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INTRODUCTION

Let 4 be a commutative topological algebra over the real field. An avera-
ging operator on A4 is a linear continuous operator T' which satisfies the
following identity: T'(xTy) = (Tx) (Ty). Such operators were first used
(implicitly) by Reynolds [1] in connection with the theory of turbulence.
In more recent times these operators have been discussed by Kampé de
Fériet [2, 3] for various spaces of functions. A number of characterizations
of these operators have appeared [2-7].

An important class of averaging operators used in turbulence theory is
the class of averages over one portion of space-time of certain vectors fields.
For example,

.1 T
1) = ] EY ’ d ’
fo 1) = Jim 77 ft_Tf(" ) dr

the time average of a real function f defined on space-time is such an average.
In case f(x, 7) is an integrable function of + which is bounded above or below
by a constant, then f(x, £) does not depend on £. In general one might ask the
following question: Given an algebra A which admits a representation as a
ring of functions, and given an averaging operator T on 4, under what
circumstances can 4 be represented as functions on a product space such
that T is an integration over one factor of the product space? Part 1I of this
paper is devoted to this question (Theorem 7.1).

Because of the relationship between integration theory and the theory of
averaging operators as it is applied to turbulence and to probability [6], we
consider the case where the averaging operator is defined on an abstract
analogue of the ring of real valued measurable functions. The author has
discussed such rings (F-rings) in previous papers [8, 9]. An F-ring is a com-
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mutative o-complete lattice-ordered ring with an identity 1 which is positive
and 1s a weak order unit, thatis,1 A x =0 = x = 0. An F-ring R is bounded
if for each x € R, there is a real number A such that | x| << A - 1.

An operator T on a bounded F-ring R is called a Reynolds operator if the
following conditions are satisfied:

T,. The operator T is linear on R.

T, ForxeR x>=0=Tx>=0.

T, Ifx,eRforn>1andx, {0, then Tx, | O.
T, Forx,yeR, T(xTy) = (Tx) (Ty).

A Reynolds operator is a special case of the Reynolds endomorphism of
Rota [10].

A Reynolds operator has a number of the properties of an integral and is in
a certain sense a generalization of the integral. In Part I of this paper, using
the theory of integration as a model, we given a method for extending a
Reynolds operator from a bounded F-ring to the analogue of the L!-space
of integrable functions.

The relationship between Reynolds operators and conditional expecta-
tions on L2-space is discussed in Part III.

In the sequel, the usual lattice theory notation is used. The symbol R
is used to denote a bounded F-ring with elements x, y, 2, -+, and T is used
to denote a Reynolds operator on R. In [8, p. 675] it is shown that if 4 is an
arbitrary F-ring, the set B(4) = {x € A | x = x%} is a o-complete Boolean
algebra with respect to the order relation of 4, and by [9, p. 545] if B is a
o-complete Boolean algebra, there is a regular F-ring R(B) which is unique
up to isomorphism such that B(R(B)) = B. In addition, if B(4) is isomorphic
to B, then A can be embedded in R(B) in such a way that the embedding
injection is an extension of the isomorphism of B(4) onto B. In every F-ring
A there is a unique bounded F-subring composed of all the x € A for which
a real number A exists such that | x| <{ A - 1. The unique bounded F-sub-
ring of R(B) is denoted R(B). The notations R(B), R(B), and B(4) are used
in the sequel. An l-ideal L of an F-ring R is a subgroup of R with the pro-
perty: xeL and |y | < | x| imply y € L.

A o-ideal N of an F-ring R is a set which is a ring ideal and an /-ideal, and
which is closed with respect to countable suprema. A o-ideal of a Boolean
algebra is an ideal which is closed under countable suprema.

A subset 4 of a g-complete Boolean algebra B is said to be a o-complete
Boolean subalgebra if A forms a o-complete Boolean algebra with respect to
both the finite and the countable operations of B.

If A is a subset of an F-ring, then A* stands for the set of nonnegative
elements of 4. If x is an element of an F-ring, then é, =sup,(n|x| A 1)
and ¢, =1 — ¢&,. In [8] it is shown that for each x in a regular F-ring R,



STRUCTURE OF AVERAGING OPERATORS 349

xe, = 0, e, = ¢,2, and (¢, + x)~! € R. The element ¢, is uniquely determined
by x.

In an F-ring 4, x, — x or lim,, x, = x means that there exists a sequence
1, € A such thatl, | 0 and for each n, there exists an N(n) with the property:

mz=Nmn) = |xp —x| <1,

A sequence {x,} is said to approach x uniformly if in the above definitive
I, = A, - 1 where {A,} is a sequence of real numbers decreasing to zero.

A Boolean algebra B satisfies the countable chain condition if every subset
composed of disjoint elements of B is at most countable. An F-ring A is said
to satisfy the countable chain condition if B(A4) satisfies it.

A function pu on a Boolean algebra B into the real field is a measure if it is
nonnegative, o-additive, and if u(1) = 1. The function p is said to be s-addi-
tive if for a disjoint set {a,}n , with sup, a, € B,

i#(an) = p(sup a,).

All F-ring homomorphisms are assumed to preserve countable operations.
The term o-homomorphism is used, with regard to o-complete Boolean
algebras, for those homomorphisms which preserve countable operations.

If p is a mapping of a set Q into a set M and if ] is a subset of O, then
w2y designates the restriction of p to J.

Parr 1
1. General Structure of a Reynolds Operator

Let T be a Reynolds operator on a bounded F-ring R. Let TR stand for
the range of T, and let

E = {xeR| % &[T(x2) = 2T(a)]}.

In this section the relationship between E and TR is discussed. In particular
it is shown that T1 = 1 if and only if E = TR and T is idempotent.

It is a matter of direct verification that (i) the sets TR and E are subalgebras
of R, (ii) TR is a subalgebra of E, (iii) the identity 1 of R belongs to E, and
(iv) E = {x € R| ¥ ,5,.glT(x2) = xT(2)]}. Let B(E) stand for the class
of idempotents of E, and for y € R let R, denote the smallest F-subring of R
containing y. In order to show that E is an F-subring of R, the following
Lemmas are proved.
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Lemma 1.1, The set B(E) is a o-complete Boolean subalgebra of B(R).
Proor. Since for ¢, e, € B(R),
inf (e, ;) = €469 and sup (ey, &) = €; -+ €5 — €16,

it follows that B(E) is a Boolean subalgebra of B(R). If {¢,} is a sequence
of elements of B(E), then {a, = inf (¢, ", ¢,) | # > 1} is a non-increasing
sequence of elements of B(E). Thus, for 0 <{x € R and a = inf, a,, the
following statement follows from Condition T'3:

aTx = inf a,Tx = inf Ta,x = Tax.

Since inf, @, = inf, ¢,, it follows that inf, e, € B(E). A similar argument
shows that sup,, e, € B(E), and thus B(E) is a o-complete Boolean subalgebra
of B(R).

Lemma 1.2, Ify e E, then R, is a subset of E.

ProoF. Since the proofs of Lemmas 1.2 and 1.3 of [6] can be rendered in
the setting of this paper, it follows that if x, — «x uniformly, then T, — Tx.
Thus E is closed under uniform limits. By the Stone-Weierstrass Theorem,
R, is composed of uniform limits of polynomials in y. Thus R, is a subset
of E.

ProposiTioN 1.1. The set E is an F-subring of R and E = R(B(E)).

Proor. As a corollary of [9, Theorem 5], it can be shown that every
nonnegative element of a bounded F-ring Q is the supremum of a non-
decreasing sequence of finite linear combinations of idempotents of Q. Thus
by Lemma 1.2, if y € E, then B(R,)S R, E, and hence R, < R(B(E)).
Therefore E < R(B(E)) because y € R, for each y € R.

Since the supremum of a nondecreasing sequence of elements of E belongs
to E when it exists, R(B(E))< E.

ProposiTiOoN 1.2, The following conditions are equivalent:

() E=TR.

(2) (T1)™ exists in E.

Proor. If E = TR, then 1 € TR. Hence there is an element x € R such
that Tx = 1. Since x < |x| << A-1 for some real number A >0,

Tx = 1 < AT(1). Thus by [8, p. 676], (T1)7! belongs to E = R(B(E)).
Conversely, if x € E, then «T1 = Tx, and if (T'1)~? € E, then

x = (Tx) (T1)"! = T(x(T1)") € TR.
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Hence E< TR. Therefore, by Statement (ii) at the beginning of the section,
it follows that E = TR,

Remark 1.1. Note that (I'1)* € E if and only if T'1 is a strong order
unit of E, that is, if x € E, then there is a A >> 0 such that | x | << AT1.

ProprositioN 1.3. The following conditions are equivalent:
1) T1=1.

(2) E=TR and T =1T2

(3) Forxe E, Tx = «.

Proor. If T1 =1, then T(Tx) = T(1 - Tx) = T1- Tx = Tx and hence
T is idempotent. Since 1 = T, it follows from Proposition 1.2 that TR = E.

If (2) is valid, then for x € E there is a y € R such that x = Ty
and Tx = T2%y = Ty = x. Therefore (3) follows. From (3), (1) follows
because 1 € E by the definition of E.

Example 1.1. Let R be the F-ring of bounded Lebesgue measurable
functions on (— o, -+ ). The following transformations on R are Reynolds
operators

(1) flx) > exp (— #7) f(),
(i) f(x) > 5£(),
(tit) f(x) — f(#).
In case (i), (T1)~* does not belong to E; in case (ii), (71)~! belongs to E
but T'1 # 1; and in case (iii), 71 = 1.
If (T1)? € E, then T can be replaced without loss of generality by a new
Reynolds operator T, for which Tl = 1.

ProrosiTioN 1.4, If TR = E, then the transformation

Tof = T(T1)7]
is 2 Reynolds operator on R, and Tl = 1. In addition Tf = T[(T1) f].

Proor. By Proposition 1.2, (T1)* € E. It is then a matter of direct verifi-
cation to show that if T"is a Reynolds operator, then T} is as well. Since

Tol =T{(T1) ] =(T1)-T1 =1
and

T[(T1)f] = T(T) ™ (TH)f] = Tf,
the proposition is valid.

The following example exhibits another simplification which can be made
on some occasions.
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Example 1.2. Let R be as in Example 1.1 and let the Reynolds operator be

= [ xtonf@) dx

where y 4, represents th.e characteristic function on the set 4. In this example
not all the information in f is utilized by the Reynolds operator. Only changes
in f on [0, 1] will affect the values of T7.

More generally, if Tf =f, then for every gef + Ky, Tg =f where
Kr={xeR|T|x|=0}

ProposiTioN 1.5. The set Ky is a o-ideal of R, and if R satisfies the
countable chain condition, then R can be written as a direct sum of two
F-rings R, and R, where K = R,. For xe R, T| x| =0 if and only if
x=0.

Proor. Ky is clearly an l-ideal of R which is closed with respect to
countable suprema. It is only necessary to verify that x € Ky and
y € R = xy € Ky. For y € R there is a real number A such that |y | <A 1,
Thus

0<T|ay|=T(xl{y)<TA|x])=AT|x|=0.

If R satisfies the countable chain condition, then sup {B(RYn K1} =e¢
belongs to B(R). Since, in the presence of the countable chain condition
[11, p. 161}, every supremum of a set 4 can be replaced by the supremum of
a countable subset of A4, it follows that e € K. If x € K, then €, < ¢ and
hence K = Re. Let R, be the F-ring R(1 — e) with identity (1 — e) and
let R, = Re with identity e. Then R = R(1 — ¢)® Re and the proposition
follows.

Thus there is no less of generality if, when R satisfies the countable chan
condition, we assume 71 =1and T|x| =0=x =0.

2. Extension of Reynolds Operators

As indicated in the Introduction, every bounded F-ring R can be extended
to a regular F-ring R which is unique up to isomorphism such that
B(R) = B(R). In general, a Reynolds operator T on R can be extended to an
F-subspace Ly of R, that is, an l-ideal of R which contains 1. This extension
enables us to analyse further the case where TR is a proper subset of E. The
extension is carried out for a general Reynolds operator T on a bounded
F-ring R without invoking the countable chain condition.

Every element f e R+ is the supremum of an nondecreasing sequence of
elements of R+: f A N 1 f where N takes positive integer values. Let
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Tf = supy T(f A N) if it exists in R. For a general element f of R, define
f — T+ — Tf-

if both Tf+ and Tf- exist. Let L be the set of all f € R for which 7 is defined.
It is clear that for f€ R, Tf = Tf and that RS L.

For R(B(E)), the regular F-ring generated by B(E), if f € R(B(E)), then
St A Nand f~ A N both belong to E by Proposition 1.1. Thus

(ff AN)Tz =T[(f* A N)2]

for all 2 >0 in R. Since supy (f+ A N) T1 exists in R, it follows that Tf+
exists. In a similar manner it can be shown that 7f- exists. Therefore,
R(B(E)) is a subset of L.

LemMa 2.1. The mapping T is nonnegative and linear, and Ly is an
F-subspace of R.

ProoF. By definition 7' is nonnegative.
To show that T is additive, consider x, y € L. By using the measurable
function representation of R (see [9]), we can show that

@E+NANLK2xAN+y AN<Lx+ 9.

Thus .
T[(* +y) ANIST(x AN+ Ty AN) Tx + Ty

for each N, and so T(x + y) exists and is less than or equal to Tx + Ty.
Since T(x + y)existsandsincex AN +y AM<x +y,

T(x AN)+ T(y A M) < T(x +)
for all N and M. Therefore
Tx +y) = Tx + Ty.
If x, y € Ly, then
x4 Ty — Tar + Tyb — T — Ty
= T(at 4 y*) — T 4 y7).

Since (x 4 y)* < o 4 y%, it follows that ¥ + y € L.
In general, if f<<0<g, f,geLly,and f+ g = he Ly, then

h+(—f)=g and T+ (~f)=Tg=Th+ T(—))

Since f <0, Tf = Tf+ — Tf~ = — T(—f). Therefore Tg = Th — Tf and
hence Th = Tf + Tg.
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Since — (x~ 4+ y7) << 0 < x™ 4 y*, we can apply the results of the pre-
vious paragraph to yield

T(x +y) = Tt +y*) — T(x +y°) = Tx + Ty.

Thus 7' is additive and from the previous paragraph it can be deduced that
Ly is an additive subgroup of R.

To show that 7 is homogeneous let x € Ly and let « >> 0 be a real number,
Then ofx A NJy) =ax AN, ol(x A N/y) = T(ax A N), and so
aTx = T(aX). If x € L is not assumed nonnegative, then (ax)* = ax* and

Tox = oTx. On the other hand, if o < 0, then (ax)* = — ax~ and
() = — awt. Thus T(—ax") = — T~ and T(— axt) = — oT*

Since — ax* € Lo, it follows that ax € L and
Tox = T(ax)~ — T(ax)~
= —alw — (—a) Tt
= o Txt — Tx")
= oTx.
Thus 7 is homogeneous, and hence Ly is a linear subspace of R.
If Tx exists, then T'| x| exists; and for | ¥ | < |« |, Ty exists. Therefore
L is an l-ideal of R and hence is an F-subspace of R.
LemMa 2.2, If x, | x where x € L and x,, > 0, then Tx, 1 Tx.

ProoF. Since x € Ly, Tx, < Tx and y = sup, Tx, exists. Then
y =sup sup T{(x, A N)
n N
= sup sup T'(x, A N)
N =n
=sup T'(x A N)
N
= Tx
by Condition T3 and [12, Theorem 25].
Thus the mapping 7' from Ly into R satisfies Conditions T} through T,

We now show T is valid for T as well. First, however, we prove the following
Proposition.

ProposiTION 2.1. Every element x e R(B(E)) satisfies the relation
xT2 = T(xz) for all z €Ly In addition, if y € L, and x € R(B(E)), then
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€ Ly. That is, Ly is a module over R(B(E)), and T is an R(B(E))-endo-

&
b~

PrOOF. It has already been noted that R(B(E)) is a subset of L,.. We begin
by showing that xy € L if x € R(B(E)) and y € L. Since

xy = xtyt —atyT —ayt + a7y

and since L, is an Il-ideal of R, it is sufficient to show that xyeL,
when x A ¥ > 1. In this case

xy AN<(x AN)(y AN)
for N=1,2,-, and

Txy ANN)< T[(x A N)(y A N)L.

Now

Tl(x AN)(y AN)] = (= AN)T(y AN)
because x A N € R(B(E)) = E. Hence
T(xy A N) <xTy

for all N, and Txy exists. Thus xy € Ly and therefore Ly is an R(B(E))-
module.

To show that T(xz) = xT(z) for all x € R(B(E)) and 2 € Ly, note that
TR < E = R(B(E)), and hence for y € L},

Ty = sup T(y A\ N)

belongs to R(B(E)). This remark follows because R(B(E)) is composed of the
suprema of sequences of elements of R(B(E)). Thus TL, < R(B(E)), and T
maps Ly into R(B(E)) < L.

If y € L} and x € R(B(E))*, then by the previous paragraph xy € L%, and
since (x A N)(y A N) 1 xy,

Try = sup T{(x A N)(y A N)] =sup (x A N)T(y A N)

and hence
Try = xTy. 2.1

By a standard argument it follows that Eq. (2.1) is valid without the restriction
that x and y be nonnegative. Therefore 7'is an R(B(E))-endomorphism on L.
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THEOREM 2.1. The extension T of T is an R(B(E))-endomorphism of L.
which satisfies Conditions Ty through T, relative to L. In addition,

TL; = RB(E)) < L.

Proor. The final remark in the statement of the theorem follows from
the proof of Proposition 2.1. It has already been proved in Lemmas 2.1 and
2.2 and in Proposition 2.1, that all the conclusions of the first part of the
theorem are valid except for the one which asserts that Condition T, holds.

To prove T, for T, consider x, y € L$. Then

TxTy = sup T(x A N)sup T(y A M)
N M
= supsup T[(x A N) T(y A\ M)]
N M
= T(x Ty)
by Lemma 2.2 and [12, Theorem 2.6]. Since
Ty = xtTy+ + Ty~ — 2Ty~ — 2~ Ty+,
it follows from the above remark that
T(x Ty) = (Tx) (Ty).

Therefore T, is valid for T and the theorem is proved.
Analogous to Proposition 1.2 we have the following:

ProrosiTioN 2.2. If Tis a Reynolds operator on R, then 7L, = R(B(E))
if and only if T is a weak unit of R.

ProoF. If T1 is a weak unit of R, then it is a weak unit of R and hence has
an inverse in R by [8, Theorem 1]. Since. T'1 € E+, (T1)-! belongs to R(B(E))*.
Therefore T[(T1)1] = (T1)T1 = 1. If f € R(B(E))*, then

AT e RBE)*  and  TIATY =TT = 1.

Thus f € TLy. From Theorem 2.1 it follows that 7L, = R(B(E)).
Conversely, if 7L, = R(B(E)), then there is an x € Ly such that Tx = 1.
Therefore if

1 —ep=sup(|T1| A1),

then T(xe;,) = ey and T(eq,) = 0. Since both x* and x~ are suprema of
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sequences of nonnegative finite linear combinations of elements of B(R) and
since T' preserves order,

Tlrters) = T(arers) =0

by Lemma 2.2. Therefore e, = 0, (T'1)~* exists in R, and T'1 is a weak order
unit of R.

PropositioN 2.3. If TL, = R(B(E)), then the operator
of = T((T1)7f]

has range R(B(E)) and domain Ly, and satisfies the following conditions:
(i) Q satisfies T through T,,
(i) 01 = 1,
(iii) Tf = QUT)f].
Proor. If one observes that 0 < (T1)1e R(B(E)) and T[(T1)™] =1,
then the proposition can be verified directly.

ProposiTION 2.4. Q2 =Q.

Proor. Follows directly from Proposition 2.3 parts (i) and (ii).

Thus the study of 7' can be reduced to the study of an operator Q which
has the properties of 7' and which in addition is idempotent and carries 1
into 1.

Finally we give a necessary and sufficient condition for T to be positive
under the hypothesis that 7L, = R(B(E)). Remember that an operator T
is positive if x > 0 => Tx > 0.

PropostTioN 2.5. If TL, = R(B(E)), then T is positive if and only if
ég, = e for all e € B(R).

Proor. If T is positive, then T'|f| =0 = f = 0. Hence,
ep,Te =0= T(ep,~e) =0 = ep, e =0.

Thus e < ég4,.

Conversely, let e < ép, for all e B(R). Since T|f| =0 implies
T(n|f] A1) =0 and hence T¢ =0, it follows that ér, = 0. Therefore
& =0, and f = fe, = 0.

ProposITION 2.6. If T is positive, then TL; = R(B(E)).

Proor. Since T1-ep =0, it follows from Theorem 2.1, that
T(1-er,) = Teq; = 0 and hence e, = 0. Therefore (T1)* is a weak order
unit, and by Proposition 2.2, TL; = R(B(E)).
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On the other hand, T positive does not imply TR = E:

Example 2.1. Let R be the F-ring of bounded sequences and let Ts = ¢
where g, = s, exp (— n?%).

Part II
3. A Precise Statement of a Problem

Let R be a bounded F-ring and let T be a positive Reynolds operator on R
for which T1 = 1. It is clear from the results of Section 2 that the only
essential restriction made here over the general case is that which requires T
to be positive. Indeed if T is positive, 7' is positive, and by Propositions 2.3,
2.4, and 2.6, there is an operator Q associated with 7" such that Q is idem-
potent, Q1 =1, and T'(x) = Q[(T1) x]. The restriction of Q to R is still
idempotent and carries 1 into 1.

It is well known [9] that R can be represented as an F-ring of measurable
functions modulo a o-ideal. The construction goes roughly as follows:
Associated with the o-complete Boolean algebra B = B(R) of idempotents
of R is its Stone representation (2, B, ¢> where 2 denotes the Stone space
of B, B the field of the open-closed subsets of 2, and o the isomorphism of B
onto B. The field B generates a o-field § of subsets of £, and if % denotes
the class of sets of first category in €, then there is a o-homomorphism & of
¢ onto B such that ker 6 = % and &5 = o=, If instead of § we consider
M(2, §), the F-ring of bounded real valued (£, §)-measurable functions,
then the set I of functions in 9 which are zero except on a set in N forms a
o-ideal of M and there is a o-homomorphism p of M(L2, §) onto R such that:
(i) ker p =J; (ii) if . denotes the mapping which carries a characteristic
function onto its carrier, then! p g.qn) = Goe; (iil) if C(£2) denotes the F-ring
of continuous functions on £, then p ¢ (g, is an isomorphism of C(£2) onto R,

The F-ring M($, €) together with the o-homomorphism p is called a
representation of R. More generally, if M is a ring of measurable functions
and 7 is a o-homomorphism of I onto R, then (M, 7> is called a representa-
tion of R.

The following is a precise statement of the problem proposed in the
Introduction: Under what circumstances does there exist a measurable pro-
duct space (2, X £, & X £;), a measure y, on £,, and s-homomorphism
of M(L2y X £y, & X 8,), the F-ring of bounded real (2, X £;, 2, X £)-
measurable functions, onto R such that

(1) <ML, X £2;, 8 X &;), 7> is a representation of R,

1If ¢ maps A4 into B and ¢ maps B into C, then the composition of ¢ followed by ¢
is denoted 9.
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(2) T2, X £y, & X 2,) = TR,

(3) TM(82, X £y, 82, X &) is composed of elements x such that Tx is a
real multiple of 1,

(4) if Tf = f and 7f = f, then (g) = f where

gy @) = [ flon 7) din(y)?
21
Item (4) indicates, roughly speaking, that
Tf =[] () (wn @) dus(en)]
2

or that T is an integration over one variable of a product space.

This problem can be solved in a natural way by using a theorem of Birkhoff
(see Section 5). In order to apply this theorem to our advantage we must
consider the following two sets of idempotents of B = B(R):

G = {ec B| Teis a real multiple of 1},
By={ecB|Te=e}.

From the results of Section 1, it is clear that TR = E = R(B(E)), B(E) = B,,
and for x € TR, Tx = x. The properties of G are discussed in the next
section.

4. Elements with Constant Image under T

Let G = {e € B | Te is a real multiple of 1}. G must contain 0 and 1, and
is closed with respect to complementation. In addition, if ¢, is a monotone
sequence of elements of G, then by Condition Ty, sup e, and infe, both
belong to G. However, G need not be a Boolean algebra. Indeed consider
L*([0, 1] x [0, 1]), the F-ring of essentially bounded functions on the unit
square modulo the ideal of null functions, and let

(1) (o, 0) = [ flon) .

G, in this case, contains the characteristic functions of all sets which are
almost everywhere of constant width. In this case G is not a Boolean
algebra, but it does contain a maximal subset B; which is a o-complete
Boolean subalgebra of B(L®). For example, B; could be the set of all charac-
teristic functions independent of w,.

In general the following theorem is valid.
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TreOREM 4.1. If T is a positive Reynolds operator on R with T1 = 1,
then for any o-complete Boolean subalgebra A of B which is a subset of G, there
is @ maximal subalgebra M of B relative to the condition: A =< M < G. In
addition, M is a o-complete subalgebra of B.

Proor. If G = {0, 1}, the theorem is trivial. Assume, then, that 4
contains {0, 1} properly.

By Zorn’s Lemma it can be proved that there is a Boolean subalgebra M
(not necessarily o-complete) which is maximal relative to the properties
indicated in the statement of the theorem.

To establish that M is a o-complete Boolean subalgebra of B, note that
there is a2 minimal monotone subclass S of G which contains M. Remember
that a monotone class is one which is closed with respect to suprema and
infima of monotone sequences, It is clear that G is such a class and that S is
the intersection of all such monotone classes which contain 4.

S is a o-complete Boolean subalgebra of B: Indeed, let

K(f)={e€G|e—fe,f —ef,e \/ fall belong to S}
for each f € G. Then for f, g € G,
g€ K(f)= feK(g).
In addition, if e, € K(f) and e, 1 ¢, then
en—enfle—ef, f—eflf—¢ ad eV teV]

and hence since S is a2 monotone class, ¢ — fe, f — ¢f, and e \/ f all belong
to S. Thus e € K(f); by a similar argument, it follows that if ¢, € K( f) and
e, | e, then e € K(f). Therefore K(f) is a2 monotone class provided it is
nonvoid. Let fe M. Then M < K(f) and hence S & K(f). If e€ S, then
e € K(f) and f € K(e). Since this is true for any f € M, S < K(e). Therefore S
is a Boolean subalgebra of B which is a monotone classand for which

Mc ScG.
It is clear that S is a o-complete Boolean subalgebra of B and equals M.

ReMARK 4.1. The proof of this theorem is an analogue of that given in
[13, p. 27].

CoROLLARY 4.1. Every element of G is contained in a Boolean subalgebra
of G maximal relative to the condition that it be contained in G.
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CoroLLarY 4.2, The maximal subalgebra M of Theorem 1 is necessarily
complete as a lattice and satisfies the countable chain condition. In addition,
the mapping ju: e — A, is a positive measure on M where A, is the real number
such that Te = A, - 1.

Proor. Clearly, p is a positive measure on M. The remainder of the
Corollary follows from some remarks of Maharam [11, § 1.8].

The measure p can be extended to B by using a result of Klee [14] as
indicated in the following theorem.

TaeorREM 4.2. If M <G is a o-complete Boolean subalgebra of B and if p
is the measure induced on M by T (Corollary 4.2), then there is a linear func-
tional {1 on R with the following properties :

(1) It f & R(M), then p(f) = [ fdp.

(2) B is nonnegative,

(3) AT = Th.

ReMARK 4.2. The symbol [fdu stands for the integral induced on
R(M) by the measure y, and is defined in the standard manner by using a
representation of R(M).

Proor or THEOREM. Note that (i) u(f) = [fdu is a linear functional
on R(M), (ii) if ||f|l =inf {A||f] < A-1}, then [|-]|| is a norm on R,
(iii) {T} is a semigroup of linear transformations on R, (iv) u(f) <IIf|
for all fe R(M), (v) TR(M) < R(M) and pTf = uf for f e R(M), and (vi)
I Tf |l <11 f|]- These six conditions insure [14, Corollary 3.1] that there is
at least one linear functional fi on R which extends x and for which (iv) and
(v) are valid. Thus (1) and (3) are valid for fi.

Condition (2) follows from Corollary 2.3 of [15]. In fact, Corollary 2.3
in [15] is a specialization of the Hahn-Banach Theorem covering the exten-
sion of nonnegative linear functionals to nonnegative linear functionals.
This specialized Hahn-Banach Theorem may be used in Klee’s derivation
to prove the existence of a nonnegative fi.

A pair of subsets .S, and S, of a 6-complete Boolean algebra are algebraically
tndependent if, for b, € S;; by A by = 0 implies that one of the factors is zero.

ProprosITION 4.1.  The set G and the set B, are algebraically independent.
Proor. If be G and e € B, then

T(be) = (Tb) (Te) = (Th)e.

If be = 0, then T(be) = (Th)e = 0; and since T is positive, either & =0
ore=0.
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5. Birkhoff's Theorem

The following theorem is necessary for our development. It was discovered
by Birkhoff [5] and later rediscovered by Wright [16].

TaeoreM 5.1 (Birkhoft). If X i a compact Hausdorff space, C(X) the
ring of continuous real functions on X, and T a Reynolds operator on C(X)
such that T1 = 1, then there is a partition of X into closed sets {X, | a € £}
such that:

(1) wy and w, belong to the same X, if and only if f(w,) = f(w,) for every
feTC.

(2) For fe C(X), Tf is constant on X, for each « € 2y and the value of Tf
on a particular X, is uniquely determined by the values of f on X,.

(3) On each X,, the value of Tf is given as follows :
(Tf) (@) = [ fo') dafe) (5.1)

Jor w € X, where p, is a Borel measure on X,

Since there is an isomorphism p - (defined in Section 3) of the F-ring
C(£) onto R where £2 is the Stone space of B, the above theorem can be
applied to our problem.

It can be verified that the partition {X, | « € £,} effected by the application
of Theorem 5.1 to C(£) and p~Tp is identical with that effected by the equi-
valence relation:

w; = w, if and only if for every idempotent e € TC, e(w,) = e(w,).

In addition, if e € G, then for arbitrary o, 8 € £,

W) = [ PO @ i) = [ 670 @) dugw)- (52)

6. The Product Space

Let T be a Reynolds operator on the bounded F-ring R with Boolean
algebra B = B(R) of idempotents. In this section, necessary and sufficient
conditions are found for the existence of a measurable product space repre-
sentation for R which will satisfy the conditions of our problem. This pro-
gramme is carried out in a setting which is slightly more general than that
necessary for the problem.

The plan of attack is as follows: Let B,y and B, be arbitrary o-complete
Boolean subalgebras of B. We find necessary and sufficient conditions for the
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existence of a product space (£2) X £y, & X £,) and a o-homomorphism £
such that

onto

f . 80 X 81 _— B, (6-1)
and

£:9, x 8, 5B, (6.2)

£:9, X 2, =5 B, (6.3)

Then £ can be “raised” in a natural way to a c-homomorphism £ of
M2y X $24, & X £,) onto R such that

onto

E:M(Q, X 2,, 8, X Q) —> R(B,)
and

onto

f:im(!?o X £y, Q) X &) —> R(B)).

Let (R, B, o> be the Stone representation of B, let £, stand for the o-field
generated by oB,; for i =0, 1, and let £ be the o-field generated by £, U £,.
€ is a o-subfield of £ the o-field generated by B. From the remarks of Sec-
tion 3, it follows that every S € € is of the form

S=S8,+N

where S, € B and N is a set of 1st Category.
First we find necessary and sufficient conditions for the o-homomorphism
G|g to be a o-homomorphism of € onto B.

ProrosiTION 6.1. If By U B generates the o-complete Boolean algebra B,
that is if B is the smallest o-complete Boolean subalgebra of B which con-
tains By U By, then & ¢ maps € onto B and 6§, = B, (i =0, 1).

Proor. Every element S; € £, can be represented in the for S; = D; + N,
where D, € 0B, and N, is of 1st Category. Indeed it can easily be verified that
the class {D; + N | where D, € oB; and N is of 1st Category} is a o-field and
hence contains £;. Thus

58, =01D;, (i =0,1).

Therefore & carries €, onto o~0B; = B,. Now € is generated by 50 \VJ §1
so 62 is generated by 6¢, U ¢, or B, U B, and hence by hypothesis6¢ = B.
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REMARK 6.1. If & ¢maps® onto B, then it is clear, since 6¢, = B,,
that By B, generates B.

Next we find necessary and sufficient conditions for the existence of a
measurable product space and a o-homomorphism of the o-field of that
product space onto £. Let {X, | « € £} be the partition of Q =ffected by the
equivalence relation:

wy = a, if an only if yg(w;) = xs(w,) for all S € oByand let {Y,, [y € £}
be the partition of {2 effected by the analogous equivalence relation defined
in terms of sets in oB,.

PROPOSITION 6.2. Every element of €, is a union of X,’s' and every
element of £, is a union of Y)’s.

Proor. By symmetry it is sufficient to prove that every element of €,
is a union of X’s. Every set S € 0B, is a union of X,’s. Let %, be the o-ideal
generated by elements E = N7, S, where S; € 6B, and oB,-inf {S,} = ¢.
N, is composed of sets of 1st category which are unions of X,’s. Consider
the class Q of sets of the form S + N where S e oByand N € R, Theset
L can be shown to be a o-field b&r direct verification. Therefore §, < Q
and the proposition follows,

ProrosiTion 6.3. If By and B, are algebraically independent, then for
each pair (o, y) € £, X £y, the set X, N Y, is nonvoid and

U={X,NY,|(a,7)€ 2y X 2}
is a partition of £,

Proor. It is clear that U contains a partition of £2. However, it must
be proved that X, N Y, 5= ¢ for each choice of (a, y). Since

X, =n{DeoBy| X,=D} and Y,=n{DeoB,| Y,cD},
X,NY,=n{DNE|De€oByand X, =D,and E€oB,and YV, S E}. (6.4)

Due to the algebraic independence of By, and B, the bracketed class of sets
in expression (6.4) enjoys the finite intersection property, and hence it follows
by the campactness of £ that X, N Y, is nonvoid.

Remark 6.2, If for each (o, y) € 2, X £, X, Y, is nonvoid, then
oB, and ¢B, must be algebraically independent and therefore B, and B,
are as well.

Assume for the remainder of this section that By B, generates B, and
that B, and B, are algebraically independent. Consider the mapping
@ 2> 0 x 2 defined as follows: p(w) = (o, y) f weX,NY,. The
mapping is well defined and carries 2 onto 2, X £, by Proposition 6.3. By
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Propositions 6.2 and 6.3, ¢ is an injection (which preserves o-operations) of
¢, into P(2, X 2,), the o-field of all subsets of 2, X £2,, for i =0, 1.

ProrosrTioN 6.4. If D € £, then (D) = D, X £, for some Dy € B(2,),
and similarly if D € €, then ¢(D) = 2, X D, for some D, € $(2,).

Proor. Since D e ﬁo is a union of X’s
o(D) ={(o, ) | Xan Y, ¢ D} =V{{a} X | X, ¢ D} =Dy X &,

where D, = ¢{a | X, c D}. A similar demonstration yields the other half
of the proposition,

Let g, designate the o-field composed of subsets of £y of the form
Dy = {a| X, ¢ D} for D € £, and let &, be analogously defined. Then the
mapping @; : D — D, is an isomorphism of the o-field §, onto &; for (I =

0, 1).
THEOREM 6.1. The mapping @ carries £ onto 8y X L, while
oy =08 X @ and  of, =0, x &,

_ Proor. From Proposition 6.4, ¢ has the indicated property with respect to
¢, and €. Since (i) £ is generated by €, U €,, (ii) €, X &, is generated by
(8 X 2,y (82, X £,), and (iii) ¢ is an isomorphism of the o-structure of g,
it foll hat
it follows tha o8 — 8 X ..

THEOREM 6.2. The mapping 6o is a o-homomorphism of L5 X £,
onto B, -

Proor. The mapping ¢! is an isomorphism of £, X £; onto £ which
preserves g-operations, and & is a o-homomorphism of £ onto B. Therefore
the theorem follows.

By theorem 6.2 and Propositions 6.1 and 6.4, it follows that § = o g™
has the properties (6.1), (6.2), and (6.3)—provided, of course, that B, B,
generates B and that B, and B, are algebraically independent.

If, for fe M(L2, X 2, & X &), Df(w) = f(p(w)), then P is an isomor-
phism of MY, X £2;, £, X &) onto WYL, £) because ¢ is a measurable
[13, p. 164] transformation of (£2, ) onto (£, X £, £, X &,) which carries
£ onto £y X &, in an isomorphic manner,

Since, by Proposition 6.1, & maps € onto B, it follows that p (defined in
Section 3) carries B(M(£2, £)) onto B and hence that ppqe maps
M(£2, L) onto R. In addition

P2, ﬁz) = R(B,)

for ¢ =0, 1 because p (o ¢) = & 0t. Therefore the following Theorem
is valid.
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THEOREM 6.3. If By B, generates B and if B, and B, are algebraically
independent, then the mapping & = p 0D has the following properties :

(1) & is a o-homomorphism of M(82, X £, £ X £,) onto R.
(2) EM(2y X L, & X 21) = R(By).
(3) M2y X 2y, Q) X &) = R(By).

7. The Main Result

Let By = {e € B | Te = ¢} and let G be the set of elements e of B with Te
equal to a real multiple of 1. If B, is a o-complete Boolean subalgebra of B
and G 2 B,, then B, and B, are algebraically independent by Proposition
4.1. In addition B, can be chosen maximal in G by Theorem 4.1. However,
the maximality of B, in G is necessary but not sufficient for Byu B, to
generate B. See Section 11 in Part ITI. Assume for the remainder of this
section that B, U B, generates B. Thus we can use the results of Section 6.
By Corollary 4.2, there is a positive measure g induced on B; by T. The
mapping po! is a positive measure on oB;; this measure can be extended
to a (o-additive nonnegative) measure & on the o-field €; and finally
v = jip; ! is a measure on £, because g, is an isomorphism of £, onto £,, the
o-field of the measurable space (£, £,). (The symbols £, 8,, £2,, £,, etc.
are defined in Section 6.) Let [ stand for the operator on M(2, x 2, 8 X ;)
defined as follows: Jf = f where

fle @) = [, fon7) d).

J is clearly a Reynolds operator on M(2, X £, & X £,) with Ji = 1.
Our purpose in this section is to show that £ Jé-lx = Tx where £-1x stands
for a member of the £-coset of preimages of x € R.

From a remark at the end of Section 5, it follows that the decomposition
{X, | ae Q,} effected by the Birkhoff Theorem (Theorem 5.1) is the same
as that described in Section 6: w; and w, belong to the same X, if and only if
xs{wy) = xs(w,) for each S € 6B, Let {Y,, | y € £2,} be the partition defined
in an analogous fashion (in Section 6) with respect to ¢B;. By Proposition 6.3,
X,NnY, is nonvoid for each (a,y)€ £, X £2;, and hence the mapping
S — 8N X, is an isomorphims of the s-complete Boolean algebra ¢B; onto
0B; N X,. In addition, since every element of £, is a union of Y,’s, it follows
that S — S N X, is also an isomorphism of £, onto €; N X,. The smallest
o-field of subsets of X, generated by ¢B; N X, is £, N X,. Indeed, every
element of £, » X, is of the form S = §; +~ N where S, €0B; N X,, and
N e N, n X, where the definition of R, is analogous to that given for %,
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in the proof of Proposition 6.2. Since M; N X, is a subset of the o-field
generated by oB; N X, it follows that S is an element of that o-field and
€, N X, coincides with it, By a similar argument it follows that the field
B n X, of subsets of X, generates the o-field § N X,.

Since for each «, a measure g, is defined on B N X, by Theorem 5.1, it
follows that u, extends at least to €, N X,. This extended measure can then
be transferred to €; by the inverse of the isomorphism {:S— Sn X,.
It can yet again be tranferred to £, by the isomorphism ¢,. Thus if i, is the
extension of p, to € N X, then the function ,{@;" from ¢, into the real
numbers is a measure on £,.

_ ProposiTion 7.1, For each o € £, the measure i,{ coincides with & on
€., and hence i,{p7" coincides with v on &,.

Proor. The measure u,{ coincides with po~! on oB;. Indeed, from
Eq. (5.2),

potS = [ plo1S(w) duofe)
Xo

= f XS(‘U) d,u,a(w) = ,U»a(S N Xa)
Xa

= ‘aaCS .
Thus by definition of v, u,{g7* = v on g,0B,. Therefore they coincide on £,

_ Prorosrrion 7.2. The o-field 8 N X, of subsets of X, coincides with
2, N X,

Proor. The mapping ¢ defined in Section 6 carries 2 into 2, X 2,
and by Theorem 6.1 it carries £ onto &, X ¢,. In addition, £ N X, is mapped
onto the class of a-sections of sets in £, X £,. By [13, Theorem A p. 141],
this last class is {a} X £,. Therefore € N X, = &, N X,.

Let II; be defined as follows: if @(w) = («,y) then IT(w) =y and
II\(w) = o. I1; is a single-valued mapping of £ onto £, and IT;? is an iso-
morphism of £, onto ¢€; for ( = 0, 1). In addition, ¢;* = IT;* for (f=10).
Finally I7, is a measure preserving transformation of (2, £, &) onto (£,
2, v).

Let @ be the mapping defined in Section 6.

ProrosiTioN 7.3. If g € YL, L), then

(@] @) = [ ) duly)

for weX,.
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Proor. If we X, and fe M(£2, X £2,, & X £,), then
(Pf) (@) = flll(w), ITy(w)) = f(x 1y(w)).

If we let f,, (w1) = f(wp, w;) where w, is considered fixed, then

(Pf) (@) = fulII1(w)) € M(L, L).

Since II;! = g7, it follows that
(1 x,)'S =(II7'S)n X, = {p'S

and hence IT, | X, is a measure preserving transformation from (X,, &, N X,
i) onto (£2,, 2, v). Therefore for w € X, and f e M(L2, 2),

[ fendt) = flllw) dufe)

— [ (@) du(w).
Xa

Let @1 = f and the proposition follows.

From the remarks of Section 3 it follows that for every element g € MM(£2, £)
there is a § € C(Q) and 7 € M(R, £) which is nonzero on a set of first category
such that .

&§=£&+n

The functions ¢ and 7 are uniquely determined by g.

ProposiTION 7.4. Let g = § + n be the representation of g eM(L2, £)
by a function in C(£2) and a function in M(L2, £) which is nonzero on a set
of Ist category. Then for each o € £,.

[, g duo(e) = [ 8) dpoe).

Proor. The support of # is a set S which is a union of sets S, each of
which is the intersection of a nonincreasing sequence {S;,}; of elements of B
such that B-inf; S;, = ¢. If S, N X, # ¢, then S;, N X, is nonvoid and
belongs to £ N X,,. Now

;u’ot(S N Xa) f"‘a(Sm N Xa) - [PTP 1(XS,,,)] (w)

for w € X, by Theorem 5.1.

Since [pTp-'xs,] | 0as i — oo, it follows that pe(S, N X,) = 0. Therefore
the support of has pq-measure zero and the proposition is valid.

Now we are ready to prove the representation theorem.
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Tueorem 7.1. If T is a positive Reynolds operator on R such that T1 =1
and G #~ {0, 1}, then there is a o-complete Boolean subalgebra B, of B which
1s maximal relative to the condition B, = G. If By B, generates B, then there
15 a product space (£, X §2,, & X £,), a measure v on £, and a c-homomor-
phism € of M(2, X 2y, & X £,) onto R such that

n fﬁﬁ([}o X £ 8, X £,) = R(By),
2 é&Ui(.Qo X 2,0, X &) = R(By),
(3) if Tf = f and &(f) =, then &(g) = f where

g ) = [ flwny) dviy).

Proor. Except for statement (3) the theorem is a recapitulation of pre-
vious results. We prove statement (3) here.
By Proposition 7.3,

[ fen ity = [ oftw) duoe) (7.1)

for w € X,. From Proposition 7.4, there is a continuous function & on 2
which differs from ®f on a set of st category, and

[ fwor)dty) = [ he) dpofo) (7.2)

Therefore by Theorem 5.1,
[ o) d) = (673 Toh) () (7.3)
1

for w e X,,,o. In addition, if w € X,

(Pg) () = glo Iy(w)) = g(w, ¥)
for any y € £, because g(a, ) is independent of y. Thus

(Pg) () = (p7'Tp) b(w)
for w € X,,. Since ph = pPf, we have

Og = p~'Tpdf,
and hence by Egs. (7.1)-(7.3),

pPg =bg =T¢f = Tf =1.
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Parr II1

8. Imtroduction

In Parts I and II we have discussed the action of a Reynolds operator T'
on a bounded F-ring R and the extension of T to L an F-subspace of R, the
regular F-ring associated with R [8, 9]. In Part IIT we discuss the case where
R is provided with a positive linear functional which can be interpreted as an
integral. It is shown that under certain circumstances a Reynolds operator
on R can be extended to a conditional expectation on an L?-space containing
R; the results of Theorem 7.1 are shown to hold for conditional expecta-
tions; and finally conditional expectations are classified in terms of the
results of Part I1.

Let B be a o-complete Boolean algebra which supports a positive measure p.
The pair (B, p) is called a measure algebra. Maharam [11] has noted that:

(1) B is complete as a lattice.

(2) B satisfies the countable chain condition,

(3) There is a measure space (£2, §, i) such that B ~ §/% where %t is the
o-ideal of sets of € with i-measure zero. 2 can be chosen as the Stone
space of B and § as the o-field generated by B, the Boolean algebra
of open-closed sets of 2, and p(S/N) = @(S).

As indicated in Section 3, there is a o-homomorphism p of M(L2, €) onto
R(B) such that (M, p) is a representation of R. It is easy to verify that R(B)
is isomorphic to L*(R, €, ji) = L*(B, p). In addition, it can be shown that up
to isomorphisms

B SR(B) = L“(B, u) < L¥(B, ) SR(B).

If B, is a o-complete Boolean subalgebra of B, then, when & designates the
o-homomorphism of § onto B defined in 3, 6-1B, = §, is a o-subfield of
€ and 68, = B,. Let p be the natural extension of p which maps MK, ),
the regular F-ring of all (£, §)-measurable functions, onto R(B). If (2, %, z)
is 2 measure space, let #2(2, ¥, ji) designate the square fi-integrable functions
in (2, A). Thenp LR, &, &) = L¥By, m5,)-

Let T be a positive Reynolds operator on R(B) for which T1 = 1. T is
said to be compatible with p if

w(Te) = u(e)

for each e € B. Note that for f € LY(B, ), u(f) is defined equal to [fdi where f
stands for a representative of £ in (£, §).

We will show that if T is compatible with u, then T, the extension of T
discussed in Part I, is a conditional expectation when restricted to L¥(B, p).
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9. Reynolds Operators and Conditional Expectation

For the remainder of Part III, let T be a positive Reynolds operator on
R(B) for which T1 = 1. In Reynolds operator on R(B) for which T1 = 1.
In Section 2 it was shown that T can be extended to an operator T on an
F-subspace L of R(B) which satisfies Conditions 7} thru T Since T is an
extension of T, 71 = 1; and since T is positive, it follows that 7" is also
positive. From Propositions 2.6 and 2.4, it also follows that T = (T) and
TL, = R(B(E)).

ProposiTioN 9.1. If T is compatible with p, then Ly 2 L*B, u),
TLAB, 1) < LXB, ), and wl(T)7] < ().

Proor. If fe L¥B, p) and f > 0, then f is integrable. For each N > 1,
T(f A N)is defined. Let hy be inthe cosetin #2(%, §, i) determined by
T(f A N). Then 0 < by < hy -+ < hy < -+ almost everywhere. Therefore
hx 1 h a.e. where h may be infinite-valued. By the monotone convergence
theorem

[ hndi 4 [ hdi = Gy
while

| hads = W(T(f A NY) A ().

Thus u(h) <<« and so A is integrable. Since T(f A N) < ph forall N > 1,
it follows that sup, T(f A N)exists, f € L, and Tf is integrable. In addition,

p Tf) = u(f).

To complete the proof, note by Schwarz’ inequality that
[(T(f A NDP < u(f?) (fT(f A N)) <o
because f e L*(B, p) and T(f A N) is bounded. If f # 0, then
p(fT(f AN)#0

and hence

p(fT(f A N)) < p(f?)
for all N > 1. Therefore since
KIT(f A NP1 <p(f?)
for all N, it follows that u[(7Y)?] exists when p( f?) exists, and

rl(TF?] < w(f3).
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Thus the restriction of 7' to L%(B, u) is a linear operator on L*(B, u) with
the following properties:

) (Ip=1

(2) T is a self-adjoint operator on LA(B, ).

(3) T(\1) = A - 1 where A is a real number.

(4) T is positive.
Indeed (1), (3), (4) have already been mentioned. To show (2) consider

(Tf, &) = ul(Tf) g = w[T(TF) £)] = ul(Tf) (T2)]
= u[T(fTg)] = u(fTy)
(f, To).

Therefore a theorem of Bahadur [4] implies that for fe L%B, u),
Tf = E(f| €,) where E( |- §,) designates the conditional expectation operator
associated with €, = 6-1B(E). Remember that B(E) designates the Boolean
algebra of idempotents of E = {f€ R(B) | Tf = f}. It is a matter of direct
verification to show that E(- | §;) depends only on €, = B,, B, and u. Thus
we deviate from the standard notation and designate the conditional expecta-
tion associated with By, a o-complete Boolean subalgebra of B, by the symbol
Ep,. Hence we have the following theorem.

THEOREM 9.1. If T is a Reynolds operator on R(B), then there is a uniquely
determined extension Ep of T which is the conditional expectation on LB, p)
associated with B,, the 1dempotent algebra of the range of T. The mapping
T — Ep, is a one to one mapping of the class of Reynolds operators on R(B) onto
the class of conditional expectations on LA(B, p).

10. Product Representation for Conditional Expectation

In this section an analogue of Theorem 7.1 is derived for conditional
expectations on L%(B, ). In order to facilitate this derivation, we note that for
a given o-complete Boolean subalgebra 4 of B the conditional expectation
E , is a projection of LB, p) onto the L2-subspace L*(4, p 4) of LB, p). If
& designates the class of conditional expectations on L¥B, i) ordered by the
relation: B, < E, if and only if EjE, = E, and if A is the class of
a-complete Boolean subalgebras of B ordered by 1nclus1on then the mapping
A— E 4 is an isomorphism of the partially ordered set % onto &. An element
E 4 €& is said to be complemented if there is an A’ € % such that

(i) E4Ey = p = E{ou}a

(ii) 4 v A’ generates B.
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Lemma 10.1. If A;, A,€% and EqE, = E E,, then and only then

EAIEAz :EAlnA‘

Proor. If E4 and E,; commute, then by Bahadur’s result [4], EqEy isa
conditional expectatlon Therefore there is a D € % such that E aFa, = ~E D
Thus Ep < Ey and Ep < Ey, and hence D c 4,n A,. In addltlon
EAlnAED—EAnAEAEA —-EAﬂA2 S0 N A, < D. Therefore
A4, A, =

Let G4 = {e € B | E 4e is a real multiple of 1}.

ProrostrioN 10.1. If E4 E, = p, then 4, 1 4, = {0, 1}. In addition,
the following conditions are equivalent:

(1 EAIEAz = H.
(2) 4, < Gyp
() 4, < Gy

Proor. Apply Lemma 10.1.

Turorem 10.1. If Ep has complement Ep , then there is a measure space
(2 X D1, 84 X 8, pto X o) and a o- -homomor phism & of

L2 X £y, 8y X &4, pg X )
onto L¥(B, u) such that

1) '522(90 X £y, 89 X Ly, py X ) = LX(By, 1)y

(2) £8%(82y X 2y, 24 X 8y, py X py) = LBy, u) where B, has the prop-
erties: By B, generates B and By B; = {0, 1},

(3) if f € L¥(B, ) then Eg_ f = &g where

gl @) = [ E (o 7) dia(y)

and £-Yf stands for a member of the £-coset of preimages of f.

Remark 10.1. In Theorem 10.1, L¥B,, 1) stands for the L2-subspace of
L¥(B, p) generated by B, < L¥B, p).

Proor. By Theorem 7.1, it follows that a o-homomorphism £ exists which
maps M(£2, X £2,, & X &) onto L®(B, ) in such a manner that (1), (2),
and (3) are satisfied if L? and £ are replaced by L* and .#® respectively and
if gy = v. Since Ep_is compatible with y, p is equal to the measure defined
in terms of Ep on 31 and v = pg7". A measure yu, can be defined on (2, £,)
as follows: py = pep™ Then (2, X 2,, & X £, py X ;) becomes a measure
space, and if S € € X &, then yy X pi(S) = u[é(xs)]. Since £ can be exten-
ded to L2y X £y, £ X 84, pg X py) in a natural way, the theorem is valid.
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11.  Classification of Conditional Expectations

A conditional expectation E, on L%(B, ) will fall into one of three classes:
(1) where G, = {0, 1},
(2) where G, = {0, 1} but E, is not complemented,
(3) where E, is complemented,
By Proposition 10.1, it follows that these classes are disjoint. However, it is

possible that class (2) is void. The following example shows this is not the
case.

Example 11.1. Let LB, p) be the F-ring of all ordered 6-tupples of
real numbers where

1(1,0,0,0,0,0) = u(0,1,0,0,0,0) = - —M(OOOOOI)——%
and let .
(x4, O
r=(% %12)

where I, stands for the 2 X k matrix of 1’s. The atoms of
By={ecB|Te=e}

are (1,1,1,1,0,0) and (0,0,0,0, 1,1) while the atoms of GB,, are the
following twelve: (1,1,0,0,1,0), (1,1,0,0,0,1), (1,0,1,0,1,0), -,
(0,0, 1, 1,0, 1). The maximum number of elements in a Boolean subalgebra
B, of B contained in Gy is four. Therefore the Boolean subalgebra of B
generated by By v B, contains at most 2% elements while B contains 2° ele-
ments. Therefore T = Ep cannot be complemented.

If E, belongs to class (1) it is called purely conditional.

ProrosiTioN 11.1. The following statements are equivalent:
(1) E, is purely conditional.
(2) If A’ is a o-complete Boolean subalgebra of B, then
Efy =p=Ey =p.
(3) For each fe B, thereisan e € A — {0, 1} such that u(ef) 7 u(e) u( f)-

ProoF. (1) < (2) follows by Proposition 10.1 because G4,={0, 1} < {0, 1}
is the only o-complete Boolean subalgebra of B which is a subset of G 4.

(1) = (3): If w(ef) = ple) u(f) for all e € 4, then

W(Eq % Egy) = p(Eq) i(Ery)
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for all x, y € B where F = {0, f, 1 — f, 1}. It follows from [18, p. 351] that
E Epy = u(Egy) = w(y). Thus F =G, which contradicts the assumption
of pure conditionality.

(3) = (1): If E, is not purely conditional then G4 7% {0, 1}. Let fe G,
where f#£ 0, 1. Then for ec 4, E (ef) = eE,f = [1(f)] e, and hence

wef) = mEalef)] = ple)u(f)-

PropositioN 11.2. If E ¢ is a complement of E 4, then A4° is a o-complete
Boolean subalgebra of B which is maximal relative to the condition 4° <G ,.

Proor., If A¢is not maximal in G4, then there exists b € G4 — A° such
that A¢ v {b} generates a o-complete Boolean subalgebra D of B which is
contained in G 4. Each o € D has the form

v =00 4 v,(1 — b)
where v, € A°. By Theorem 10.1, there are elements b, #; of
B(L¥( 2 X £y, 84 X L4, pg X py))
such that £6 = b and €3, = v,. Thus for ¢ = 4,5 + #,(1 — b), £ = v and

f (e, 1) dpy = f 615‘1'!"1 + f ﬁzz’dﬂl
2 2,

is a constant. By construction, ¢, is independent of wy. Let v,(wg, w,) = #;(c,).
Then

f bdy, = f (@ — 1) i’d.uq + f oy,
2 2, Q
and hence

(@, — dy) i’dl’q
2

is a constant for any choice of the #,’s in B(IR(£2,, 8,)). Assume that for some
pair (wq, ap), . .

b(wy, 1) F (o, wy)
on some w;-set of positive measure. Define w,-sets .S;, S, and S_; as follows:

w, €S, if i)(wo, w,) — B(ao, w) =k

for k=0,1, — 1. The functions Xauxs, € 20 X & for k=0,1, — 1 and
are admissible 4,’s. Thus

[ Xopes,[wn, @) — blagen)] diy =0
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for £ =0, — 1, 1. Therefore S; and S_; have zero measure contrary to the
assumption. Thus b(w, w;) = b(xg, w,) a.e. for every pair (o, w,), and hence

b € A°. Since b is assumed not to be in A¢, it follows that 4°¢ is maximal in
G,

ProposiTioN 11.3. Let A’ be maximal among the o-complete Boolean
subalgebras of B which are contained in G 4. If D is the o-complete Boolean
subalgebra generated by 4 U 4’, then D is purely conditional.

Proor. If Ej is not purely conditional, then by Propositions 10.1 and
11.1, thereis an f € B such that for F = {0, 1, f, | — f}, EpEr = p and hence
F = Gp. Consider A* = {fay+ (1 —f)a,|a;e A'}. I g =fay + (1 — f) a,,
then

E4 8 = E4Epg = Eq (au(f) + @ (1 — ()
= constant multiple of 1.

Thus A* = G4 and hence 4’ is not maximal relative to the condition 4’ = G.
This contradicts the hypothesis of nonpure conditionality and hence the
proposition is valid.

The converse of Proposition 11.3 is not valid, that is, the algebra generated
by A v A’ may be purely conditional when A’ is not maximal.

Example 11.2. Let L*(B, ;) be as in Example 11.1 and let

T= (%ol3 %013)

If A is the subalgebra of B generated by (1, 1, 1, 0, 0, 0) and A’ is the sub-
algebra generated by (0, 1, 1, 0, 1, 1), then 4 U A’ generates a subalgebra D
of B where Ej, is purely conditional, while A’ is a proper o-subalgebra of the
algebra A4, generated by (1, 0, 0, 1, 0, 0) and (0, 1, 0, 0, 1, 0) and contained
in G,
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