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Abstract Soils play a key role in various hydrological and meteorological applications. The objec-

tive of this paper is to analyze the spatial variability of very high resolution (3.3 m) RISAT-1

(5.35 GHz) data with surface soil parameters to produce soil moisture retrieval model. The

behaviors of the RISAT-1 signal were analyzed for two configurations, RH and RV at high incident

angle (48.11�), with regard to several soil conditions: volumetric moisture content (Mv), root mean

square surface roughness (r.m.s.) and soil composition (texture). The relationship between the

backscattering coefficient (r�) and the soil parameters (moisture, surface roughness and texture)

was examined by means of satellite images, as well as ground truth measurements, of each of the

23 plots, recorded during several field campaigns in the January 2015. RISAT-1 images demonstrate

high potential for the identification of local variations of soil dielectric constant (e), texture and Mv.

r� has a positive relationship with Mv both for r� (RH) and r� (RV) with R2 = 0.588 and

R2 = 0.525. The roughness component was derived in terms of r.m.s. having a positive correlation

with r� (RH) (R2 = 0.009) and r� (RV) (R2 = 0.029). Dielectric constant (e) has a positive relation-
ship with r� (RH) having R2 = 0.656 and r� (RV) having R2 = 0.534. By considering all the major

influencing factors (r� (RH), r� (RV), e and r.m.s.) a semi-empirical model has been developed,

where Mv is a function of r� (RH), r� (RV), e and r.m.s. This model has adjusted R2 = 0.956

and RMSE = 0.010 at 95% confidence level.
� 2015 Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.V. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

In hydrologic studies, soil moisture is a critical component as it
controls the partitioning between infiltration and runoff. Infil-
tration determines the amount of water available for vegeta-

tion growth and runoff has a strong impact on the rate of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejrs.2015.09.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kousik.envs@gmail.com
http://dx.doi.org/10.1016/j.ejrs.2015.09.004
http://www.sciencedirect.com/science/journal/11109823
http://dx.doi.org/10.1016/j.ejrs.2015.09.004
http://creativecommons.org/licenses/by-nc-nd/4.0/


298 K. Das, P.K. Paul
surface erosion and river processes (Álvarez-Mozos et al.,
2005; Wagner et al., 2007; Zhao and Li, 2013; Al-Yaari et al.,
2014). The wetness of the soil also controls the evapotranspira-

tion rate and thus the micro-meteorology. Especially informa-
tion on the spatial distribution of soil moisture, caused by
micro-topography, vegetation, and stochastic precipitation

events, is of major importance for watershed management,
as it allows for optimizing the reallocation of water supplies
during dry periods, or aids in predicting and managing high

tides and floods during extreme rainfall events. In each of these
cases knowledge of the distribution and amount of water in the
soil can aid developing better modeling and decision support
tools (Seneviratne et al., 2010; Kornelsen and Coulibaly,

2013; Petropoulos et al., 2015).
Technological advances in satellite remote sensing have

offered a variety of techniques for measuring soil moisture

across a wide area continuously over time (Engman, 1990).
Thus direct observations of soil moisture are currently
restricted to discrete measurements at specific locations,

because soil moisture is highly variable both spatially and tem-
porally (Engman, 1991; Wood et al., 1992; Laguardia and
Niemeyer, 2008) and are therefore inadequate to carry out

regional and global studies (http://www.geotimes.org/may02/
WebExtra0503.html). Soil-moisture information can be
retrieved from different remote sensing methods using differ-
ent data, such as visible, infrared, thermal, and microwave

data (Batlivala and Ulaby, 1977; Seneviratne et al., 2010;
Petropoulos et al., 2015). Each remote sensing method used
has its own advantages and disadvantages, based on how sen-

sitive the soil surface is to the electromagnetic radiation and
how strong the reflected radiation, from the soil surface, can
be received by the sensor (Batlivala and Ulaby, 1977; Gia-

comelli et al., 1995; Seneviratne et al., 2010; Petropoulos
et al., 2015).

Knowledge of soil surface conditions, soil moisture content,

and roughness is of the highest importance in agriculture and
vegetation growth monitoring, atmospheric sciences, and
hydrological studies (Anguela et al., 2010; Kornelsen and
Coulibaly, 2013; Bertoldi et al., 2014). In this context, satellite

imagery is a powerful tool that can provide accurate and repet-
itive spatial data. Synthetic-aperture radar (SAR) techniques
are particularly useful because they make it possible to moni-

tor soil parameters under any weather conditions (Dobson and
Ulaby, 1986; Fung, 1994; Hallikainen et al., 1985; Ulaby et al.,
1986; Kornelsen and Coulibaly, 2013). For bare agricultural

soils, the backscattered radar signal depends strongly on the
geometric characteristics (roughness) and dielectric properties
(moisture content, soil composition) of the soil (Singh and
Kathpalia, 2007; Li et al., 2014; Gharechelou et al., 2015).

Studies of Zribi and Dechambre (2002a,b) using simulation
models or experimental analysis have shown that the radar sig-
nal is more sensitive to surface roughness at high incidence

angles than at low incidence angles (Fung, 1994; Baghdadi
et al., 2002a,b, 2008, 2012). Many studies using data collected
by space and airborne SAR scatterometers and model simula-

tions have already shown the potential of radar data to retrieve
soil parameters (roughness and moisture) and, to a lesser
extent, to the soil’s textural composition (Baghdadi et al.,

2002a,b, 2006; Baghdadi et al., 2007; Dobson and Ulaby,
1986; Fung and Chen, 1992; Holah et al., 2005; Le Hégarat
Mascle et al., 2002; Oh, 2004; Shi et al., 1997; Srivastava
et al., 2003, 2006, 2009; Ulaby et al., 1978; Zribi et al.,
2005). Whatever the SAR configuration, the radar signal fol-
lows a logarithmic function with the soil-surface roughness
(Fung, 1994; Ulaby et al., 1986). Ulaby et al. (1978) have.

The dynamics of the relationship between the radar signal
and roughness parameter are stronger in the L-band than in
the C- and X-bands (Baghdadi et al., 2008; Ulaby et al.,

1986) Moreover, SAR data are more sensitive to soil
roughness at high incidence angles (Baghdadi et al., 2008;
Baghdadi and Zribi, 2006; Zribi and Dechambre, 2002a,b).

The surface area of soil particles in a soil depends on the
particle sizes which control the percentage of free and bound
water (Srivastava et al., 2009). Few studies have analyzed the
response of the radar signal to soil composition in terms of

grain-size distribution based on percentages of sand and clay.
The grain-size distribution has an effect on dielectric behavior
over the entire frequency range (1.4 to 18 GHz) and is most

pronounced at frequencies below 5 GHz (Hallikainen et al.,
1985). In the C-band, decreasing soil clay content increases
the sensitivity of the radar signal to soil moisture (0.22 dB/%

for clay soil: 49% clay, 35% silt and 16% sand; 0.33 dB/%
for loamy soil: 17% clay, 48% silt and 35% sand) (Ulaby
et al., 1978). As the distribution of grain sizes controls the

amount of free water that interacts with the incident micro-
wave, the amount of free water gives significant contribution
to SAR backscatter (Srivastava et al., 2006, 2009).

Bankura district is situated between 22�380 and 23�380 north
latitude and between 86�360 and 87�460 east longitude. Climatic
condition (e.g., rainfall, temperature and humidity), various
complex land form, hydrology and soil combination have

greatly influenced the farming system of Bankura district. In
Bankura district two Agro Climatic Zones, viz., Undulating
Red and lataritic in Sonamukhi, Joypur, Bishnupur, Rani-

bandh, Gangajalghati, Borjora, Saltora, Onda, Taldangra,
Simlapal, Mejhia, Raipur, Sarenga, Chhatna, Indpur, Khatra,
Hirbandh, Bankura-I and Bankura-II blocks and Vindhyan

Alluvial Zone in Patrasayer, Indus, Kotulpur blocks, exists.
Agriculture in this region is mostly rain dependent. Ground
water is not easily and economically trappable over there.
Prevalence of moisture stress on standing Kharif Crop in late

monsoon period is very common. Soil moisture has a great
importance for agriculture in the place where water table goes
down in late monsoon. Thus the study has been initiated in

part of Onda, Taldangra, Simlapal and Bishnupr blocks of
Bankura district to retrieve soil moisture by using remote sens-
ing technology. Continuous monitoring of soil moisture is pos-

sible throughout the year by using remote sensing technology
on this sub-humid and dry region. Thus the aim of this work
is to derive a model to retrieve volumetric soil moisture content
(Mv) by using SAR data. This model can be developed by con-

sidering the major influencing factors to retrieve soil moisture
in terms of soil physical characteristics (Surface roughness,
dielectric constant and soil texture) and sensor configuration

(back scattering coefficient including both polarizations,
(RH and RV)).
2. Materials and methods

2.1. Study site

Bankura district is situated between 22�380 and 23�380 north
latitude and between 86�360 and 87�460 east longitude

http://www.geotimes.org/may02/WebExtra0503.html
http://www.geotimes.org/may02/WebExtra0503.html


Figure 1 Representation and location map of study area.
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(Fig. 1). With a triangle shaped contour, the district lies in the

Burdwan Division of West Bengal. The Damodar river sepa-
rates Bankura from Burdwan district in the north. The district
of Midnapore and Purulia share its southern and western

boundaries respectively with Bankura. The south-eastern part
of the district is bounded to a certain extent by Hooghly dis-
trict. The part of Bankura district which has been taken into
consideration for study is lying within 22�51054.2300 N,

87�22042.8300E to 23�5’33.5800N 87�22’42.8300E (Fig. 2). Parts
of Bishnupr, Simlapal, Onda and Taldangra block of Bankura
district are lying within this geographical extension, which

have been studied (Fig. 2). The soil, however, in the other
blocks consists of sandy loam and Clay loam. The study area
is tropical dry and sub-humid having yearly rainfall of

1480.62 mm in last five years from 2009 to 2013 mm and
maximum temperature ranges between 45 �C maximum and
minimum of 10 �C normally. Rainfall data have been

collected from INDIA METEOROLOGICAL DEPARTMENT
(http://www.imd.gov.in/section/hydro/distrainfall/webrain/wb/
bankura.txt).
2.2. Satellite data

2.2.1. SAR data

Radar Satellite-1 (RISAT-1) is a state of the art Microwave
Remote Sensing Satellite carrying a Synthetic Aperture Radar
(SAR) Payload operating in C-band (5.35 GHz). RISAT-1 was

successfully launched by PSLV-C19 on April 26, 2012. It
started beaming images from 01 May 2012. The choice of C-
band frequency of operation and RISAT-1 SAR capability

of imaging in HH,VV,HV,VH and circular polarizations has
ensured its wide applicability. As it is a side looking active
sensor, around 107 km on either side of the sub-satellite track
comes under Non Imageable area for the orbit under

consideration.
RISAT-1 (SAR) image was purchased from NRSC Data

Centre. The collected image is covering the concerned study

area portion of Bishnupr, Simlapal, Onda and Taldangra
block of Bankura district under Scene 20, Session 1. The pur-
chased image is Level 2, Fine resolution STRIPMAP (FRS-1)

http://www.imd.gov.in/section/hydro/distrainfall/webrain/wb/bankura.txt
http://www.imd.gov.in/section/hydro/distrainfall/webrain/wb/bankura.txt


Figure 2 Study area extension; Part of Simlapal, Taldangra, Onda nad Bishnupur block of Bankura district.
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mode Terrain Geo-referenced product. The projection system
used for this image is WGS_1984_UTM_Zone_45N and
Datum: WGS_84. This image is acquired in Right circular
polarized mode (RH and RV). The acquisition date of scene

is 4th January, 2013, with an orbit No. 3824, look direction
right and incidence angle of 48.106 with 3.3 m ground
resolution.

2.2.2. Optical data

Land use/land cover map has been prepared by digitizing the
image of WorldView-2 satellite sensor, having ground

resolution 0.5 m and image acquisition date January/2010.
The projection system used for this image is WGS_
1984_UTM_Zone_45N and Datum: WGS_84. NDVI map

was prepared by using the Landst-7 image acquired in
January, 2013. The Landst-7 images of corresponding
study area were downloaded from USGS Earth Explorar

(https://earthexplorer.usgs.gov).
2.3. Experimental measurements

The field campaigns presented in this study were carried out on

the 2nd to 6th of January, 2015. A total of 23 field sites were
selected for sampling (Fig. 3). Soil samples per site were col-
lected in 0–5 cm depth of soil surface. GCP (Ground Control

Point) for each of the 23 locations were collected at the same
time. GCP were collected by using Xploris 400 a handle
GPS. During the time of field data collection the humidity of
that area was very low. Actual rainfall of Bankura district

from 1.03.2015 to 18.03.2015 was 2.2 mm (http://www.
imd.gov.in/section/hydro/dynamic/rfmaps/districtwise.htm).

2.3.1. Surface roughness

Measurements of soil roughness were carried out in all of the
23 training plots using roller chain by following standard
method (Saleh, 1993). Random roughness profiles across the

direction of tillage (five perpendiculars) were established in

https://earthexplorer.usgs.gov
http://www.imd.gov.in/section/hydro/dynamic/rfmaps/districtwise.htm
http://www.imd.gov.in/section/hydro/dynamic/rfmaps/districtwise.htm


Figure 3 Representation of sampling locations.
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each training plot. Soil surface roughness was measured by the
chain method by using 0.01 m (0.03 ft) linked roller (ANSI 35
riv.type) chain with a length of 1 m (3.2 ft) (L1–1 m) which

was very carefully laid out on the soil surface in perpendicular
direction to the ridges. A Stanley measuring tape was used to
read the linear distance, L2, resulting from roughness elements.
After obtaining readings from all sites, the average value was

used to calculate the random roughness using Eq. (1).

Cr ¼ 1� L2

L1

� �
� 10 ð1Þ

where: Cr, is roughness at any direction. However, roughness

caused by aggregates (random roughness) is obtained by mea-
suring the C in perpendicular direction to ridges. L1 is the
length of roller chain and L2 linear distance of chain due to
roughness. The statistical properties of the roughness can be
explained by the root mean square height (r.m.s.) (vertical
variation). Root mean square height was calculated using the

Eq. (2).

r:m:s: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼0ðZi � �ZÞ2
n� 1

s
ð2Þ

where: Zi denotes the height of the point, �Z is the mean height
and n is the total number of points taken under consideration.

2.3.2. Soil moisture content

Gravimetric soil moisture (mg) value was obtained from
laboratory analysis, which was converted to volumetric soil

moisture (Mv) by multiplying bulk density (Sbd) (Eq. (3)):

Mv ¼ mg� Sbd ð3Þ
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2.3.3. Soil composition

Soil is the major factor of the vegetation and agriculture as well

as runoff assessment. Textural Soil of the study area has been
grouped into five types of soils on the basis of analysis of col-
lected samples from 23 sampling sites. These are (i) loamy,

(ii) sandy loam, (iii) sandy clay loam, (iv) clay and (v) clay loam.
The most abandoned type of soil texture is clay loam (39.13%),
sandy clay loam (26.09%) and subsequently loamy type

(17.39%). Clay (8.7%) and sandy loam (8.7%) are found in a
very smaller portion of the studied sampling sites.

3. Results

3.1. Rainfall

The rainfall data collected were used to find out the average
rainfall for the month of January. Along with the average
Figure 4 Land use and land cover map of Bankura district, cove
rainfall it was also investigated whether the study area has
been affected by rainfall or not prior the days of sampling,
during satellite overpasses and the time of field measure-

ments. Five years average rainfall in the month of January
of Bankura district is 11.9 mm. Rainfall from October 2012
to January 2013 goes to lowest from 38.0 to 0.9 mm. From

this observation it could be concluded that the study area
is not affected by the rainfall prior to the days of satellite
overpasses. So rainfall does affect normal soil moisture

condition of the study area during or before the satellite over-
passes. Also it was confirmed that rainfall did not affect the
normal soil moisture condition during the field sampling of
2nd to 6th of January, 2015. It was reported that actual mean

rainfall of Bankura district from 1.03.2015 to 18.03.2015 is
2.2 mm. It showed that normal soil moisture content was also
not affected during or prior to the field sampling of 2nd to

6th of January, 2015.
ring part of Simlapal, Taldangra, Onda and Bishnupur block.
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3.2. Land use and land cover

Land use and land cover map of the study area was prepared
using the WorldView-2 image by digitizing the objects. Simple
first level of classification was used for the land use and land

cover map. Due care was taken in digitizing the object for
desired classes. Basic visual and digital interpretation parame-
ters were followed such as; tone, texture, shape, size, pattern,
Table 1 Landuse area statistics.

Land use and land cover class Area (Sq km) Area (%)

Agricultural field 86.24 12.66

Dense forest 132.99 19.52

Open forest 56.18 8.25

Water body 19.37 2.84

Habitation 0.01 0.00

Fallow land 386.42 56.73

Figure 5 Normalize Difference Vegetation Index of Bankura district,
location and association for the recognition of objects and
their tonal boundaries. The final classified output image was
assigned 6 classes (Classes are habitation, water body, agricul-

tural land, dense forest, open forest and fallow land) (Fig. 4).
12.66% of total area was found to be under cultivated land
which was recognized as agricultural land, 2.84% area is cov-

ered by water body, 19.52% under dense forest, 8.25% area
under open forest, 0.001% area under habitation and
56.73% area to be occupied fallow land (Table 1). Total area

(Km2) covered by each of the classes is represented in Table 1.

3.3. Normalized difference vegetation index (NDVI)

NDVI of the respective sampling sites were calculated from
Landsat-7 (Fig. 5). NDVI suggest the normalization of scatter-
ing coefficient that will be the function of the vegetation char-
acteristic of corresponding area. 69.56% of total sampling sites

showed negative NDVI values, which denote that these areas
(S1-S3, S6-S10, S12-S15, S17-S19 and S21-S23) are free from
vegetation interference to radar signal (r�) (Fig. 6). The rest
covering part of Simlapal, Taldangra, Onda and Bishnupur block.
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of the 30.34% sampling sites which have smaller vegetation

interferences are S4, S5, S11, S16 and S20-S22. Function of
vegetation that gives an impact to r�, this r� can be correlated
with NDVI, which represent the vegetation function only to r
�. So, there is a need to develop a relationship with NDVI for
characterization of behavior of r� (both RH and RV). The
regression analysis shows that NDVI have a positive correla-

tion with both the r� (RH) and r� (RV). Both have
R2 = 0.029 for r� (RV) and R2 = 0.001 for r� (RH) (Fig. 7a
and b). NDVI values of 23 respective sampling sites ranged
from �0.232 to 0.332. The values of NDVI are within the

range in which radar signal is not much affected (Dubois
et al., 1995). Thus there was no need to minimize the effect
of vegetation on radar backscattering signal.

3.4. Factors considered for soil moisture retrieval study

3.4.1. Backscattering coefficient (r�)
Backscattering coefficient (r�) of respective study area was cal-
culated by using the Eq. (4). Image is processed to retrieve r�
(both RH and RV) by SARC-View. SARC-View is platform
based application developed by NRSC particularly to process
r�. To process the image required value of calibration constant
(KdB), incidence angle for the pixel position p (ip) and incidence

angle at the scene center (center) were taken from the metadata
file. After that the image was processed and produced full res-
olution r� in both RH and RV (Figs. 8 and 9). Derived r� for
RH and RV are represented in Figs. 8 and 9. r� (RV) ranges
from �21.360 to �5.640 dB with mean value �13.593 dB
(±4.430). r� for RH ranges from �23.950 to �7.150 dB with

mean value �12.474 dB (±4.793) (Table 2):
y = 0.0053x + 0.0377
R² = 0.0296
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Figure 7 (a and b) Representation of simple linear regression
r�ðdBÞ ¼ 20log10ðDNpÞ � KdB þ 10log10
SinðipÞ

SinðicenterÞ
� �

ð4Þ
3.4.2. Volumetric moisture content (Mv)

Mv for each of the 23 field samples was calculated by multiply-
ing bulk density (Sbd) with gravimetric soil moisture (mg)

value. Mean Mv for each of the 23 sites is 0.081 (±0.050)
m3/m3 and ranges from 0.008 to 0.178 m3/m3. Mv for each of
the sampling points is represented in Table 2.

3.4.3. Dielectric constant (e)

Dielectric constants for each of the samples were calculated by
using the Eq. (5) developed by Hallikainen et al., 1985. Where:

s and c are the percentage of sand and clay by weight, and ai,
bi, and ci are the frequency dependent coefficients. e is dielectric
constant. e ranged from 2.550 to 7.801 with an average of 4.410
(±1.578) (Table 2):

e¼ða0þa1sþa2cÞþðb0þb1sþb2cÞMvþðc0þ c1sþ c2cÞM2
v

ð5Þ
3.4.4. Surface roughness (r.m.s.)

Surface roughness (r.m.s.) of that area is varying from 0.319 to
3.836 cm with an average value of 1.418 (±0.989) cm (Table 2).
Surface roughnesses were measured to find out the sensitivity

of r.m.s. on r� (both RH and RV).

4. Analysis

4.1. Factors affecting SAR sensitivity to soil moisture

4.1.1. Relationship between backscattered radar signal and soil
moisture

r� versus Mv were plotted in the graph (Fig. 10a and b) for
both polarization RH and RV. The results show that r� to
some extent depends on the Mv, which has a positive correla-

tion. Results showed r� increases with increasing Mv. r� (RH)
versus Mv and r� (RV) versus Mv have R2 = 0.588 and
R2 = 0.525 (Fig. 10a and b). Thus SAR backscatter is directly
related to moisture content of the target under consideration.

Fig. 10(a and b) illustrates the dynamics of the radar backscat-
tering coefficient versus soil moisture for RH and RV polariza-
tion at high incidence angle (48.11�). Overall, the scattering

behavior of the soil increased with soil moisture. The wide
σ

 = 0.0011x - 0.0204
R² = 0.0015

-0.4
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between (a) r� (RV) vs. NDVI and (b) r� (RH) vs. NDVI.



Figure 8 Backscattering coefficient (r� RH) of processed image RISAT-1.
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range of soil-moisture measurements made it possible to
establish linear relationships between the radar signal and
the soil moisture for each of the sampling sites.

4.1.2. Relationship between backscattered radar signal and
di-electric constant

Dependency of r� on dielectric property of soil is represented
in Fig. 11(a and b). At microwave frequencies, dielectric con-

stant of dry soil is around 3 and that of water is around 80
(Ulaby et al., 1982; Singh and Kathpalia, 2007). Hence dielec-
tric constant for a moist soil, which is a mixture of the two,

ranges between 2.550 and 7.801. When the dielectric constant
of a material increases, it results in increase in r� for both
RH and RV (Dobson and Ulaby, 1981; Ulaby et al., 1986).

Increasing trend of e with r� (RH) having R2 = 0.656
(Fig. 11. a) and r�(RV) having R2 = 0.534 (Fig. 11. b). The
dielectric behavior of the soil is also influenced by the distribu-

tion of the grain sizes and the amount of free water
(Hallikainen et al., 1985; Mironov et al., 2004; Srivastava
et al., 2006). Sandy soils have a higher amount of free water
than clay soils which results in higher correlation between
backscatter and soil moisture (Blumberg et al., 2000; Kong
and Dorling, 2008; Srivastava et al., 2006; Walker et al., 2004).

4.1.3. Backscattered signal function of roughness

Random surface roughness was calculated in terms of route
mean square surface height (r.m.s.) in each of the 23 sampling
sites. r� is highly sensitive to the r.m.s., but in the present study

r.m.s. did not show any significant relationship with the r� for
both polarizations (RH and RV). r�(RH) with r.m.s. having
R2 = 0.009 (Fig. 12a) and r�(RV) having R2 = 0.029

(Fig. 12b). In spite of the fact that the images were taken at
high incidence angles, where the influence of soil surface
roughness is high, the roughness effect couldn’t clearly be dis-

tinguished (Anguela et al., 2010). It might be because we have
no roughness measurements on that date of satellite over
passes. It may also be because the area is not corresponding

to high r.m.s. values (0.319–3.836 cm). Different studies have
demonstrated the agreement between real radar signals and
theoretical surface backscattering models for the case of low



Figure 9 Backscattering coefficient (r� RV) of processed image RISAT-1.

Table 2 Descriptive statistics of observed variables.

Variable Minimum Maximum Mean Std. deviation

Mv m
3/m3 0.008 0.178 0.081 0.050

r� (RV) �21.360 �5.640 �13.593 4.430

r� (RH) �23.950 �7.150 �12.474 4.793

e 2.544 7.801 4.410 1.578

r.m.s. 0.319 3.836 1.418 0.989
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roughness and high moisture content (Chen et al., 1989;
Anguela et al., 2010). Due to higher incidence angle in

some of the cases the r� has become independent on r.m.s.
(Aubert et al., 2011).

4.1.4. Effects of soil texture on soil moisture

Difference in texture explains the difference in surface drying
rate. For this reason, difficulties can be encountered in the
interpretation of radar signals in cases where the vertical mois-

ture profile varies strongly in the first centimeters (Anguela
et al., 2010). In the C-band, decreasing soil clay content

increases the sensitivity of the radar signal to soil moisture
(Ulaby et al., 1978; Aubert et al., 2011). Because the distribu-
tion of grain sizes controls the amount of free water that inter-

acts with the incident microwave, the amount of free water
gives significant contribution to SAR backscatter (Srivastava
et al., 2006, 2009; Aubert et al., 2011). To investigate these dif-
ferences, soil samples were taken in each sampling site to deter-

mine the particle-size distribution within plots. According to
the soil-composition analysis, the zones with low radar signal
values (r� RH: �7.28 dB and r� RV: �11.94 dB) (darker

zones) were more clayey (sample Id-S5: 49.08% clay, 30% silt
and 20.92% sand) but an inverse result has been obtained for
the Sample Id-S23 (Sample Id-S23: 47.08% clay, 22% silt and

30.92% sand) having higher radar signal value (r� RH:
�19.28 dB and r� RV: �20.79 dB). Several studies in the C-
band have shown that the radar signal is directly dependent

on the amount of sand and clay, but only for soil compositions
that are very difficult to explain and also the same hypothesis
has been reflected from the results (Fig. 13) (Dobson and
Ulaby, 1981; Schmugge et al., 1976; Ulaby et al., 1978).
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4.2. Topp model

The Dielectric constant was derived from the Eq. (1). The soil

moisture can be secondarily derived from the dielectric con-
stant using (Topp et al., 1980) model. This model has been
used by many researchers effectively for retrieving soil mois-

ture (Song et al., 2010). This model derived soil moisture (hv)
was used to validate with the ground truth soil moisture value.
It has been found that hv versus Mv having R2 = 0.969
(Fig. 14) shows good correspondence. As hv related with the

e, it has been proved that retrieved e by using Eq. (1) of
Hallikainen et al., 1985 is justified and true.

Mv ¼�5:3�10�2þ2:92�10�2e�5:5�10�4e2þ4:3�10�6e3

ð6Þ
where: e is di-electric constant and Mv is volumetric moisture
content.
4.3. Semi-empirical model

Major influencing factors that affect the sensitivity of SAR

sensor to retrieve volumetric soil moisture (Mv) were taken
into consideration to derive a semi-empirical equation. To
derive a semi-empirical model a multiple linear regression

has been done, where Mv is considered as dependent variable
and r.m.s., e, r�(RH) and r�(RV) considered as independent
variables. Derived semi-empirical model is represented as Eq.
(7). Validity of that model is statistically proved by the Good-

ness of fit (Table 3). This multiple linear regression model has
adjusted R2 = 0.956 and RMSE = 0.010 at 95% confidence
level (Eq. (7)):

Mv ðm3=m3Þ ¼ �5:63�02 � 1:91�04 � r� ðRVÞ þ 8:84�04

� r� ðRHÞ þ 3:27�02 � eþ 7:47�04 �RMS ð7Þ



Figure 13 Behavior of backscattering coefficients (both r� RH and RV) for each sample soil textural configuration.
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Figure 14 Relationship between estimated (Mv) and retrieved
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Table 3 Regression of variable volumetric moisture m3/m3.

Goodness of fit statistics

Observations Sum of

weights

R2 Adjusted R2 MSE RMSE

23 23 0.964 0.956 0 0.01
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5. Conclusion

Irrespective of field measurement a number of inversion mod-

els have been developed to retrieve soil moisture by using
microwave remote sensing either active or passive. Synthetic
Aperture Radar has shown its large potential for retrieving soil

moisture maps at regional scales. However, since the backscat-
tered signal is determined by several surface characteristics, the
retrieval of soil moisture is an ill-posed problem when using
single configuration imagery. The developed method here is

more simple and realistic for the estimation of soil moisture.
To develop this model major factors considered are r� (RH),
r� (RV), e and r.m.s. Derived r� for RH and RV ranges from

�21.360 to �5.640 dB with mean value �13.593 dB (±4.430).
r� for RH ranges from �23.950 to �7.150 dB with mean value
�12.474 dB (±4.793). Mean Mv for each of the 23 sites is
0.081 (±0.050) m3/m3 and ranges from 0.008 to 0.178 m3/m3.

Derived e ranges from 2.550 to 7.801 with an average of
4.410 (±1.578). Surface roughness (r.m.s.) of that area is vary-
ing from 0.319 to 3.836 cm with an average value of 1.418

(±0.989) cm. To compute this, model dependencies of each
of the factors were considered and it was found as follows:

1. Backscattering coefficient (r�) has a positive relationship
with volumetric moisture content (Mv) both for r� (RH)
and r� (RV) with R2 = 0.588 and R2 = 0.525.

2. The roughness component was derived in terms of root

mean square height (r.m.s.) having a positive correlation
with r� (RH) (R2 = 0.009) and r� (RV) (R2 = 0.029), but
it was not so significant. The relationship between r.m.s.

and r� (RH, RV) trend was justified enough to consider
further in this study.

3. Dielectric constant (e) has a positive relationship with r�
(RH) having R2 = 0.656 and r� (RV) having R2 = 0.534.

4. According to the soil-composition analysis, the zones with
low radar signal values (r� RH: �7.28 dB and r� RV:

�11.94 dB) (darker zones) were more clayey (sample Id-S5:
49.08% clay, 30% silt and 20.92% sand) but an inverse result
has been obtained for the Sample Id-S23 (Sample Id-S23:
47.08% clay, 22% silt and 30.92% sand) having higher radar

signal value (r� RH: �19.28 dB and r� RV: �20.79 dB).
5. Topp model derived soil moisture (hv) was used to validate

with the ground truth soil moisture value. It has been found

that hv versus Mv having R2 = 0.968. As hv related with the
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e, it has been proved that retrieved e by using Eq. (1) of

Hallikainen et al., 1985 is justified and true. Considering
all the major influencing factors (r� (RH), r� (RV), e and
r.m.s.) for soil moisture retrieval (Mv) a semi-empirical

model has been developed (Eq. (7)), where Mv is a function
of r� (RH), r� (RV), e and r.m.s. This model has adjusted
R2 = 0.956 and RMSE = 0.010 at 95% confidence level.
On the basis of input data considering all the factors, statis-

tical retrieval of soil moisture against predicted value has
been justified. This predicted value is derived from this lin-
ear regression model. This model has an R2 = 0.963 of

observed versus predicted soil moisture value.
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