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Summary

Cancer is a genetic disease and this concept is now widely exploited by both scientists and
clinicians to design new targeted molecules. Indeed many data have already allowed us to
ameliorate not only our knowledge about cancer onset, but also about patients treatment.
Correlation between mutations in cancer alleles and drug response is a key point to identify
drugs that match the genetic profile of each individual tumors. On the other hand, experience
derived from inhibition of tyrosine kinase receptors has pointed out that targeted treatment is
really successful only in a small subset of tumors. The latter are eventually addicted to those
genetic alterations which are responsible for receptors activation and for the continued
expression of their signalling. Overall these observations provide a strong rationale for a molec-
ular-based diagnosis and patients selection for targeted therapies.

This review analyses the current state of the art of molecularly-tailored pharmacological
approach to lung cancer, one of the biggest killers among human solid tumors. Main relevance
is addressed to genetic lesions activating the EGFR pathway transducers, focusing on their role
as markers of targeted drug response.
ª 2011 Elsevier Ltd. All rights reserved.
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Introduction

Lung cancer is the leading cause of death for solid tumors
worldwide with an annual mortality of over one million.1

Lung carcinoma includes a series of different diseases
which are roughly divided into two groups based on clinical
and histo-pathological features: non-small-cell lung cancer
(NSCLC), accounting for almost 80% of lung cancer diagnosis
and small cell lung cancer (SCLC) responsible for the
remaining 20%. NSCLCs were further classified as: adeno-
carcinoma (ADC, and its variants); squamous cell carcinoma
(SCC) and large cell carcinoma (LCC)e comprising the neuro-
endocrine variant (LCNEC).2 Recently the American Thoracic
Society and the European Respiratory Society approved
a new classification of lung adenocarcinomas 3 which elimi-
nates the form term bronchiole-alveolar (BAC) carcinoma
and introduces the new concepts of adenocarcinoma in situ
(AIS) and minimally invasive adenocarcinoma (MIA) for small
solitary adenocarcinomas with either pure lepidic growth
(AIS) or predominant lepidic growth with� 5 mm invasion
(MIA). Invasive adenocarcinomas are classified by predomi-
nant pattern after using comprehensive histologic subtyping
with lepidic (formerly most mixed subtype tumors with non-
mucinous BAC), acinar, papillary, and solid patterns; micro-
papillary is added as a new histologic subtype.

Despite advances in defining the molecular mechanisms
involved in lung oncogenesis and the remarkable efforts
made to improve screening programs for secondary cancer
prevention, patients prognosis remains poor. Lung cancer is
mainly diagnosed at locally-advanced/metastatic stages
and if untreated, the median survival after diagnosis is of
4e5 months whereas the 1-year survival is less than 10%.4 In
those cases the platinum-based combination schedule,
although more advantageous than best supportive care
(BSC),5 results in only modest increases of survival rates.6

More than 75% of all lung cancer histological types are
related to tobacco smoking habit and the association is
stronger for SCLC and SCC,7,8 From more than fifty years
chronicle exposure to carcinogens (tobacco smoke) has
been recognized as a responsible for that pathological
process known as ‘field cancerization’,9,10 while only
recently the genetic alterations responsible of the growth
of a field lesion have been defined,11e13 It is conceivable
that in smokers, ‘field cancerization’ of the lungs might
culminate in malignant transformation starting from stem-
like cancer precursors grown in pre-neoplastic histological
settings.14 Indeed burgeoning evidence points out that lung
cancers arising in smokers and in never smokers can be
thought as separate entities, since they feature distinctions
at epidemiological, clinical and bio-molecular level.
Noticeably they display different mutational profiles (e.g.
p53, KRAS, EGFR), which can significantly impact on both
prognosis and drug responsiveness.15 It should be noted that
the proportion of lung cancer in never smokers is expected
to increase in parallel with the implementation of smoking
prevention and quitting programs,16,17 Although the rele-
vance of tobacco exposure, factors other than smoke have
been suggested as lung carcinogens (environment,18,19

hormones,20,21 genetics,22 viruses,23e25). Adenocarcinoma,
which is now accounting for 35e40% of all NSCLC diagnosis,
is the commonest form in never smokers.26

Lung cancer identifies an extremely heterogeneous
group of disorders, and remains a difficult disease to treat.
An extremely diverse collection of genomic alterations has
been documented in NSCLC; a proportion of unknown
dimension is still concealed,27,28 However a number of
tumor activating somatic genetic lesions (‘driving’ lesions
29) have already been detected in a substantial fraction of
patients and translated into a system from detection and
determination of the disease prognosis. Alterations in
several oncogenes e among which EGFR, KRAS, PIK3CA,
MET, c-MYC -, tumor suppressor genes e such as p53 and
LKB1- and transcription factors (e.g. TTF1) have been re-
ported in NSCLCs, mainly in adenocarcinomas,30,31 Dissec-
tion of such a complex scenario represents a still open
challenge for both researchers and clinicians.

Although the topic of targeted therapy for the treatment
of NSCLC has been covered by several reports,32e35 this
review aims to point out the unprecedented clinical value of
translation of the molecular oncology findings as well as to
focus on still unresolved questions emerged after the advent
of the EGFR-targeted molecules. Personalized approach to
NSCLC treatment started with the observation that lung
cancers respond differently to EGFR inhibitors, based on
their genetic status. From this initial point several successes
have been reached; however much remains to be done and
studied in terms of patient genotyping and stratification as
well as in understanding the molecular mechanisms of
primary and secondary resistance to these agents.

Molecular profiling of tyrosine kinase genes in
cancer

Cancer cells accumulate somatic DNA alterations which are
responsible for oncogenic activation or tumor suppression
genes silencing. Changes affecting single nucleotides (e.g.
point mutations) occur in transformed cells as well as small
deletions, insertions and more complex lesions involving
larger portions of chromosomes such as translocations
and amplifications. Today almost 300 cancer-related
genes, approximately 1% of all human genes, have been
identified36; about eighty genes are activated by somatic
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mutations which arise in the only malignant clone while do
not affect non transformed cells.37

Among cancer genes, the protein tyrosine kinase (TK)
genes family plays a central role and several of these
enzymes have been found to be altered in cancers by
a variety of molecular mechanisms.38 Kinases e and their
inhibitors, phosphatases e are key regulators of several
cellular functions such as proliferation, migration, metab-
olism, differentiation and survival and their appropriate
activity is required for the cellular homeostasis; on the
contrary their aberrant activation is crucial in driving
oncogenesis. Receptor tyrosine kinases (RTKs) represent
a subclass of transmembrane proteins displaying an
intrinsic, ligand-controlled TK activity. In resting cells, RTKs
activity is quiescent; in presence of activating lesions e as
it occurs in cancer-RTKs become inappropriately phos-
phorylated (Fig. 1).

Mutations affecting RTKs have been demonstrated to
have a causative role in many solid cancers, among which
NSCLC.39 In lung cancer, kinases tend to be altered by
heterozygous missense mutations that affect residues
involved in their enzymatic activity; this suggests that
mutations are activating and operate by increasing the
Figure 1 Receptor tyrosine kinases (RTKs) activation. A)
Ligand-induced receptor activation of transmembrane tyrosine
kinase receptor. In physiological conditions, ligand binding to
extracellular portion of the receptor leads to receptor dimer-
ization and consequent trans-phosphorylation of two tyrosine
residues located at the intracytoplasmic enzymatic domain.
The latter activate downstream transducers involved in several
biological functions of the cell. B) Inappropriate mechanisms of
RTKs activation that might lead to activation of cellular proto-
oncogenes. The process of gene amplification occurs through
redundant replication of genomic DNA, often giving rise to
karyotypic abnormalities called double-minute chromosomes
(DMs) and homogeneous staining regions (HSRs). DMs are
characteristic mini-chromosome structures without centro-
mere, while HSRs are segments of chromosomes that lack the
normal alternating pattern of light-and dark-staining bands.
Both DMs and HSRs represent large regions of amplified
genomic DNA containing up to several hundred copies of
a gene. Amplification leads to the increased expression of
genes, which in turn can confer a selective advantage for cell
growth. Nucleotide changes such as mutations lead to struc-
tural alterations in their encoded proteins. Chromosome rear-
rangement lead to malignancy via two different mechanisms:
the transcriptional activation of proto-oncogenes or the crea-
tion of fusion genes encoding chimeric proteins with trans-
forming properties.
catalytic activity of the mutated protein. This evidence
also points out that mutated kinase genes act as dominant
oncogenes,40,41 Besides RTKs translocation as well as
increased gene copy number, have been described in
NSCLC: relevant examples are the transforming ALK-EML4
fusion gene42 on one hand and EGFR (7p12)43 and MET
(7q31.1)44 genes amplification on the other.

From the cloning of the first cDNA encoding an RTK e the
EGFR45 e many progresses have been reached in human
cancer therapy and several tumor types have benefit from
this knowledge. Importantly, the concept that mutated
kinases molecularly mark ‘druggable’ targets has lead to
intensive efforts to survey the kinome across a wide spec-
trum of human cancer types for mutations.46

Among RTKs, the epidermal growth factor (EGF)
receptor family has been extensively studied in several
solid cancers, mainly in colorectal and non-small-cell lung
carcinomas. It consists of four members: EGFR (ErbB1,
HER1), ErbB2 (HER2, neu in rodents), ErbB3 (HER3) and
ErbB4 (HER4). The binding of soluble ligand to the ecto-
domain of the receptor promotes homo-and hetero-dimer
formation between receptors, a crucial step for activation
of the intracellular TK domain and subsequent phosphory-
lation of the C-terminal tail.47 Phosphotyrosine residues
then activate, either directly or through adaptor proteins,
downstream components of the TK signaling pathway which
are involved in promoting cell proliferation, motility and
invasion.

EGFR is overexpressed - when detected by immunohis-
tochemistry (ICH) e in several cancer types48 and in more
than 60% of lung cancers; its activation correlates to
poorest prognosis.49

Selective block of EGFR and ErbB2 has been reported to
be effective as therapeutic approach in several solid
cancers. In 2004 the first EGFR-mutant lung cancers were
described and it was reported that most of NSCLC patients
who showed clinical response to EGFR inhibitors carried
EGFR mutated tumors,50,51 Somatic changes affected
sequences encoding for receptor TK domain; mutated
receptors sustain a hyper-activated downstream
signaling,52,53 Notably, it was then demonstrated that
cultured cell lines displaying the same EGFR genetic lesions
that have been found in human tumors, undergo in vivo
cell-cycle arrest or apoptosis in response to EGFR inhibi-
tion. This phenomenon is named ‘oncogene addiction54’
and applies to those settings in which cancer cells appear to
be dependent on a single overactive oncogene for their own
survival and proliferation.55 As lung tumor cells depend on
the aberrant activity of a specific mutated gene (e.g. EGFR)
to survive and proliferate, it is virtually sufficient to inac-
tivate that gene to induce growth arrest and provoke cell
death (apoptosis). Therefore, switching off the oncogenic
activity by specific EGFR inhibitors may trigger an ‘onco-
genic shock’ 56 which eventually will lead tumor cells to
die. This hypothesis is based on the concept that onco-
proteins emanate both pro-survival and pro-apoptotic
signals: oncogene elimination creates a temporal window
during which apoptotic outputs persist in the absence of
survival signals, resulting in cell death. As suggested by
Sharma and colleagues,57 this model has two relevant
implications. The first is that co-administration of TKIs with
standard chemo, due to its own effects on DNA-damage,



confirmed that EGFR block could be effective in pre-
treated NSCLC. Consequently in 2003 FDA approved
gefitinb and in 2004 erlotinib as II line approach to
advanced NSCLC treatment. Phase III ISEL4 (IRESSA
Survival Evaluation in Lung Cancer) study demon-
strates non-significant survival advantage over placebo
in overall population but subgroups show benefit:
patients of Asian origin and those who have never
smoked. These results where coherent with first report
by Lynch and colleagues of the occurrence of EGFR
somatic point mutations in responders to gefitinib.
More recently the INTEREST5 (IRESSA Non-small-cell
lung cancer Trial Evaluating REsponse and Survival
against Taxotere) study conducted in 24 countries
demonstrated non inferiority of gefitinib vs docetaxel
in 2nd line approach to advanced NSCLC while the
IPASS (IRESSA Pan-Asia Study) trial showed superiority
of EGFR inhibitors EGFR mutated cancers. In 2009
European Medicines Agency EMEA approved gefitinib
for treatment of adults with locally advanced or
metastatic NSCLC with activating mutations of EGFR
TK across all lines of therapy. In april 2010 the BATTLE
(Biomarker-integrated Approaches of Targeted
Therapy for Lung Cancer Elimination) confirms that
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might attenuate the acute effect of growth factor signal
withdrawal. The second is that the more gradual signal
attenuation induced by anti-EGFR monoclonal antibodies in
respect to small molecules, might explain the differential
effects displayed by these two classes of EGFR inhibitors.

The paradigm of TKs genetic alterations in cancer facts
highlights two crucial clinical points. The first is that tar-
geted therapy is effective only in those patients whose
tumor DNA contains the alteration which makes the tumor
itself susceptible to the specific drug. Thus, before sub-
jecting patients to targeted treatments, the presence of
those genetic lesions which are predictive of potential
response, must be ascertained. In addition, this diagnostic/
therapeutic approach inevitably will put into question
traditional medical approach to neoplastic disease: from
the standpoint of translation oncology, tumor molecular
profiling must be associated to the standard histo-
pathological characterization in selecting patients who
will benefit from targeted drugs. As a consequence, cancer-
associated genetic lesions might e ideally e identify
genetic determinants of drug response since they can
display a predictive (provide information on outcome with
regards to a specific therapy) and/or prognostic (provide
information on outcome, regardless of which treatment is
used) value.58
treatments tailored for each patient’s particular type
of lung cancer (e.g. erlotinib in EGFR mutated
patients) may improve outcomes but unexpectedly the
strategy has limited gin in survival rates.
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Tumor responsiveness to monoclonal antibodies has
been associated to the copy number on the corresponding
gene present in individual tumors59; on the other hand
sensitivity to small molecules correlates with mutations
affecting the catalytic domain of the receptor.60

Anti-EGFR mAbs bind to the extracellular domain of
EGFR, occlude the ligand binding region competing with
receptor ligands, inhibit the ligand-induced phosphorylation
of the catalytic region and eventually block the intracellular
signaling cascade. Cetuximab (Erbitux�, Merck), a chimeric
immunoglobulin G1 monoclonal antibodies (mAb) and Pan-
itumumab (Vectibix�, Amgen) a fully human antibody, are
mAbs which have been developed to block EGFR (http://
www.ema.europa.eu). Although two large phase III trials in
chemonaive patients (FLEX and BMS090) have shown con-
flicting results regarding overall survival (OS), Cetuximab
has been found to improve clinical outcome of untreated
unresectable NSCLCs in combination with platinum-based
chemotherapy 61 and chemoradiotherapy.62 There are very
few data on response to Cetuximab when administered as
second and third line approach,63e65 Nevertheless no
biomarkers have been validated to predict sensitivity to
treatment in NSCLC.

On the other hand, activating EGFR somatic mutations
have emerged as the most relevant predictor of response to
small EGFR inhibitors54,58,66 (Fig. 2). First-generation small
drugs are essentially represented by the two quinazoline-
based molecules gefitinib (Iressa�, Astra Zeneca, www.
astrazeneca.com) and erlotinib (Tarceva�, OSI/Roche/
Genetech, www.roche.com) which behave as reversible
inhibitors of the EGFR kinase.67 EGFR activating somatic
mutations mainly occur at TK domain coding sequences.
Somatic changes affect four exons (18e21) which encode
for the ATP binding pocket: mutations induce repositioning
of critical residues at the receptor ATP binding site thus
Figure 2 NSCLC patients selection for EGFR targeting with
small molecules. Careful selection of NSCLC patients is needed
before starting anti-EGFR pharmacological targeting. EGFR
activating mutations confer sensibility to small inhibitors in
absence of KRAS changes. EGFR amplification seems to add
a gain in drug response. Co-existence of MET amplification e

through ErbB3 activation e leads to intracellular signaling
activation even in presence of EGFR block.
reducing receptor affinity for ATP and enhancing signal
silencing after drug binding. However, this fact does not
imply that mutated EGFRs are necessarily constitutively or
fully active, as their degree of ligand independence might
be a function of experimental context.68,69

Overall the incidence of EGFR mutations in NSCLCs is
about 26% (according to COSMIC database, www.sanger.ac.
uk): this frequency increases up to 77% among EGFR TKIs
responders, while it is 7% in unsensitive cases58. Exon 19
mutations are mainly characterized by in-frame deletions
of aminoacids 747e750 and account for 45% of mutations;
the most frequent exon 21 mutation results in L858R
substitution and is detected in 40e45% of mutated samples;
mutations in exons 18 and 20 are found in the remaining 10%
of cases. Interestingly NSCLCs harboring exon 19 deletions
seems to better respond to small molecule inhibitors than
L858R mutants70,71; fewer data are available about drug
sensitization conferred by mutations in exons 18 and 20.72 It
is well documented that mutation frequency increases to
over 50% in a restricted subset of NSCLC patients: East-
Asians, women, not smokers, affected by ADC73e75

Preclinical data suggest that EGFR mutations occur as
early events during NSCLC onset.76 Transgenic mice with
lung specific expression of exon 19 deletion or L858R
mutation, develop atypical adenomatous hyperplasia (AAH)
which defines the precursor lesion of peripheral ADCs which
display early distant dissemination.69

In the past years at least six large phase III studies
comparing standard platinum-based chemotherapy versus
erlotinib or gefitinib in chemonaive metastatic NSCLC
demonstrated that in patients whose tumors harbor acti-
vating EGFR mutations, EGFR TKIs are superior to chemo-
therapy in terms of response rates progression free survival
(PSF), quality of life and toxicity profile.77 Two additional
studies (SATURN78 and ATLAS79) have investigated the effi-
cacy of erlotinib as maintenance therapy in NSCLC patients
with metastatic disease not progressing after standard
chemo. Both studies demonstrated that patients receiving
erlotinb have a significant reduction in the risk of progres-
sion, with the highest PFS in EGFR mutated cases.

In second line approach a recent metanalysis including
data from 4 randomized trials (INTEREST,80 V-15-32,81

SIGN,82 ISTANA83) confirmed that gefitinb appeared to be
no different from docetaxel in unselected pre-treated
NSCLC. In the INTEREST trial, EGFRmutated patients benefit
more from gefitinib than docetaxel in terms of PFS, in
absence of differences in survival rates. Recently the TITAN
study,84 a phase III randomized trial comparing erlotinib
versus docetaxel or pemetrexed in chemorefractory NSCLC,
showed no differences in PFS in both arms.

It should be noted that a small proportion (1e20%
depending on trials) of patients with no detectable EGFR
activating mutations, show a radiographic response when
treated with EGFR TKIs. This observation might be partially
explained by the fact that molecular analysis should have
detection limits; however it is possible that genetic lesions
other than intrinsic mutations could activate the EGFR
signal cascade.

In conclusion, although detection of somatic mutations
identifies the best predictor of response to anti-EGFR
molecules e so that mutational screening is mandatory to
define first line therapy -, new biomarkers must be

http://www.ema.europa.eu
http://www.ema.europa.eu
http://www.astrazeneca.com
http://www.astrazeneca.com
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investigated to clarify the potential efficacy of EGFR
blockade in EGFR wild type tumors.

EGFR amplification (detected by FISH in 20e40% of
NSCLCs, according to different studies) seems to add a gain
in response rates to gefitinb and erlotinib,85e87 EGFR
increased gene copy number as detected by FISH does not
predict the overall survival; however Hirsh and colleagues
have recently reported that EGFR-FISH positive NSCLC
patients had a longer progression free survival and higher
response rates to EGFR TKIs.88
Dissecting the EGFR signaling to overcome the
problem of resistance

Experience derived from EGFR TKIs has pointed out that
lung tumors might display de novo resistance to TKIs
therapy (primary resistance); moreover in many cases
responses are not durable, more often they stabilized the
disease for 6e12 months (secondary or acquired resistance
89).

The EGFR activation triggers two main signaling path-
ways: KRAS-BRAF-MEK pathway, which sustains cell prolif-
eration and in PIK3CA-AKT-mTOR axis, which is mainly
involved in cell survival and motility.90,91 Other critical
activated pathways include the STAT signal cascade and
ERBB mediated angiogenesis.92 Several studies are now
directed to investigate the whole EGFR-induced signaling in
mediating sensitivity or resistance to EGFR inhibitors.

Both primary and acquired resistance might be related
to the occurrence of EGFR activating mutations, mainly
affecting the exon 20. For example small insertions or
duplication in exon 20 have been described in patients
harboring progressive disease in the course of anti-EGFR
molecules. Besides the EGFR T790M mutation (also
affecting exon 20) is often found in tumor samples from
patients who did not respond to reversible anti-EGFR
molecules,93,94 The recently developed irreversible EGFR
inhibitors e the pan-erbB inhibitors PF0029980495 (Pfizer,)
and neratinib (HKI-27296) (Wyeth) e have shown in vitro
promising activity in inhibiting T790M-mutated NSCLC
cells. These molecules irreversibly block erbB tyrosine
kinase activity through binding the ATP site and inducing
covalent modification of nucleophilic cysteine residues
(Cys 797) in the catalytic domains of erbB family members.
The covalent bond seems to permit local persistence of
high drug concentrations thus allowing the inhibition of
the catalytic function even in the presence of T790M
mutation.97

Other genomic alterations can occur with EGFR muta-
tions in inducing primary resistance to EGFR inhibitors.
They include: i) mutations of PIK3CA; ii) loss of PTEN
expression; iii) altered IGFR signaling77.

On the other hand, resistance in EGFR wild type tumors
is mainly related to the occurrence of genetic lesions
affecting the EGFR downstream transducers.

KRAS mutations have been identified in NSCLC more than
20 years ago,98,99 but only recently they have become
clinically significant as biomarkers of anti-EGFR therapy
response. KRAS is mutated in about 17% of NSCLCs, mostly
in ADCs (COSMIC database, www.sanger.ac.uk). Almost 97%
of KRAS mutations in NSCLC result in aminoacid substitution
at codon 12 and 13. Likewise colorectal cancers (CRCs), in
advanced/metastatic NSCLCs activating KRAS mutations
are highly specific negative predictors to single anti-EGFR
TKI agent.100 KRAS mutations seem to arise more frequently
in smoke-induced lung carcinomas: in particular G to T
substitutions are associated in tobacco-related lung ADCs,
while G to A changes have been recently found also in
NSCLC in never smokers.101 In addition, detection of KRAS
exon 2 activating mutations is associated to resistance to
conventional chemotherapy. The role of KRAS mutational
status as a marker of response to standard chemo alone in
NSCLC is poorly understood but it has been clearly
demonstrated that KRAS mutations occurrence is associ-
ated with shortest survivals in NSCLC patients treated with
carboplatin plus paclitaxel.102 KRAS mutations occur as an
early event in lung oncogenesis and mutated cells are
detectable in pre-invasive lesions, such as AAH.103 Although
early studies reported the association between occurrence
of KRAS mutations and poorest prognosis,104 the role of
KRAS pathway activation as prognostic marker is still
debated.105 More recent data demonstrate higher muta-
tional frequencies of KRAS gene in lung ADCs with a domi-
nant micropapillary growth pattern which is associated to
high invasive capacity and aggressive phenotype,106,107 At
the present no direct RAS inhibitors have proven clinically
effective; however several molecules are under investiga-
tion. Among them inhibitors of the enzyme farnesyl trans-
ferase (FT) e involved in RAS protein maturation and
function e have been studied in lung cancer therapy: in
phase II study the FT inhibitor R115777 (Zarnestra�, John-
son & Johnson) has shown only modest clinical activity as
first line treatment in advanced NSCLCs.108

The most known and studied mediator of KRAS down-
stream signaling is BRAF. The BRAF gene (located on 7q34)
codifies for a threonine-serine kinase. BRAF mutations
rarely (2%) affect lung cancer (COSMIC database, www.
sanger.ac.uk); interestingly the BRAF V600E mutation
mainly affects female sex and represents a negative prog-
nostic factor.109 BRAF mutations are known to predict
sensitivity to MEK inhibitors.110 Few data are available, but
the recent phase II study on the MEK oral inhibitor PD-
0325901 did not reach its primary endpoint measured by
objective response.111

The other key axis downstream EGFR is mediated by
PIK3CA. Mutations affecting PIK3CA coding sequence rarely
occur in lung cancer since mutational frequency is about 3%
of NSCLCs and SCLCs (according to COSMIC database, www.
sanger.ac.uk). PIK3CA oncogenic activation can be driven
by increased gene copy number: the region of chromosome
3q where PIK3CA gene is located is frequently altered in
lung cancer.112

Alterations in other components of the pathway include:
loss of function of the inhibitor PTEN which is involved in
sustaining an additional mechanism of EGFR-mutants
resistance to TKIs 113 or e even if rarely described e acti-
vating mutations of AKT gene 46. The PIK3CA signaling
cascade is early activated during tobacco-induced lung
carcinogenesis.114 An important mediator of the PI3KCA
pathway is the mammalian target of rapamycin (mTOR): it
is a member of the phosphoinositide kinase-related kinase
family, which also includes PIK3CA. mTOR acts as a central
sensor for nutrient/energy availability, and can also be
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modulated by PI3KCA dependent mechanisms.115 Loss of
PTEN116 or AKT activation117 have been suggested sensi-
tizing cancers to the effects of mTOR inhibition; prelimi-
nary clinical results are available from combinatorial
approach of anti-EGFR plus mTOR inhibitors.118 Very initial
data in NSCLC cell lines seem to demonstrate that muta-
tions in either LKB1 or KRAS genes display sensitivity to the
single-agent treatment with the MEK inhibitor CI-1040 or
with rapamycin.119

PI3KCA activation might be also related to MET gene
overexpression in consequence to increased gene copy
number. It is well known that amplification of the MET
oncogene represents a mechanism of acquired resistance to
EGFR TK inhibitors.120 Amplified MET mediates PIK3CA
activation through ErbB3 activation which represents an
alternative signaling pathway which induces cell prolifera-
tion even in the presence of EGFR inhibitors. Interestingly
Engelmann and colleagues have recently showed that
NSCLC cells carrying MET gene amplification are already
detectable at tumor onset and undergo a clonal selection
through anti-EGFR therapy.121

Taken together occurrence of the T790M mutation and
MET amplification stand for 70% of causes of acquired resis-
tance to EGFR inhibitors in NCLC. More often the two genetic
lesions arise independently in different metastases of the
same tumor.122 This observation sustains a strong rationale
for combinatorial anti-EGFR/anti-MET approach, at least in
relapsed patients. Furthermore geldanamycin represents an
interesting molecule.123 This antibiotic induces heat shock
protein 90 (Hsp90) inhibition. The Hsp 90 chaperone is
required for the conformational maturation and stability of
multiple oncogenic kinases (among which EGFR and MET)
that drive signal transduction and proliferation of lung
cancer cells. It has been recently demonstrated that also
mutated EGFR is an Hsp90 client irrespective of the presence
of secondary T790M mutation.124

Growing evidence indicates that EGFR and KRAS wild
type tumors may otherwise display the EML4-AKT fusion
protein42. This novel gene derives from fusion of echino-
derm microtubule associated protein-like 4 (EML4) and
the anaplastic lymphoma kinase (ALK) genes both of which
are closely mapped to the same short arm of the chro-
mosome 2.125 The fusion induces a constitutive dimer-
ization and a consequent activation of the ALK kinase
domain. Several ALK specific inhibitors are now under
investigation to specifically treat the EML4-ALK positive
lung tumors and preliminary data seem to be promising.
Based on the co-crystal structure of the MET inhibitor
PHA665752 with the MET domain, Pfizer designed
PF2341066 an orally available 2-amino-3-benzyloxy-5-
arylpyridine compound that selectively targets MET and
ALK. PF2341066 shows efficacy at well tolerated doses
including marked citoreductive ant-tumor activity and
antiangiogenic activity in several tumor models; it is
currently under phase II/III trials on different solid tumors
including NSCLC.126
Post-genomics approach to lung cancer

As discussed above, lung cancer arises from the acquisition
of somatic genetic e and epigenetic e lesions affecting
gene sequence and copy number, protein structure and
chromosome organization. The advent of next-generation
technologies has allowed creation of catalogues of cancers
somatic alterations, thus revealing a number of novel
potential therapeutic targets. Over the course of the next
years much more information will be accessible on somatic
alterations affecting human cancers, within protein
coding-genes, non-coding RNA genes and non-coding
regions of the genome, as well as mithocondrial
genome,127e129 In respect to lung cancer, these technolo-
gies have been able to show a very high mutational rate in
transformed versus the wild type surrounding parenchyma
(genome-wide somatic mutation rate: 17.7 per megabase);
as expected somatic changes mainly affect tyrosine kinase
genes.130

Functional validations of these results are now
mandatory to determine whether they have an active role
in tumorigenesis, prognosis and therapy. In other words,
the identification of an altered gene indicates a candidate
gene rather than a causal cancer gene. As a result, great
efforts are now directed to identify genetic lesions/
mutations that drive oncogenesis among the several
changes (most of which are passenger variations) that
usually affect cancerized tissues.131 Indeed growing
evidence from the so-called ‘landmark studies’ on cancer
genetics has pointed out that in a given tumor there are
few picks of frequently mutated genes among several hills
of infrequently altered genes, resulting in an extreme
genetic heterogeneity. In respect to NSCLC e a still
‘evolving landscape’132 e little is known about functional
characterization of mutations affecting mediators others
than those involved in EGFR pathway. Besides even if
EGFR is known to be activated during lung carcinogenesis,
it should be kept in consideration that not all EGFR
somatic mutations are functionally equivalent. Also the
histological context in which a somatic alteration arises
should be relevant for the interpretation of the role of the
altered gene. For example both in Europe and in USA
monoclonal antibodies against EGFR are recommended in
colorectal cancer therapy only for those tumors which
display wild type KRAS.133 Conversely, as described above,
in lung cancer EGFR is rarely activated by amplification
and the KRAS status test is not required before starting TKI
inhibitors.

The recently presented pioneering BATTLE (Biomarker-
integrated Approaches of Targeted Therapy for Lung Cancer
Elimination) trial e attempting to group patients by
predominant biologic features of their cancer, including
genetic changes in EGFR, KRAS, RXR/CyclinD1 or VEGF e
has demonstrated that it is feasible to identify subgroups of
advance/metastatic NSCLCs who are more likely to benefit
from a specific drug. Importantly the study has been carried
on only on fresh tissues. However the results are mixed and
not fully understood. The median survival went up to nearly
a year from seven months; the study confirms that EGFR
mutated tumors might be more responsive to erlotinib,
while it highlighted that sorafenib appeared to have good
outcome for most groups of patients including those
carrying KRAS mutations, which have been particularly hard
to treat. Notably, most of the chosen biomarkers turned out
to be less selective than expected in discriminating the
groups.
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Conclusions

Over few years, the EGFR-targeted therapy has signifi-
cantly modified the principles of lung cancer treatment.
Many efforts are now directed to the identification of
genetic markers of lung carcinogenesis in order to achieve
a classification that could integrate conventional histo-
pathological features with new parameters derived from
bio-molecular knowledge. From this perspective a major
and still open problem is represented by the histological
and molecular heterogeneity that usually characterize
lung cancer; this point is further highlighted in consider-
ation the small size of tumor samples on which histological
and molecular analyses are routinely performed. Lessons
from recent ‘umbrella trials’ indicate a need in a pre-
determining few markers of which the predictive value will
be strongly demonstrated. Those results point out that
molecular classifiers need probably to be selected in
respect to the stage of the disease and that we are only
assuming e but confirmation will derive from bigger and
more powerful studies e that the same genetic lesion
found in a cancer will be associated to the same sensitivity
to a specific inhibitor in a different patient.134 The trans-
lational relevance of these data is not immediately
evident but several of ‘-omics’ applications will take
advantage of introducing new technology over using
standard care. This will ultimately lead to a better design
of clinical trials that will definitely ‘bridge the gap’
between the worlds of personalized medicine and
evidence-based medicine.135
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