriptionally represses Math1. Math1 is required for the development of secretory lineages while Hes1 expression favors the development of
adsorptive cells. (B) Notch signaling in hematopoiesis. In fetal hematopoiesis, Notch1 signaling is necessary for developing stem cells within the
AGM region. In adult BM progenitors Notch signaling has been proposed (based mainly on gain-of-function studies) to inhibit differentiation of
stem cells (HSCs). Downregulation of Notch1 signaling is required in BM B cell progenitors to allow normal B cell development. In the thymus
Notch1 signaling is essential for T lineage specification in an early thymocyte progenitor, while at subsequent developmental stages it promotes
differentiation of pro-T cells into pre-T cells of the abT lineage. In the spleen Notch2 signaling specifies MzB. FoBs. (C) Notch signaling in the skin.
Schematic representation of the murine skin showing some proteins that are expressed in specific cellular layers. The epidermis is a stratified
squamous epithelium that is composed of multiple cell layers. The basal cell layer localizes to the basement membrane and consists mostly of TA cells
intermingled with a few stem cells. The basal cell layer gives rise first to the spinous layer followed by the granular layer and then the cornified layer.
Notch1 signaling induces expression of early differentiation markers such as Keratin1 and Involucrin, and partially represses the expression of
Loricrin and Filagrin, two late differentiation markers. Moreover Notch1 induces expression of the cell cycle regulator p21CIP1/WAF by at least two
mechanisms. First, Notch1 targets the p21CIP1/WAF promoter directly, and second Notch1 upregulates p21CIP1/WAF through the activation of
calcineurin/NFAT activity mediated by the downregulation of calcipressin via the Notch target gene Hes1. Both Wnt- and Shh-mediated signaling
are normally repressed in the murine epidermis by Notch1. Repression of the Wnt pathway is at least partially mediated by the downregulation of
Wnt4 through a p21CIP1/WAF:E2F-1-dependent mechanism.
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type crypt cells [6]. These data support the hypothesis that acti-

vation of the Notch and Wnt pathways occurs simultaneously

in proliferating adenomas and intestinal crypts. This leads to
the question whether proliferating adenoma cells can be differ-

entiated and withdrawn from the cell cycle by inhibiting Notch

signaling, similarly to what is observed with crypt progenitors.
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Indeed, treatment of APC min mice with c-secretase inhibitors

induces goblet cell differentiation and reduces proliferation in

such adenomas [7], suggesting that specific inhibition of the

Notch pathway can drive cells out of cycle despite the fact that

Wnt signaling remains active. This ‘proof of principle’ experi-

ment highlights the Notch pathway as potential drug target for

the treatment of intestinal neoplasia.
3. Notch and hematopoiesis

The hematopoietic system is certainly the best studied and

characterized self-renewing system. Although hematopoietic

stem cells (HSCs) were first identified 25 years ago [13], the

molecular mechanisms and specific microenvironments that

regulate self-renewal versus differentiation are far from being

fully understood. Initially the wide expression pattern of Notch

receptors and their ligands (reviewed in [1]) within the adult

hematopoietic system, suggested that Notch might play an

important role during hematopoiesis. Such a role has been con-

firmed during embryonic hematopoiesis. In the developing

embryo hematopoiesis starts in the yolk sac, shifts first to a re-

gion within the embryo called the aorta-gonad-mesonephros

(AGM), then to the fetal liver and finally localizes to the bone

marrow (BM) (Fig. 3B). The importance of the Notch pathway

in embryonic hematopoiesis was shown using gene-targeted

mice for Notch1 and Notch2, both of which die around E10.5

due to multiple defects [14]. Hirai and colleagues showed that

while Notch1 is dispensable for primitive hematopoiesis within

the extraembryonic yolk sac, it is essential for the reconstitution

ability of fetal HSCs derived from the AGM region (Fig. 3B).

By contrast, Notch2 appears to be dispensable for both primi-

tive and definitive embryonic hematopoiesis [14]. During the

onset of definitive hematopoiesis in the embryo Notch1-RBP-

J-dependent signaling leads to the activation of GATA2 [15],

which has been shown to be an essential transcription factor

for hematopoiesis [16]. The importance of Notch1 for embry-

onic hematopoiesis was further confirmed by generating chime-

ric mice using Notch1 deficient and wild type embryonic stem

cells (ES). Although, hematopoietic cells derived from Notch1

deficient ES cells were initially found in these chimeric embryos,

the level of chimerism declined rapidly. While Notch1 deficient

ES cells contributed efficiently to other organ systems, at E15.5

they no longer contributed to the hematopoietic system [17].

Taken together these results underscore the important role of

Notch1 during early embryonic hematopoiesis.

Whether Notch signaling is similarly important for adult

HSC self-renewal and/or maintenance is controversial. The

first experiments indirectly supporting an important role for

Notch in HSC maintenance were derived from Notch gain-

of-function studies using hematopoietic cell lines that could

no longer be differentiated due to the expression of a dominant

active form of the Notch1 receptor (NICD) [18–20]. These re-

sults suggested that Notch inhibits differentiation of hemato-

poietic progenitor cells. This notion was further confirmed

by similar gain-of-function studies using primary BM progen-

itors which showed increased HCS self-renewal in vivo [21]

(Fig. 3B), and in one case led to immortalization of hemato-

poietic progenitor cells with myeloid and lymphoid differentia-

tion potential [22]. This enhanced HSC self-renewal is possibly

mediated by Notch1-induced Hes1 expression since trans-

planted Hes1 expressing HSCs resulted in increased numbers
of cells with side population activity [23], characterized by

the active efflux of the DNA dye Hoechst 33342; a hallmark

of long-term HSCs [24]. Moreover, co-culture assays in which

murine or human HSCs were incubated with immobilized or

soluble Notch ligands, or together with ligand-expressing fee-

der cells maintained or even enhanced HSC self-renewal

in vitro (reviewed in [1]). Recently Duncan et al., retrovirally

expressed a dominant negative form of CSL/RBPJ in HSCs.

These cells showed accelerated differentiation in vitro and re-

duced levels of chimerism in recipient mice after transplanta-

tion [25]. Although this large body of evidence supports the

notion of an important function for Notch signaling in HSC

self-renewal and/or maintenance, none of the genetic condi-

tional loss-of-function models support this hypothesis. Specif-

ically, neither inducible inactivation of CSL/RBP-J [26], which

mediates Notch signaling of all four Notch receptors, nor con-

ditional loss-of-function of Notch1 [27] or Notch2 [28] in adult

BM cells lead to a HSC phenotype.

Components of the Notch signaling pathway have also been

suggested to participate in the HSC niche, because osteoblast

specific expression of the activated parathyroid hormone re-

lated protein receptor results in increased Jagged1-expressing

osteoblasts, and correlates with increased HSC numbers.

These data led to the hypothesis that Jagged1-mediated Notch

signaling may regulate HSC homeostasis [29]. However, once

again, the genetic data do not support this hypothesis since

conditional inactivation of Jagged1 in BM progenitors and/

or stroma does not perturb hematopoiesis [30]. Despite the fact

that there is no consensus between gain- and genetic loss-of-

function experiments regarding the role of Notch signaling in

HSC self-renewal and/or maintenance, both experimental set-

tings have demonstrated an essential role for Notch1 in T cell

commitment in the adult lymphoid compartment [1]. Inducible

inactivation of Notch1 in BM progenitors results in a block in

T cell development and ectopic B cell development in the thy-

mus suggesting that Notch1 instructs an early lymphoid pro-

genitor to adopt a T cell fate. In the absence of a Notch1

signal an early lymphoid progenitor chooses the B cell fate

by default (Fig. 3B). An identical phenotype is observed in

mice in which the CSL/RBP-J gene was inactivated in BM pro-

genitors [1], strongly indicating that T cell specification is med-

iated by Notch1/RBP-J dependent signaling. Interfering with

Notch signaling by transgenic expression of negative modula-

tors (such as Fringe, Deltex or Nrarp), or dominant negative

forms of transcriptional co-activators (MAML1) also blocks

T cell development concomitant with B-lymphopoiesis in the

thymus (reviewed in [31]). Reciprocal gain-of-function studies

overexpressing NICD in BM progenitors results in ectopic T

cell development at the expense of B cell development [31].

Thus, both gain and loss-of-function studies demonstrate that

Notch1 is essential for T lineage commitment. In addition,

Notch1-RBP-J signaling promotes differentiation of pro-T

cells into pre-T cells within the thymus by controlling rear-

rangement of the T cell receptor (TCR) b locus [31] through

regulating chromatin accessibility [32], thereby assuring the

successful generation of a pre-TCR complex, which is essential

for thymocyte development (Fig. 3B).

An additional role for Notch signaling has been shown for

splenic B cell differentiation. Immature BM derived B cells en-

ter the spleen where they differentiate into either follicular B

cells (FoBs) or marginal zone B cells (MzBs). Notch signaling

is important for MzB differentiation, a process that is regulated
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by Delta1:Notch2-mediated CSL/RBP-J dependent signaling

[31] (Fig. 3B). Other functions of Notch signaling during adap-

tive immunity are (reviewed in [31]). Taken together the clear

cut physiological roles of Notch signaling in hematopoiesis is

influencing lineage decision of progenitors at developmental

branch points as well as the induction of differentiation.
4. Notch and T cell neoplasisa

There is increasing evidence that aberrant Notch signaling

plays an important role in a number of cancers (Fig. 2D).

The first link between Notch and human tumors was made in

the late 1980s and early 1990s by Jeff Sklar’s group which

cloned and sequenced a t(7;9) chromosomal translocation

breakpoint in a small number of patients suffering from T cell

acute lymphoblastic leukemia (T-ALL). The chromosomal

translocation juxtaposes the C-terminal region of EGF-like

repeat 34 of human NOTCH1 to the TCR b-enhancer. This

leads to the expression of a truncated and constitutively active

form of the NOTCH1 receptor which was named TAN1 for

translocation-associated Notch homologue [33]. The causative

role of aberrant Notch signaling for T-cell leukemia was shown

in multiple mouse models by expressing NICD in murine BM

progenitors [34]. Similarly, constitutive expression of Notch1-

ICD or Notch3-ICD in thymocyte progenitors also leads to T

cell leukemia suggesting that the oncogenic potential is not re-

stricted to Notch1 signaling [31]. Moreover these experiments

indicate that not only can NICD transform BM progenitors

(most probably HSCs), it can transform also more committed

thymocyte progenitors. However it is interesting to note that

the oncogenic potential of Notch seems to be restricted to T cell

malignancies as no myeloid malignancies have been reported to

date. The mechanistic reason for this restriction is currently

unknown. It is possible that Notch needs to cooperate with a

T cell specific signal to cause T cell malignancies. Experiments

supporting this hypothesis are derived from NICD-expressing

BM progenitors from RAG deficient mice (which cannot rear-

range B and TCRs) which do not seem to develop T-ALL, sug-

gesting that Notch cooperates with a TCR-mediated signal [35].

However the molecular details of these TCR-mediated signals

are still not well understood and require further investigation.

The t(7;9) chromosomal translocation in humans occurs

rarely, and is found in less than 1% of all T-ALL patients thus

questioning the clinical importance of this finding. However in

a recent study, Aster and colleagues identified activating muta-

tions within the NOTCH1 receptor in more then 50% of the 96

primary T-ALL tumors analyzed. These mutations were found

to localize within the heterodimerization domain and/or PEST

domain, which regulate protein stability of the receptor. In

approximately 20% of cases mutations were found in both

domains [36]. These data show that activating mutations

within the NOTCH1 receptor are one of the major causes

for the development of T cell leukemias thereby pushing Notch

into the center of T-ALL pathology.
5. Notch and skin

The skin and its appendages including hair follicles, repre-

sents a physical barrier that is constantly renewed. Two stem
cell pools have been described, one in the skin epidermis and

a second in the bulge region of hair follicles. The epidermis con-

sists of multiple layers of keratinocytes that are separated from

the dermis by the basement membrane (Fig. 3C). Slowly cycling

multipotent stem cells, as well as rapidly cycling TA cells are

found within the epidermal basal cell layer that is characterized

by expression of keratins 5 and 14. After a limited number of

cell divisions, TA cells are withdrawn from the cell cycle, and

differentiate by detaching from the basement membrane to

form the suprabasal spinous layer that expresses keratins 1

and 10. Keratinocytes from the spinous layer continue migrat-

ing towards the outer surface to form the granular layer, char-

acterized by cells that acquire lipid-containing granules that

release their contents in the intercellular space. At this stage

the cells synthesize Filagrin and Loricrin, which participate in

the formation of the cornified envelope in the outermost layer

before eliminating their nuclei and cytoplasmic organelles, a

process called cornification (Fig. 3C) (reviewed in [37]).

Hair follicles also undergo self-renewal throughout life. Hair

follicle stem cells reside within the bulge region which is lo-

cated in the upper part of the hair follicle at the level of the

insertion of the arrector pili muscle [38]. Hair follicle stem cells

were first defined by their label retaining ability [38] and their

capacity to generate hair follicles, sebaceous glands and epider-

mis [39]. Recently very sophisticated studies showed that a sin-

gle cell isolated from the bulge region of either a hair follicle

[40] or a whisker follicle [41], can produce long-term prolifer-

ating clones in vitro, indicating that these cells do indeed have

self-renewal capacity. More importantly, such clonally ex-

panded cells were able to form intact hair follicles and seba-

ceous glands, and to participate in formation of the

epidermis in transplantation experiments, demonstrating that

these cells have multi-lineage potential [40,41]. Moreover, Bar-

randon and colleagues re-isolated hair follicle stem cells from

the first transplant and performed serial transplantation exper-

iments thus demonstrating the self-renewal ability of clonally

expanded single hair follicle stem cells in vivo [41].

The multi-lineage potential of bulge stem cells as well the

ability of progeny derived from label retaining cells to contrib-

ute to the epidermis in response to wounding [42] has fueled

the notion that bulge stem cells are also responsible for long-

term self-renewal of the skin epidermis. However a recent

study in which bulge cells were ablated, combined with fate

mapping experiments demonstrated that hair follicle stem cells

are not required for normal homeostasis of the skin epidermis.

However they can contribute transiently to the epidermis after

wounding [43].

In the human epidermis NOTCH1, NOTCH2 and

NOTCH3 show high mRNA expression in the basal cell layer

and weaker expression in the suprabasal layers. Delta1 and

Jagged1 expression is confined to the basal layer [44], with Del-

ta1 expression being highest in regions where potential stem

cells seem to reside. These observations led to the suggestion

that Delta1-mediated Notch signaling induces a TA cell phe-

notype [45]. In the epidermis of newborn mice Notch1 and

Notch2, as well as Jagged1 and Jagged2 are expressed in the

suprabasal layers [46]. Despite these differences in expression

patterns of Notch receptors and ligands between human and

mouse skin, in vitro data indicate that Notch signaling induces

differentiation of keratinocytes [45,46]. Activation of Notch1

signaling causes cell cycle arrest in mouse keratinocytes by

increasing expression of the cell cycle regulator p21WAF1/Cip1
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(also known as CDKIp21) in two different ways (Fig. 3C). On

one hand Notch1 induces p21WAF1/Cip1 expression by

directly targeting NICD-RBP-J to the p21 promoter [46], while

on the other hand Notch1 indirectly activates the calcineurin/

nuclear factors of activated T cells (NFAT) pathway, which

acts positively on the p21WAF1/Cip1 TATA-box proximal re-

gion. This indirect activation is mediated by the Notch target

gene Hes1, by downregulating calcipressin, a negative regula-

tor of the serine/threonine phosphatase calcineurin [47]. Acti-

vated calcineurin dephosphorylates NFAT proteins, thereby

inducing their subsequent translocation to the nucleus where

they participate in regulating gene expression programs.

Another property of Notch1 activation in keratinocytes is

induction of early differentiation markers (such as Keratin1/

10 and Involucrin), down modulation of integrin expression

and partial repression of late differentiation markers such as

Loricrin and Filagrin [46] (Fig. 3C).

Tissue specific inactivation of the Notch1, RBP-J and Prese-

nilin1 and 2 genes in the murine epidermis results in hyperpro-

liferation of the skin, hair loss and epidermal cyst formation

within less than one month [48–51]. Moreover, mice in which

Notch1 has been ablated in the skin are more susceptible to

chemical induced carcinogenesis, in part explained by reduced

p21WAF1/Cip1 protein levels [48], since p21WAF1/Cip1�/� mice are

also more sensitive to chemical induced carcinogenesis [52].

Since the carcinogen-induced mutation event is predominantly

found within the HA-ras oncogene it is possible that loss of

Notch1 function may have cooperative effects with activated

ras during the transformation process of keratinocytes. Indeed,

if Notch1 deficient keratinocytes forced to express an onco-

genic form of the ras gene are injected subcutaneously into

nude mice they form aggressive squamous cell carcinomas

while wild type control cells do not [48].

Over time, mice with skin specific inactivation of Notch1

develop spontaneous, highly vascularized, basal cell carci-

noma-like tumors. In mice and humans this tumor type is

frequently associated with aberrant sonic hedgehog (Shh)

signaling, and the absence of Notch1 in the mouse epidermis

leads to aberrant Gli2 expression, a downstream component

of the Shh pathway. Consistent with this, human basal cell

carcinomas show reduced expression of NOTCH1, NOTCH2

and JAGGED1 [44], indicating that loss of NOTCH signal-

ing in the human epidermis could also lead to aberrant Shh

signaling and thus contribute to the development of basal-

cell carcinomas.

The Wnt/b-catenin pathway is another signaling cascade

that is deregulated as a consequence of loss of Notch1 signal-

ing in the mouse skin. Notch1 deficiency results in increased b-

catenin mediated signaling in keratinocytes and tumors, while

Wnt signaling can be repressed by activated Notch1 expression

[48]. Suppression of Wnt signaling by Notch1 activation seems

(at least in part) to be mediated indirectly by increasing levels

of p21WAF1/Cip1 protein that subsequently associates with E2F-

1 transcription factors at the Wnt4 promoter causing down

modulation of Wnt4 gene expression [53].

Taken together, the function of Notch signaling in the epi-

dermis and keratinocytes is to induce terminal differentiation

processes as well as to withdraw proliferating cells from the cell

cycle. A long-term consequence of loss of Notch1 activation in

murine skin is the development of basal-cell carcinoma like tu-

mors, suggesting that the Notch pathway exerts tumor sup-

pressive functions in the skin (Fig. 2D).
6. Concluding remarks

The Notch pathway is a key regulator of many developmen-

tal processes during fetal and adult differentiation. Many of

the general Notch functions such as stem cell gate keeper,

influencing binary cell fate decisions or induction of terminal

differentiation processes were first described in invertebrates

and subsequently confirmed in self-renewing organ systems

of mammals. Although the Notch pathway is mechanistically

relatively simple and highly conserved its physiological func-

tion within different self-renewing tissues is unpredictable de-

spite their common structure. In the intestine Notch and

Wnt play a gate-keeper function for crypt progenitor cells.

In addition Notch seems to influence binary cell fate decisions

of cells that have to choose between the secretory and adsorp-

tive lineages in the gut. Although deregulation of the Wnt

pathway plays a central oncogenic role in the development

of colorectal cancers in humans it remains to be shown

whether deregulation of Notch signaling also follows the

Wnt cascade in this respect. Although a gate-keeper function

of Notch has also been postulated for HSC in the BM, the best

established role of Notch within the hematopoietic systems is

the ability to influence and/or specify cell fates of lymphoid

progenitors. Moreover it has become clear that aberrant Notch

signaling in humans due to activating mutations in the

NOTCH1 receptor plays a key role in the development of T-

ALL. Thus Notch1 is an established oncogene in the hemato-

poietic system. However, this dramatically contrasts with the

function of Notch1 in the skin where Notch1 seems to induce

terminal differentiation processes and moreover functions as a

tumor suppressor. This obviously leads to the question of how

Notch can have such opposing functions in different self-

renewing organs. Questions concerning specific Notch target

genes, mechanistic insights into activating Notch mutations

and cross talk between Notch and other pathways need to be

answered in order to expand our limited understanding of this

‘simple’ signaling pathway.
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