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Let A be a commutative topological algebra over the real field. An avera- 
ging operator on A is a linear continuous operator T which satisfies the 
following identity: T(xTy) = (TX) (Ty). Such operators were first used 
(implicitly) by Reynolds [l] in connection with the theory of turbulence. 
In more recent times these operators have been discussed by Kampt de 
FCriet [2, 31 for various spaces of functions. A number of characterizations 
of these operators have appeared [2-71. 

An important class of averaging operators used in turbulence theory is 
the class of averages over one portion of space-time of certain vectors fields. 
For example, 

the time average of a real functionfdefined on space-time is such an average. 
In casef(x, T) is an integrable function of 7 which is bounded above or below 
by a constant, thenf(x, t) does not depend on t. In general one might ask the 
following question: Given an algebra A which admits a representation as a 
ring of functions, and given an averaging operator T on A, under what 
circumstances can A be represented as functions on a product space such 
that T is an integration over one factor of the product space ? Part II of this 
paper is devoted to this question (Theorem 7.1). 

Because of the relationship between integration theory and the theory of 
averaging operators as it is applied to turbulence and to probability [6], we 
consider the case where the averaging operator is defined on an abstract 
analogue of the ring of real valued measurable functions. The author has 
discussed such rings (F-rings) in previous papers [S, 91. An F-ring is a com- 
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mutative u-complete lattice-ordered ring with an identity 1 which is positive 
and is a weak order unit, that is, 1 A x = 0 + x = 0. An F-ring R is bounded 
if for each x E R, there is a real number h such that 1 x 1 < X . 1. 

An operator T on a bounded F-ring R is called a Reynolds operator if the 
following conditions are satisfied: 

T,. The operator T is linear on R. 

TP ForxER,x>O=>Tx>O. 
T,. If x, E R for n 3 1 and x, 4 0, then TX, 4 0. 
T4’ For x, y E R, T(xTy) = (TX) (Ty). 

A Reynolds operator is a special case of the Reynolds endomorphism of 
Rota [lo]. 

A Reynolds operator has a number of the properties of an integral and is in 
a certain sense a generalization of the integral. In Part I of this paper, using 
the theory of integration as a model, we given a method for extending a 
Reynolds operator from a bounded F-ring to the analogue of the L1-space 
of integrable functions. 

The relationship between Reynolds operators and conditional expecta- 
tions on L2-space is discussed in Part III. 

In the sequel, the usual lattice theory notation is used. The symbol R 
is used to denote a bounded F-ring with elements x, y, x, .*a, and T is used 
to denote a Reynolds operator on R. In [8, p. 6751 it is shown that if A is an 
arbitrary F-ring, the set B(A) = {x E A 1 x = x2} is a u-complete Boolean 
algebra with respect to the order relation of A, and by [9, p. 5451 if B is a 
a-complete Boolean algebra, there is a regular F-ring &(B) which is unique 
up to isomorphism such that B(&B)) = B. In addition, if B(A) is isomorphic 
to B, then A can be embedded in I?(B) in such a way that the embedding 
injection is an extension of the isomorphism of B(A) onto B. In every F-ring 
A there is a unique bounded F-subring composed of all the x E A for which 
a real number h exists such that 1 x ( < A * 1. The unique bounded F-sub- 
ring of fi(B) is denoted R(B). The notations R(B), l?(B), and B(A) are used 
in the sequel. An l-ideal L of an F-ring R is a subgroup of R with the pro- 
perty: xELand IyI <lx1 implyyEL. 

A u-ideal N of an F-ring R is a set which is a ring ideal and an l-ideal, and 
which is closed with respect to countable suprema. A a-ideal of a Boolean 
algebra is an ideal which is closed under countable suprema. 

A subset A of a u-complete Boolean algebra B is said to be a u-complete 
Boolean subalgebra if A forms a u-complete Boolean algebra with respect to 
both the finite and the countable operations of B. 

If A is a subset of an F-ring, then A+ stands for the set of nonnegative 
elements of A. If x is an element of an F-ring, then Cz = supn (n ( x 1 A 1) 
and e, = 1 - &. In [8] it is shown that for each x in a regular F-ring 8, 
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xe, = 0, e, = ez2, and (e, + x)-l E R. The element e, is uniquely determined 
by x. 

In an F-ring A, x, + x or lim, x, = x means that there exists a sequence 
Z, E A such that 1, 4 0 and for each n, there exists an N(n) with the property: 

A sequence {x,,} is said to approach x uniformly if in the above definitive 
1, = h, . 1 where {h,} is a sequence of real numbers decreasing to zero. 

A Boolean algebra B satisfies the countable chain condition if every subset 
composed of disjoint elements of B is at most countable. An F-ring A is said 
to satisfy the countable chain condition if B(A) satisfies it. 

A function TV on a Boolean algebra B into the real field is a measure if it is 
nonnegative, u-additive, and if t~( 1) = 1. The function TV is said to be a-addi- 
tive if for a disjoint set {a,}~=, with suplz (I, E B, 

All F-ring homomorphisms are assumed to preserve countable operations. 
The term o-homomorphism is used, with regard to u-complete Boolean 
algebras, for those homomorphisms which preserve countable operations. 

If p is a mapping of a set Q into a set M and if J is a subset of Q, then 
p,* designates the restriction of p to J. 

PART I 

1. General Structure of a Reynolds Operator 

Let T be a Reynolds operator on a bounded F-ring R. Let TR stand for 
the range of T, and let 

E = {x E R 1 4 &T(xx) = XT(Z)]}. 

In ,this section the relationship between E and TR is discussed. In particular 
it is shown that Tl = 1 if and only if E = TR and T is idempotent. 

It is a matter of direct verification that (i) the sets TR and E are subalgebras 
of R, (ii) TR is a subalgebra of E, (iii) the identity 1 of R belongs to E, and 
(iv) E = {x E R 1 V Z>,,ZER[T(~~) = XT(Z)]). Let B(E) stand for the class 
of idempotents of E, and for y E R let R, denote the smallest F-subring of R 
containing y. In order to show that E is an F-subring of R, the following 
Lemmas are proved. 
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LEMMA 1.1. The set B(E) is a a-complete Boolean subalgebra of B(R). 

PROOF. Since for e,, e2 E B(R), 

inf (e,, e2) = e1e2 and sup (el, 4 = el + ez - v2, 

it follows that B(E) is a Boolean subalgebra of B(R). If {e,} is a sequence 
of elements of B(E), then {a, = inf (e,, a.-, e,) 1 n 3 I} is a non-increasing 
sequence of elements of B(E). Thus, for 0 < x E R and a = inf, a,, the 
following statement follows from Condition T,: 

aTx = il;tf a,Tx = inf Ta,x = Tax. 
?I 

Since inf, a, = inf, e,, it follows that inf, e, E B(E). A similar argument 
shows that supn e, E B(E), and thus B(E) is a u-complete Boolean subalgebra 
of B(R). 

LEMMA 1.2. If y E E, then R, is a subset of E. 

PROOF. Since the proofs of Lemmas 1.2 and 1.3 of [6] can be rendered in 
the setting of this paper, it follows that if X, -+ x uniformly, then TX, -+ TX. 
Thus E is closed under uniform limits. By the Stone-Weierstrass Theorem, 
R, is composed of uniform limits of polynomials in y. Thus R, is a subset 
of E. 

PROPOSITION 1.1. The set E is an F-subring of R and E = R@(E)). 

PROOF. As a corollary of [9, Theorem 51, it can be shown that every 
nonnegative element of a bounded F-ring Q is the supremum of a non- 
decreasing sequence of finite linear combinations of idempotents of Q. Thus 
by Lemma 1.2, if y E E, then B(R,) G R, c E, and hence R,G R(B(E)). 
Therefore E 5 R(B(E)) b ecause y E R, for each y E R. 

Since the supremum of a nondecreasing sequence of elements of E belongs 
to E when it exists, R(B(E))c E. 

PROPOSITION 1.2. The following conditions are equivalent: 

(1) E = TR. 
(2) (Tl)-l exists in E. 

PROOF. If E = TR, then 1 E TR. Hence there is an element x E R such 
that TX = 1. Since x < ( x ( < X . 1 for some real number X > 0, 
TX = 1 < hT(l). Thus by [8, p. 6761, (Tl)-l belongs to E = R(B(E)). 

Conversely, if x E E, then xT1 = TX, and if (Tl)-l E E, then 

x = (TX) (Tl)-l = T(x(Tl)-l) E TR. 
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Hence ES TR. Therefore, by Statement (ii) at the beginning of the section, 
it follows that E = TR. 

REMARK 1.1. Note that (Tl)-1 E E if and only if Tl is a strong order 
unit of E, that is, if x E E, then there is a X > 0 such that 1 x 1 < hT1. 

PROPOSITION 1.3. The following conditions are equivalent: 

(1) Tl = 1. 
(2) E = TR and T = T2. 

(3) For x E E, TX = x. 

PROOF. If Tl = 1, then T(Tx) = T( 1 * TX) = Tl * TX = TX and hence 
T is idempotent. Since 1 = Tl, it follows from Proposition 1.2 that TR = E. 

If (2) is valid, then for x E E there is a y E R such that x = Ty 
and TX = T2y = Ty = x. Therefore (3) follows. From (3), (1) follows 
because 1 E E by the definition of E. 

Example 1.1. Let R be the F-ring of bounded Lebesgue measurable 
functions on (- 03, + a). The following transformations on R are Reynolds 
operators 

(9 f(x) -+ exp (- x2)f(x), 
(ii) f(x) + &f(x), 
(iii) f(x) +f(x). 

In case (i), (Tl)-l d oes not belong to E; in case (ii), (Tl)-l belongs to E 
but Tl # 1; and in case (iii), Tl = 1. 

If (Tl)-l E E, then T can be replaced without loss of generality by a new 
Reynolds operator T,, for which TJ = 1. 

PROPOSITION 1.4. If TR = E, then the transformation 

Tof = TNT1 WI 
is a Reynolds operator on R, and TJ = 1. In addition Tf = T,,[( Tl) f]. 

PROOF. By Proposition 1.2, (Tl)-l E E. It is then a matter of direct verifi- 
cation to show that if T is a Reynolds operator, then T,, is as well. Since 

and 

TJ = T[(Tl)-ll] = (Tl)-l . Tl = 1 

T,[W)fl = W”l)-l W)fl = Tf, 
the proposition is valid. 

The following example exhibits another simplification which can be made 
on some occasions. 
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Example 1.2. Let R be as in Example 1.1 and let the Reynolds operator be 

f-I xro,11f(4 dx 

where xA, represents the characteristic function on the set A. In this example 
not all the information in f is utilized by the Reynolds operator. Only changes 
in f on [0, l] will affect the values of Tf. 

More generally, if Tf = f, then for every g E f + K,, Tg = 3 where 
K,= {xERI T/xl =O}. 

PROPOSITION 1.5. The set K, is a o-ideal of R, and if R satisfies the 
countable chain condition, then R can be written as a direct sum of two 
F-rings R, and R, where K, = R,. For x E R,, T 1 x ] = 0 if and only if 
x = 0. 

PROOF. K, is clearly an Z-ideal of R which is closed with respect to 
countable suprema. It is only necessary to verify that x E K, and 
yER*xyE&.ForyERthereisarealnumberXsuchthatjyj Gh.1. 
Thus 

If R satisfies the countable chain condition, then sup {B(R) n KT) = e 
belongs to B(R). Since, in the presence of the countable chain condition 
[ll, p. 1611, every supremum of a set A can be replaced by the supremum of 
a countable subset of A, it follows that e E K,. If x E K,, then Cz < e and 
hence K, = Re. Let R, be the F-ring R(l - e) with identity (1 - e) and 
let R, = Re with identity e. Then R = R(l - e) @ Re and the proposition 
follows. 

Thus there is no less of generality if, when R satisfies the countable than 
condition, we assume Tl = 1 and T 1 x 1 = 0 * x = 0. 

2. Extension of Reynolds Operators 

As indicated in the Introduction, every bounded F-ring R can be extended 
to a regular F-ring fi which is unique up to isomorphism such that 
B(R) = B(A). I n g eneral, a Reynolds operator T on R can be extended to an 
F-subspace L, of 8, that is, an l-ideal of l? which contains 1. This extension 
enables us to analyse further the case where TR is a proper subset of E. The 
extension is carried out for a general Reynolds operator T on a bounded 
F-ring R without invoking the countable chain condition. 

Every element f E l?+ is the supremum of an nondecreasing sequence of 
elements of R+: f A N t f where N takes positive integer values. Let 
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I(‘f = supN T( f A N) ‘f ‘t r 1 exists in A. For a general element f of l?, define 

Tf = Tf+ - rff- 

if both ?‘f+ and Tf- exist. Let L, be the set of all f E 2 for which 5 is defined. 
It is clear that for f E R, Tf = pf and that RGL,. 

For &B(E)), the regular F-ring generated by B(E), if f E &B(E)), then 
f+ A N and f- A N both belong to E by Proposition 1 .l. Thus 

(f+ A N) T.z = T[(f+ A NJ4 
for all x 3 0 in R. Since supN (f+ A N) Tl exists in A, it follows that pf+ 
exists. In a similar manner it can be shown that if- exists. Therefore, 
&B(E)) is a subset of L,. 

LEMMA 2.1. The mapping p is nonnegative and linear, and L, is an 
F-subspace of I?. 

PROOF. By definition T is nonnegative. 
To show that T is additive, consider X, y E Ls. By using the measurable 

function representation of & (see [9]), we can show that 

(~+y)AN<xAN+yr\N<x+y. 

Thus 
T[(x+y)ANl~T(xr\N)+T(yAN)~~~+~y 

for each N, and so rf(x + y) exists and is less than or equal to rfx + py. 
Since p(x + y) exists and since x A N + y A M < x + y, 

W A N) + T(Y A M) < f’(x +Y) 

for all N and M. Therefore 

If x, y EL,, then 

qx fy) = TX + Fy. 

TX + Ty = T-x+ $ Fy+ - TX- - Ty- 

= qx+ + y’) - qx- + y-). 

Since (x + y)* < xf + y*, it follows that x + y EL,. 
In general, if f < 0 < g, f, g EL,, and f + g = h EL,, then 

h +(-f) =g and p(h +(-f)) = pg = ?‘h + p(-f). 

Since f < 0, Pf = Tf+ 
hence ph = rt’f + pg. 

- pf- = - ?‘(- f). Therefore pg = ph - pf and 
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Since - (x- + y-) < 0 < xf + y+, we can apply the results of the pre- 
vious paragraph to yield 

q, + y) = qx+ + y’) - 3-(x- + y-) = fh + TY. 

Thus p is additive and from the previous paragraph it can be deduced that 
L, is an additive subgroup of i?. 

To show that p is homogeneous let x EL, and let 01 > 0 be a real number. 
Then a(x /\ N/co = 01x A N, olT(x A Nia) = T(olx A N), and so 
LYNX = ?‘(oJr). If x EL, is not assumed nonnegative, then (cu)* = 01x* and 
~LY.X = apx. On the other hand, if 01 < 0, then (CLX)+ = - (YX- and 
(Lxx- = - ax+. Thus p(- U-) = - ~Fx- and p(- ax+) = - u~x+. 
Since - ~lxf EL,, it follows that (YX EL, and 

Fax = 5yl!x)- - qrxx>- 

=-dx--(-a)%+ 

= c@x+ - Fx-) 

= CYFX. 

Thus p is homogeneous, and hence L, is a linear subspace of i?. 
If TX exists, then p 1 x 1 exists; and for / y / < 1 x I, Ty exists. Therefore 

L, is an l-ideal of l? and hence is an F-subspace of i?. 

LEMMA 2.2. If x, t x where x EL, and x,, >, 0, then TX, t TX. 

PROOF. Since x EL,, TX, < TX and y = supn TX% exists. Then 

y = sup S”NP T(x, A N) 
?I 

= ““NP SUP T(% A q 
?I 

= sup T(x ,j N) 
N 

by Condition T, and [12, Theorem 251. 
Thus the mapping T from L, into R satisfies Conditions Tl through T8. 

We now show T4 is valid for p as well. First, however, we prove the following 
Proposition. 

PROPOSITION 2.1. Every element x E &B(E)) satisfies the relation 
xpz = I for all x EL,. In addition, if y EL, and x E fi(B(E)), then 
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xy EL,. That is, L, is a module over &B(E)), and p is an &B(E))-endo- 
morphism. 

PROOF. It has already been noted that &B(E)) is a subset of L,. We begin 
by showing that xy EL, if x E &B(E)) and y E L,. Since 

xy = x+y+ - x+y- - x-y+ + xy- 

and since L, is an l-ideal of R, it is sufficient to show that xy EL, 
when x A y > 1. In this case 

for N = 1, 2, **a, and 

because x A NE R(B(E)) = E. Hence 

T(xy A N) < xf?y 

for all N, and Fxy exists. Thus xy EL, and therefore L, is an &(B(E))- 
module. 

To show that I = XT(Z) for all x E &B(E)) and z EL,, note that 
TR c E = R(B(E)), and hence for YE L+T, 

TY = S"NP T(Y A N) 

belongs to &B(E)). Th is remark follows because l?(B(E)) is composed of the 
suprema of sequences of elements of R(B(E)). Thus pLT s fi(B(E)), and p 
maps L, into &B(E)) c L,. 

If y E L$ and x E fi(B(E))+, then by the previous paragraph xy E L$, and 
since (x A N) (y A N) t xy, 

~XY = S"NP T[(x A N)(Y A NJ1 = S;P(X A N) VY A N) 

and hence 

Fxy = xrij. (2.1) 

By a standard argument it follows that Eq. (2.1) is valid without the restriction 
that x andy be nonnegative. Therefore Tis an &B(E))-endomorphism on L,. 
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THEOREM 2.1. The extension p of T is an &B(E))-endomorphism of L, 
which satis$es Conditions T1 through T4 relative to L,. In addition, 

pLT c &B(E)) c L,. 

PROOF. The final remark in the statement of the theorem follows from 
the proof of Proposition 2.1. It has already been proved in Lemmas 2.1 and 
2.2 and in Proposition 2.1, that all the conclusions of the first part of the 
theorem are valid except for the one which asserts that Condition T4 holds. 

To prove T4 for T’, consider X, y E L+T. Then 

FxTy = s”Np T(x A N) suJp Qy A M) 

= S"NP =g T[@ A W T(Y A WI 

= qx 5) 

by Lemma 2.2 and [12, Theorem 2.61. Since 

xTy = x+Ty+ + x-Ty- - x+Ty- - x-Fyirf, 

it follows from the above remark that 

qx Ty) = (TX) (Fy). 

Therefore T4 is valid for T and the theorem is proved. 
Analogous to Proposition 1.2 we have the following: 

PROPOSITION 2.2. If T is a Reynolds operator on R, then pLT = &B(E)) 
if and only if Tl is a weak unit of R. 

PROOF. If Tl is a weak unit of R, then it is a weak unit of fi and hence has 
an inverse in fi by [8, Theorem 11. Since Tl E E+, (Tl)-l belongs to &B(E))+. 
Therefore T[(Tl)-l] = (Tl)-lT1 = 1. If f E &B(E))+, then 

f(n)-1 E &B(E))+ and f[,f( Tl)-l] = f ?-‘[( Tl)-l] = f. 

Thus f E IfL,. From Theorem 2.1 it follows that pLT = &(B(E)). 
Conversely, if IfL, = &B(E)), then there is an x EL, such that TX = 1. 

Therefore if 
1 - eT1 = sup (n I Tl 1 A l), 

n 

then If(xe,) = eT1 and T(eT1) = 0. Since both xf and x- are suprema of 
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sequences of nonnegative finite linear combinations of elements of B(R) and 
since T preserves order, 

f+(x+e~J = T(x-eT1) = 0 

by Lemma 2.2. Therefore eri = 0, (Tl)- i exists in R, and Tl is a weak order 
unit of B. 

PROPOSITION 2.3. If pLT = fi(B(E)), then the operator 

has range &B(E)) and domain L,, and satisfies the following conditions: 

(i) Q satisfies TI through T4, 
(ii) Ql = 1, 

(iii) Tf = Q[(Tl)f]. 

PROOF. If one observes that 0 < (Tl)--i E &(B(E)) and p[(Tl)-l] = 1, 
then the proposition can be verified directly. 

PROPOSITION 2.4. Qz =Q. 

PROOF. Follows directly from Proposition 2.3 parts (i) and (ii). 
Thus the study of p can be reduced to the study of an operator Q which 

has the properties of T and which in addition is idempotent and carries 1 
into 1. 

Finally we give a necessary and sufficient condition for rf to be positive 
under the hypothesis that FL, = Z@!(E)). Remember that an operator T 
is positive if x > 0 3 TX > 0. 

PROPOSITION 2.5. If f’LT = &B(E)), then i’ is positive if and only if 
t?pe > e for all e E B(R). 

PROOF. If p is positive, then ?? 1 f 1 = 0 *f = 0. Hence, 

elf,~e=O*~(e*p,*e)=O~epe~e=O. 

Thus e < e;f,. 
Conversely, let e < t$ for all e E B(R). Since p ] f 1 = 0 implies 

p(n 1 f / A 1) = 0 and hence ?‘gf = 0, it follows that ~r.~, = 0. Therefore 
$=O, andf=f+=O. 

PROPOSITION 2.6. If T is positive, then 5?LT = I?(B(E)). 

PROOF. Since Tl * eT1 = 0, it follows from Theorem 2.1, that 
T(l * eT1) = TeT, = 0 and hence eT1 = 0. Therefore (Tl)-l is a weak order 
unit, and by Proposition 2.2, ?L, = &B(E)). 
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On the other hand, T positive does not imply TR = E: 

Example 2.1. Let R be the F-ring of bounded sequences and let Ts = q 
where qn = s, exp (- n2). 

PART II 

3. A Precise Statement of a Problem 

Let R be a bounded F-ring and let T be a positive Reynolds operator on R 
for which Tl = 1. It is clear from the results of Section 2 that the only 
essential restriction made here over the general case is that which requires T 
to be positive. Indeed if T is positive, F is positive, and by Propositions 2.3, 
2.4, and 2.6, there is an operator Q associated with p such that Q is idem- 
potent, Ql = 1, and F(X) = Q[(Tl) x]. The restriction of Q to A is still 
idempotent and carries 1 into 1. 

It is well known [9] that R can be represented as an F-ring of measurable 
functions modulo a u-ideal. The construction goes roughly as follows: 
Associated with the u-complete Boolean algebra B = B(R) of idempotents 
of R is its Stone representation (G, 8, u) where J2 denotes the Stone space 
of B, B the field of the open-closed subsets of G, and u the isomorphism of B 
onto 8. The field B generates a u-field g of subsets of Sz, and if % denotes 
the class of sets of first category in d, then there is a u-homomorphism 5 of 
5 onto B such that ker G = % and 6,~ = u-l. If instead of 6 we consider 
m(sZ, G), the F-ring of bounded real valued (Q, @-measurable functions, 
then the set 3 of functions in YJI which are zero except on a set in X forms a 
u-ideal of m and there is a u-homomorphism p of !N(Q, 5) onto R such that: 
(i) ker p = 3; (ii) if 1 denotes the mapping which carries a characteristic 
function onto its carrier, then1 pIBcmj = GOL; (iii) if C(G) denotes the F-ring 
of continuous functions on J2, then plcca, is an isomorphism of C(G) onto R. 

The F-ringm(J& 5) together with the u-homomorphism p is called a 
representation of R. More generally, if m is a ring of measurable functions 
and 7 is a o-homomorphism of n onto R, then (YX, T) is called a representa- 
tion of R. 

The following is a precise statement of the problem proposed in the 
Introduction: Under what circumstances does there exist a measurable pro- 
duct space (G,, x Sz,, & x e,), a measure pL1 on &, and a-homomorphism T 
of ~D(G,, x Sz,, X?,, x e,), the F-ring of bounded real (Sz, x a,, Q,, x c,)- 
measurable functions, onto R such that 

(1) (GJJ(G$ x Q,, &, x e,), T} is a representation of R, 

1 If QI maps A into B and 4 maps B into C, then the composition of y followed by 9 
is denoted I&T. 
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(2) T!UI(L$ x 1;2,, I&, x Q,) = TR, 
(3) TWQo x Ql> s2, x %) is composed of elements x such that TX is a 

real multiple of 1, 
(4) if Tf = f and of = f, then T(g) = f where 

Item (4) indicates, roughly speaking, that 

or that T is an integration over one variable of a product space. 
This problem can be solved in a natural way by using a theorem of Birkhoff 

(see Section 5). In order to apply this theorem to our advantage we must 
consider the following two sets of idempotents of B = B(R): 

G = {e E B 1 Te is a real multiple of I}, 

B, = {e E B 1 Te = e}. 

From the results of Section 1, it is clear that TR = E = R(B(E)), B(E) = B,, 
and for x E TR, TX = x. The properties of G are discussed in the next 
section. 

4. Elements with Constant Image under T 

LetG={eEBI T e is a real multiple of I}. G must contain 0 and 1, and 
is closed with respect to complementation. In addition, if e, is a monotone 
sequence of elements of G, then by Condition T3, sup e, and inf e, both 
belong to G. However, G need not be a Boolean algebra. Indeed consider 
L”([O, l] x [0, l]), the F-ring of essentially bounded functions on the unit 
square modulo the ideal of null functions, and let 

G, in this case, contains the characteristic functions of all sets which are 
almost everywhere of constant width. In this case G is not a Boolean 
algebra, but it does contain a maximal subset B, which is a u-complete 
Boolean subalgebra of B(L”). For example, B, could be the set of all charac- 
teristic functions independent of wr. 

In general the following theorem is valid. 
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THEOREM 4.1. If T is a positive Reynolds operator on R with Tl = 1, 
then for any o-complete Boolean subalgebra A of B which is a subset of G, there 
is a maximal subalgebra M of B relative to the condition: A s M E. G. In 
addition, M is a o-complete subalgebra of B. 

PROOF. If G = (0, 11, the theorem is trivial. Assume, then, that A 
contains (0, l> properly. 

By Zorn’s Lemma it can be proved that there is a Boolean subalgebra M 
(not necessarily u-complete) which is maximal relative to the properties 
indicated in the statement of the theorem. 

To establish that M is a o-complete Boolean subalgebra of B, note that 
there is a minimal monotone subclass S of G which contains M. Remember 
that a monotone class is one which is closed with respect to suprema and 
infima of monotone sequences. It is clear that G is such a class and that S is 
the intersection of all such monotone classes which contain A. 

S is a o-complete Boolean subalgebra of B: Indeed, let 

for each f E G. Then for f, g E G, 

In addition, if e, E K(f) and e, f e, then 

en - e,f te-ef, f-e,f if-ef, and e,VfteVf, 

and hence since S is a monotone class, e - fe, f - ef, and e V f all belong 
to S. Thus e E K(f) ; by a similar argument, it follows that if e,, E K(f) and 
e,, $ e, then e E K(f). Therefore K(f) is a monotone class provided it is 
nonvoid. Let f E M. Then M s K(f) and hence S C_ K(f). If e E S, then 
e E K(f) and f E K(e). Since this is true for any f E M, S E K(e). Therefore S 
is a Boolean subalgebra of B which is a monotone classand for which 

It is clear that S is a u-complete Boolean subalgebra of B and equals M. 

REMARK 4.1. The proof of this theorem is an analogue of that given in 
[13, p. 271. 

COROLLARY 4.1. Every element of G is contained in a Boolean subalgebra 
of G maximal relative to the condition that it be contained in G. 
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COROLLARY 4.2. The maximal subalgebra M of Theorem I is necessarily 
complete as a lattice and satisfies the countable chain condition. In addition, 
the mapping t.~ : e + A, is a positive measure on M where A, is the real number 
such that Te = A, * 1. 

PROOF. Clearly, p is a positive measure on M. The remainder of the 
Corollary follows from some remarks of Maharam [ll, $1.81. 

The measure p can be extended to B by using a result of Klee [14] as 
indicated in the following theorem. 

THEOREM 4.2. If M c G is a a-complete Boolean subalgebra of B and ift.~ 
is the measure induced on M by T (Corollary 4.2), then there is a linear func- 
tional fi on R with the following properties: 

(1) If f E R(M), then p(f) = jf dp. 
(2) i; is nonnegative. 
(3) jIT = T$ 

REMARK 4.2. The symbol jf dp stands for the integral induced on 
R(M) by the measure TV, and is defined in the standard manner by using a 
representation of R(M). 

PROOF OF THEOREM. Note that (i) p(f) = Jf dp is a linear functional 
on R(M), (ii) if 11 f I/ = inf {h 11 f j <h. l}, then ]I * I] is a norm on R, 
(iii) {T} is a semigroup of linear transformations on R, (iv) p(f) < 11 f I I 
for all f E R(M), (v) TR(M) E R(M) and pTf = pf for f E R(M), and (vi) 
1) Tf I] < 11 f 11. These six conditions insure [14, Corollary 3.11 that there is 
at least one linear functional p on R which extends TV and for which (iv) and 
(v) are valid. Thus (1) and (3) are valid for fi. 

Condition (2) f 11 o ows from Corollary 2.3 of [15]. In fact, Corollary 2.3 
in [15] is a specialization of the Hahn-Banach Theorem covering the exten- 
sion of nonnegative linear functionals to nonnegative linear functionals. 
This specialized Hahn-Banach Theorem may be used in Klee’s derivation 
to prove the existence of a nonnegative @. 

A pair of subsets S, and S, of a u-complete Boolean algebra are algebraically 
independent if, for b, E Si; b, A b, = 0 implies that one of the factors is zero. 

PROPOSITION 4.1. The set G and the set B0 are algebraically independent. 

PROOF. If b E G and e E Be, then 

T(be) = (Tb) (Te) = (Tb) e. 

If be = 0, then T(be) = (Tb)e = 0; and since T is positive, either b = 0 
or e = 0. 
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5. Birkhoff’s Theorem 

The following theorem is necessary for our development. It was discovered 
by Birkhoff [5] and later rediscovered by Wright [16]. 

THEOREM 5.1 (Birkhoff). If X . zs a compact Hausdorff space, C(X) the 
ring of continuous real functions on X, and T a Reynolds operator on C(X) 
such that Tl = 1, then there is a partition of X into closed sets (X, 1 01 E Q,} 
such that: 

(1) w1 and w2 belong to the same X, if and only iff(c+) =f(wJ for every 
fE TC. 

(2) For f E C(X), Tf is constant on X, for each 01 E Q,, and the value of Tf 
on a particular X, is uniquely determined by the values off on X,. 

(3) On each X,, the value of Tf is given as follows: 

ccf> (w> = @w’) 44W’) 

for w E X, where pa is a Bore1 measure on X,. 
Since there is an isomorphism pit (defined in Section 3) of the F-ring 

C(Q) onto R where Sz is the Stone space of B, the above theorem can be 
applied to our problem. 

It can be verified that the partition {X, 1 OL E Qs} effected by the application 
of Theorem 5.1 to C(Q) and p-lTp is identical with that effected by the equi- 
valence relation: 

w1 = ~a if and only if for every idempotent e E TC, e(w,) = e(w,). 
In addition, if e E G, then for arbitrary 01, ,!I E 9, 

6. The Product Space 

Let T be a Reynolds operator on the bounded F-ring R with Boolean 
algebra B = B(R) of idempotents. In this section, necessary and sufficient 
conditions are found for the existence of a measurable product space repre- 
sentation for R which will satisfy the conditions of our problem. This pro- 
gramme is carried out in a setting which is slightly more general than that 
necessary for the problem. 

The plan of attack is as follows: Let B, and B, be arbitrary u-complete 
Boolean subalgebras of B. We find necessary and sufficient conditions for the 
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existence of a product space (Qs x fir, 2s x 2,) and a u-homomorphism E 
such that 

[:2, x D,ZB, (6-l) 

and 

[:Q,, x.Q,=B,, (6.2) 

[:q, x Qn,=B,. (6.3) 

Then 5 can be “raised” in a natural way to a a-homomorphism [ of 
m(Q,, x Qr, 2s x 2,) onto R such that 

and 

&iTJt(Q, x Ql,20 x .n,)=R(B,) 

&%R(L',, x Ql,L20 x !Z,)=R(B,). 

Let (Q, 8, U) be the Stone representation of B, let & stand for the u-field 
generated by uBi for i = 0, 1, and let 2 be the u-field generated by &, u &, 
B is a u-subfield of 5 the u-field generated by 8. From the remarks of Sec- 
tion 3, it follows that every S E 5 is of the form 

S=S,+N 

where S, E B and N is a set of 1st Category. 
First we find necessary and sufficient conditions for the u-homomorphism 

6,s to be a u-homomorphism of 2 onto B. 

PROPOSITION 6.1. If B, u B, generates the u-complete Boolean algebra B, 
that is if B is the smallest u-complete Boolean subalgebra of B which con- 
tains B, u B,, then ~5 s maps 2 onto B and Z& = Bi (i = 0, 1). 

PROOF. Every element Si E & can be represented in the for Si = Di + Ni 
where D, E uBi and Ni is of 1st Category. Indeed it can easily be verified-that 
the class (Di + N 1 where Di E uBi and N is of 1st Category} is a u-field and 
hence contains !&. Thus 

CSi = u-lDi (i = 0, 1). 

Therefore d carries & onto duBi = Bi. Now 2 is generated by &, u & 

so 62 is generated by c?& u &i or B, u B, and hence by hypothesis52 = B. 

2 
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REMARK 6.1. If - aIs maps f? onto B, then it is clear, since (s& = Bi, 
that B, u B, generates B. 

Next we find necessary and sufficient conditions for the existence of a 
measurable product space and a u-homomorphism of the o-field of that 
product space onto 8. Let {X, ( 01 E Q,} be the partition of 0 effected by the 
equivalence relation: 

wi E wa if an only if xs(w,) = xs(w,) for all S E aB, and let {Y,, j y E Q,} 
be the partition of 0 effected by the analogous equivalence relation defined 
in terms of sets in CTB,. 

PROPOSITION 6.2. Every element of $a is a union of X,‘s and every 
element of & is a union of Yr’s. 

PROOF. By symmetry it is sufficient to prove that every element of &, 
is a union of X,‘s. Every set S E uB, is a union of XOL’s. Let !I&, be the u-ideal 
generated by elements E = n&, SI, where S, E aB, and uB,-inf {S,} = $. 
8, is composed of sets of 1st category which are unions of Xol’s. Consider 
the class Q of sets of the form S + N where S E uB, and N E %s. The set 
Q can be shown to be a o-field by direct verification. Therefore J?,, G Q 
and the proposition follows. 

PROPOSITION 6.3. If B, and B, are algebraically independent, then for 
each pair (01, r) E s;Z, x Q,, the set X, n Yy is nonvoid and 

3 = W, n YE I (01, Y) E: -Q. x Q,) 
is a partition of Q. 

PROOF. It is clear that 21 contains a partition of Q. However, it must 
be proved that X, n Y, f I#J for each choice of (a, y). Since 

X,=~{(DEUB~~X,~D} and Y,=n{DEaB,jY,,cD}, 

X,nY,=n{DnEIDEuBaandX,~D,andEEuBrandk;EE}. (6.4) 

Due to the algebraic independence of B, and B,, the bracketed class of sets 
in expression (6.4) enjoys the finite intersection property, and hence it follows 
by the campactness of Q that X, n Y,, is nonvoid. 

REMARK 6.2. If for each (OL, r) E .Qa x Sz,, X, n Yy is nonvoid, then 
uB, and uB, must be algebraically independent and therefore B, and B, 
are as well. 

Assume for the remainder of this section that B, v B, generates B, and 
that B, and B, are algebraically independent. Consider the mapping 
v : Sz + Qs x Sz, defined as follows: v(w) = (OL, y) if w E X, n Yy, The 
mapping is well defined and carries 52 onto Q,, x an, by Proposition 6.3. By 
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Propositions 6.2 and 6.3, q~ is an injection (which preserves u-operations) of 
si into !J.J(Qs x Sz,), the u-field of all subsets of Q, x Q,, for i = 0, 1. 

PROPOSITION 6.4. If D E &, then p(D) = D, x Q, for some D, E !@(L&), 
and similarly if D E !&, then y(D) = Q,, x D, for some D, E ‘p(Ql). 

PROOF. Since D E & is a union of Xol’s 

9@) = “{b, r> I xa nY, ~D}=u{{ol} x Q,jX, cD}=D, x L’, 

where D, = ~{CY 1 X, E D}. A similar demonstration yields the other half 
of the proposition. 

Let C,, designate the a-field composed of subsets of Sz, of the form 
D, = {CY 1 X, c D} for D E 8, and let Qr be analogously defined. Then the 
mapping qua : D --+ Di is an isomorphism of the u-field $i onto Bi for (i = 

0, 1). 

THEOREM 6.1. The mapping q~ carries 2 onto IL?, x !& while 

q& = 20 x Ql and p& = Q, x 2,. 

PROOF. From Proposition 6.4, ‘p has the indicated property with respect to 
&, and cr. Since (i) I! is generated by 8, u &, (ii) -1, x 9, is generated by 
@, x 52,) u (sl, x &), and (iii) v is an isomorphism of the u-structure of 2, 
it follows that 

gJ2 = i?!, x 21. 

THEOREM 6.2. The mapping ~5 o+ is a u-homomorphism of i$, x I?!, 
onto B. 

PROOF. The mapping v-1 is an isomorphism of &, x ,f?, onto 2 which 
preserves u-operations, and 6 is a u-homomorphism of B onto B. Therefore 
the theorem follows. 

By theorem 6.2 and Propositions 6.1 and 6.4, it follows that 6 = 5 o q-l 
has the properties (6.1), (6.2), and (6.3)-provided, of course, that B,, u B, 
generates B and that B,, and B, are algebraically independent. 

If, for f E %Q(Qa x Qr, $ x a,), @f(w) = f(cp(w)), then CD is an isomor- 
phism of %R(Qs x 1;2,, !&, x 2,) onto %Q(Q, 2) because q~ is a measurable 
[13, p. 1641 transformation of (Q, k?) onto (QO x Qr, &, x 2,) which carries 
2 onto !&, x 2, in an isomorphic manner. 

Since, by Proposition 6.1, 6 maps B onto B, it follows that p (defined in 
Section 3) carries B(!uI(O, 2)) 
%R(Q, 2) onto R. In addition 

onto B and hence that p,samcn,e, maps 

,dJt(G’, &) = R(B,) 
for i = 0, 1 because ~,s(~(~,~)) = I? o c. Therefore the following Theorem 
is valid. 



366 BRAINERD 

THEOREM 6.3. If B, u B, generates B and ;f B, and B, are algebraically 
independent, then the mapping [ = p o @ has the following properties: 

(1) $ is a u-homomorphism of v.R(SZ, x Q,, 2, x i$) onto R. 

(2) bJ@o x sz,, & x Q,> = R(B,). 

(3) @I(Q,, x Q,, Q,, x 2,) = R(B,). 

7. The Main Result 

Let B, = {e E B 1 Te = e} and let G be the set of elements e of B with Te 
equal to a real multiple of 1. If B, is a u-complete Boolean subalgebra of B 
and G 2 B,, then B, and B, are algebraically independent by Proposition 
4.1. In addition B, can be chosen maximal in G by Theorem 4. I. However, 
the maximality of B, in G is necessary but not sufficient for B, u B, to 
generate B. See Section 11 in Part III. Assume for the remainder of this 
section that B, u B, generates B. Thus we can use the results of Section 6. 
By Corollary 4.2, there is a positive measure p induced on B, by T. The 
mapping ~0-1 is a positive measure on uB,; this measure can be extended 
to a (u-additive nonnegative) measure ,% on the u-field &; and finally 

- -1. 
v=w, is a measure on 2, because vi is an isomorphism of & onto gr, the 
u-field of the measurable space (Q,, 2,). (The symbols L),,, L),, fin,, Q),, etc. 
are defined in Section 6.) Let J stand for the operator ontm(Q,, x Q,, B,, x 2,) 
defined as follows: Jf = f where 

J is clearly a Reynolds operator on m(J2,, x Qn,, Q0 x 2,) with Jl = 1. 
Our purpose in this section is to show that lJ[-lx = TX where $-lx stands 
for a member of the &coset of preimages of x E R. 

From a remark at the end of Section 5, it follows that the decomposition 
{X, 1 cy. E Sz,} effected by the Birkhoff Theorem (Theorem 5.1) is the same 
as that described in Section 6: w1 and w2 belong to the same X, if and only if 
xs(w,) = xs(w2) for each S E uB,. Let {Y, ) y E Q,} be the partition defined 
in an analogous fashion (in Section 6) with respect to uB,. By Proposition 6.3, 
X, A Y, is nonvoid for each (CU, y) E Q0 x Q, and hence the mapping 
S -+ S n X, is an isomorphims of the u-complete Boolean algebra uB, onto 
uB, n X,. In addition, since every element of !& is a union of Yy’s, it follows 
that S + S n X, is also an isomorphism of & onto & n X,. The smallest 
u-field of subsets of X, generated by uB, n X, is fir n X,. Indeed, every 
element of & n X, is of the form S = S, + N where S, E uB, n X,, and 
NE %I n X, where the definition of x1 is’ analogous to that given for ‘8, 
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in the proof of Proposition 6.2. Since %, n X, is a subset of the u-field 
generated by c&, n X,, it follows that S is an element of that u-field and 
& n X, coincides with it. By a similar argument it follows that the field 
B n X, of subsets of X, generates the u-field J? n X,. 

Since for each 01, a measure pLa is defined on B n X, by Theorem 5.1, it 
follows that ~1~ extends at least to & n X,. This extended measure can then 
be transferred to & by the inverse of the isomorphism 5 : S-+ S n X,. 
It can yet again beiranferred to & by the isomorphism yr. Thus if ,& is the 
extension of pa to Q1 n X,, then the function ,&.&’ from Qr into the real 
numbers is a measure on 2,. 

PROPOSITION 7.1. 
$r, and hence &{F;~ 

For each 01 E Sz,, the measure ,?,J coincides with ,C on 
coincides with v on Qr. 

PROOF. The measure ~~5 coincides with ~0-l on a&. Indeed, from 
Eq. (5.9 

pa-?9 = 
s xEP-l”‘sw 4-&J> 

= J‘, xs(w) 44) = t4S n Xx) 

Thus by definition of v, &$ql = v on tppB,. Therefore they coincide on &. 

PROPOSITION 7.2. 
El n X,. 

The u-field L) n X, of subsets of X, coincides with 

PROOF. The mapping p defined in Section 6 carries Q into Q, x Q, 
and by Theorem 6.1 it carries 2 onto &, x &. In addition, 2 n X, is mapped 
onto the class of a-sections of sets in 2s x 2,. By [13, Theorem A p. 1411, 
this last class is (a} x gr. Therefore 9 n X, = 8, n X,. 

Let Iir, be defined as follows: if T,(W) = (OL, 7) then nl(w) = y and 
lirs(w) = CY. n, is a single-valued mapping of Q onto sZd and Q-’ is an iso- 
morphism of Bi onto & for (; = 0, 1). In addition, v,ir = UF1 for (i = 1, 0). 
Finally n1 is a measure preserving transformation of (Q, &;, p) onto (Q,, 
21, 4 

Let @ be the mapping defined in Section 6. 

PROPOSITION 7.3. If g E %R(Q, a), then 

for w EX,. 
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PROOF. If w E X, and f~ !JJI(Q, x Qn,, Q0 x 2!,), then 

Pf) (w) =fvTlkJ), 17,(w)) = f(% *l(,)). 

If we let fo,(wJ = f( w,,, wi) where w,, is considered fixed, then 

(@f) (w) =fczv4(~)) E WQn, 4. 

Since n;l= y;l, it follows that 

(IT,,xm)-lS = (IILlS) n X, = &-lS 

and hence 17r / X, is a measure preserving transformation from (X,, & n X,, 
p,) onto (Qn,, 2r, v). Therefore for w E X, and f EYJ~(Q, i!), 

= s x, @f(w) 4&J)* 

Let 0-r = f and the proposition follows. 
From the remarks of Section 3 it follows that for every element g E m(Q, 2) 

there is a j E C(Q) and n E m(Q, 6) which is nonzero on a set of first category 
such that 

g=j+n. 

The functions j and n are uniquely determined by g. 

PROPOSITION 7.4. Let g = k + n be the representation of g EYJI(Q, 2) 
by a function in C(Q) and a function in %R(Q, 5) which is nonzero on a set 
of 1st category. Then for each 01 E Q,. 

PROOF. The support of n is a set S which is a union of sets S, each of 
which is the intersection of a nonincreasing sequence {Sin}i of elements of B 
such that 8-infi Si, = 4. If S, n X, # +, then Si, n X, is nonvoid and 
belongs to 5 n X,. Now 

for w E X, by Theorem 5.1. 
Since [pV5t~,J 4 0 as i--t 00, it follows that pt((Sn n X,) = 0. Therefore 

the support of rz has pa-measure zero and the proposition is valid. 
Now we are ready to prove the representation theorem. 
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THEOREM 7.1. If T is a positive Reynolds operator on R such that Tl = 1 
and G # (0, l}, then there is a a-complete Boolean subalgebra B, of B which 
is maximal relative to the condition B, E G. If B, u B, generates B, then there 
is a product space (In, x Q,, .L?,, x I?,), a measure v on I&, and a a-homomor- 
phism 4 of (332(52, x !2,, &, x 2,) onto R such that 

(1) &JG’o x Q, G, x Qn,> = Wo), 
(2) &W, x Q,Qo x Q,> = W,), 
(3) if Tf =jand l(f) = f, then g(g) =fwhere 

&% 4 = Sf (~0, Y) dv(r). sa, 

PROOF. Except for statement (3) the theorem is a recapitulation of pre- 
vious results. We prove statement (3) here. 

By Proposition 7.3, 

for w E X,. From Proposition 7.4, there is a continuous function h on Sz 
which differs from @f on a set of 1st category, and 

Therefore by Theorem 5.1, 

Sf bo, r> dv(r) = (p-‘T4 (a> R, (7.3) 

for w E X0,. In addition, if w E X,, 

(W (w) = ld% WJJN = A% Y) 

for any y E Q, because g(a, y) is independent of y. Thus 

(W (~1 = (P-‘TP) 44 

for w E X,. Since ph = p@f, we have 

@g = ,+Tp@f, 

and hence by Eqs. (7.1~(7.3), 

p@g=[g=T[f=Tf=f 
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PART III 

8. Introduction 

In Parts I and II we have discussed the action of a Reynolds operator T 
on a bounded F-ring R and the extension of T to L, an F-subspace of l?‘, the 
regular F-ring associated with R [8, 91. In Part III we discuss the case where 
R is provided with a positive linear functional which can be interpreted as an 
integral. It is shown that under certain circumstances a Reynolds operator 
on R can be extended to a conditional expectation on an L2-space containing 
R; the results of Theorem 7.1 are shown to hold for conditional expecta- 
tions; and finally conditional expectations are classified in terms of the 
results of Part II. 

Let B be a u-complete Boolean algebra which supports a positive measure EL. 
The pair (B, p) is called a measure algebra. Maharam [ll] has noted that: 

(1) B is complete as a lattice. 

(2) B satisfies the countable chain condition. 
(3) There is a measure space (Q, E, p) such that B E @% where % is the 

a-ideal of sets of 5 with ,&measure zero. Q can be chosen as the Stone 
space of B and 2 as the u-field generated by 8, the Boolean algebra 
of open-closed sets of Q, and p(S/%) = p(S). 

As indicated in Section 3, there is a u-homomorphism p of !JX(Q, G) onto 
R(B) such that (mm, p) i;s a representation of R. It is easy to verify that R(B) 
is isomorphic toLOO(Q, 2, ,z) = L”(B, p). In addition, it can be shown that up 
to isomorphisms 

B c R(B) = L”(B, /J) c L2(B, /A) s&(B). 

If B, is a u-complete Boolean subalgebra of B, then, when 6 designates the 
u-homomorphism of .$ onto B defined in 3, 6-lB, = $, is a u-subfield of 
6 and &$, = B,. Let $ be the natural extension of p which maps k(Q, G), 
the regular F-ring of all (Q, G)-measurable functions, onto a(B). If (Q, 2I, ,C) 
is a measure space, let Z2(sZ, ‘u, p) designate the square p-integrable functions 
in &(Q, ‘?I). Then$Z2(Q, &,, p) E L2(B,, I*,&. 

Let T be a positive Reynolds operator on R(B) for which Tl = 1. T is 
said to be compatible with TV if 

P(T4 = /J(e) 

for each e E B. Note that forf e Ll(B, CL), p(f) is defined equal to sfdp wheref 
stands for a representative off in ‘&(Q, E). 

We will show that if T is compatible with CL, then F, the extension of T 
discussed in Part I, is a conditional expectation when restricted to L2(B, p). 
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9. Reynolds Operators and Conditional Expectation 

For the remainder of Part III, let T be a positive Reynolds operator on 
R(B) for which Tl = 1. In Reynolds operator on R(B) for which Tl = 1. 
In Section 2 it was shown that T can be extended to an operator T on an 
F-subspace L, of i?(B) which satisfies Conditions Tl thru T4. Since F is an 
extension of T, ?l = 1; and since T is positive, it follows that 1? is also 
positive. From Propositions 2.6 and 2.4, it also follows that ? = (5?)” and 
pLT = &B(E)). 

PROPOSITION 9.1. If T is compatible with II, then L, 3 L’(B, p), 
pL’(B, CL) 5 L2(B, CL), and ~[(fPl < Af”). 

PROOF. If f~ L2(B, CL) and f > 0, then f is integrable. For each N 3 1, 
T( f A N) is defined. Let hN be in the coset in g2(Q, 5, CL) determined by 
T( f A N). Then 0 < h, < h, ... < hN < ... almost everywhere. Therefore 
hN T h a.e. where h may be infinite-valued. By the monotone convergence 
theorem 

jhNC t jhdii =iW 

while 

1 ’ h&F = dT(f A W t cl(f). 

Thus p(h) < m and so h is integrable. Since T(f A N) < ph for all N >, 1, 
it follows that supN T( f A N) exists,f E L,, and pf is integrable. In addition, 

CL 5) = P(f)- 
To complete the proof, note by Schwarz’ inequality that 

MfT(f A WI2 < 4f2) AfT(f A W) < m 

because f E L2(B, p) and T( f A N) is bounded. If f # 0, then 

P(fT(f A NH + 0 
and hence 

cl(fT(f A W G df2) 

for all N > 1. Therefore since 

&Tf A Y21 G 4f2) 

for all N, it follows that p[( 5?f)2’)21 exists when p( f2) exists, and 

PFL[@f >“I G P(f “)* 



312 BRAINERD 

Thus the restriction of p to L2(B, p) is a linear operator on LZ(B, p) with 
the following properties: 

(1) (P)” = F. 
(2) p is a self-adjoint operator on L2(B, p). 
(3) p(M) = X * 1 where X is a real number. 
(4) F is positive. 

Indeed (l), (3), (4) have already been mentioned. To show (2) consider 

Therefore a theorem of Bahadur [4] implies that for f E L2(B, p), 
Ff =E(f I&J w h ere E( 1 e 8,) designates the conditional expectation operator 
associated with & = 6-lB(E). Remember that B(E) designates the Boolean 
algebra of idempotents of E = {f E R(B) / Tf = f}. It is a matter of direct 
verification to show that E(- I&,) depends only on 6!& = B,, B, and CL. Thus 
we deviate from the standard notation and designate the conditional expecta- 
tion associated with B,, a u-complete Boolean subalgebra of B, by the symbol 
EB,. Hence we have the following theorem. 

THEOREM 9.1. If T is a Reynolds operator on R(B), then there is a uniquely 
determined exteruion EBO of T which is the conditional expectation on L2(B, p) 
associated with B,,, the idempotent algebra of the range of T. The mapping 
T + EB, is a one to one mapping of the class of Reynolds operators on R(B) onto 
the class of conditional expectations on L2(B, /.L). 

10. Product Representation for Conditional Expectation 

In this section an analogue of Theorem 7.1 is derived for conditional 
expectations on L2(B, I”). In order to facilitate this derivation, we note that for 
a given u-complete Boolean subalgebra A of B the conditional expectation 
EA is a projection of L2(B, p) onto the Ls-subspace L2(A, pIA) of L2(B, p). If 
Q designates the class of conditional expectations on L2(B, p) ordered by the 
relation: E A, < EA, if and only if EA,EA, = EA1 and if ‘u. is the class of 
u-complete Boolean subalgebras of B ordered by inclusion, then the mapping 
A + EA is an isomorphism of the partially ordered set % onto 8. An element 
E, E 6 is said to be complemented if there is an A’ E ‘u. such that 

(9 EAEA, = CL = JQ,,+ 
(ii) A u A’ generates B. 
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LEMMA 10.1. If A,, A, E ?I and EA,EA, = EA,EA,, then and only then 

EA,EA, = EAlnA,* 

PROOF. If EA, and EA, commute, then by Bahadur’s result [4], EaglEA, is a 
conditional expectation. Therefore there is a D E X such that EA,EA, = ED. 
Thus ED < EA, and ED < EA, and hence D s A, n A,. In addition, 
E A,~A,~D = EA,~A,~A,EA, = EA~~A~ so A, I-J A, c D. Therefore 
A, n A, = D. 

Let GA = (e E B 1 E,e is a real multiple of 1 }. 

PROPOSITION 10.1. If EA,EA2 = p, then A, n A, = (0, l}. In addition, 
the following conditions are equivalent: 

(1) EA,EA, = k‘s 

(2) 4 E GA,. 

(3) 4 g GAG. 

PROOF. Apply Lemma 10.1. 

THEOREM 10.1. If Ee, has complement EB,, then there is a measure space 
(Q, x Q,, $ x &, CL,, x pl) and a u-homomorphism f of 

e2c-Qo x Ql, 20 x %, PO x Pl) 

onto L2(B, r) such that 

(1) h2(Qo x J-4, B x %;2,, ~0 x ~1) = L2(Bo, /4 
(2) &iY(sz, x Qn,, .n, x 2 1, p. x pl) = P(B,, p) where B, has the prop- 

erties: B, u Bl generates B and B, CT B, = (0, l}, 
(3) iff E L2(B, p) then EBO f = {g where 

and (-If stands for a member of the &coset of preimages off. 

REMARK 10.1. In Theorem 10.1, L2(B,, p) stands for the L2-subspace of 
L2(B, p) generated by B, G L2(B, p). 

PROOF. By Theorem 7.1, it follows that a o-homomorphism [ exists which 
maps !IR(Qo x Qi, !& x 2,) onto L”(B, p) in such a manner that (I), (2), 
and (3) are satisfied if L2 and Y2 are replaced by L” and 9’” respectively and 
if k = v. Since EBo is compatible with CL, TV is equal to the measure defined 
in terms of EBo on B, and v = pql -‘. A measure ,LL~ can be defined on (Q,, ,f$) 
as follows: p. = pp;r. Then (Sz, x 52,, Q,, x e,, h x pi) becomes a measure 
space, and if S E !i$ x &, then p. x ,ul(S) = &(&I. Since [ can be exten- 
ded to 5Z2(Qo x Qi, -Co x B,, ,uo x pi) in a natural way, the theorem is valid. 
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1 I. Classi$cation of Conditional Expectations 

A conditional expectation EA on L2(B, CL) will fall into one of three classes: 

(1) where GA = (0, 1 }, 

(2) where GA $r (0, 1) but EA is not complemented, 

(3) where EA is complemented. 

By Proposition 19.1, it follows that these classes are disjoint. However, it is 
possible that class (2) is void. The following example shows this is not the 
case. 

Example 11.1. Let L2(B, CL) be the F-ring of all ordered 6-tupples of 
real numbers where 

p&O, 0, 0, 0,O) = p(0, 1, 0, 0, 0,O) = *** = p(O, 0, 0, 0, 0, 1) = *, 

and let 

where II, stands for the k x K matrix of 1’s. The atoms of 

are (1, 1, 1, 1 , 0,O) and (0, 0, 0, 0, 1, 1) while the atoms of GB are the 
following twelve: (1, 1, 0, 0, 1, 0), (1, 1, 0, 0, 0, l), (1, 0, 1, 0, I, 0), **a, 
(O,O, 1, l,O, 1). Th e maximum number of elements in a Boolean subalgebra 
B, of B contained in G, is four. Therefore the Boolean subalgebra of B 
generated by B, u B, coniains at most 24 elements while B contains 2s ele- 
ments. Therefore T = EB, cannot be complemented. 

If EA belongs to class (l), it is called purely conditional. 

PROPOSITION 11.1. The following statements are equivalent: 

(1) EA is purely conditional. 

(2) If A’ is a o-complete Boolean subalgebra of B, then 

EAEA, = p => EA, = p. 

(3) For each f E B, there is an e E A - (0, l} such that p(ef) # p(e) p(f). 

PROOF. (1) o (2) f 11 o ows by Proposition 10.1 because GA = (0, 1 } o (0, 1 } 
is the only u-complete Boolean subalgebra of B which is a subset of GA. 

(1) S- (3): If p(ef) = p(e) p(f) for all e E A, then 

dEA x EFY> = idEd !@FY) 



STRUCTUREOFAVERAGING OPERATORS 375 

for all X, y E B where F = {O,f, 1 -f, l}. It follows from [18, p. 3511 that 
EAERy = p(EFy) = p(y). Thus F g GA which contradicts the assumption 
of pure conditionality. 

(3) 3 (1): If EA is not purely conditional then GA # {0, 11. Let f E GA 
where f # 0, 1. Then for e E A, EA(ej) = eE, f = [p(f)] e, and hence 

def) = PL(EAkf)l = deMf)* 

PROPOSITION 11.2. If EAc is a complement of EA, then AC is a u-complete 
Boolean subalgebra of B which is maximal relative to the condition AC c GA. 

PROOF. If AC is not maximal in GA, then there exists b E G, - AC such 
that AC u {b} generates a a-complete Boolean subalgebra D of B which is 
contained in GA. Each v E D has the form 

v = v&J + va(l - b) 

where vi E A”. By Theorem 10.1, there are elements 6, Gi of 

%WQo x .n,, 20 x % ~0 x ~1)) 

such that (6 = b and [ei = vti Thus for 4 = 4,6 + a,(1 - b), @ = v and 

is a constant. By construction, ai is independent of q,. Let v,(w,, wi) = zi,(wl). 
Then 

and hence 

is a constant for any choice of the zi,‘s in B(YJI(Q,, 2,)). Assume that for some 

pair (wo, ao), 
&Jo, ~1) z bo, ~1) 

on some q-set of positive measure. Define w,-sets So, S, and S-i as follows: 

"1ESk if b(wo, ml> - b(ao, wl) = k 

for k = 0, 1, - 1. The functions xoxS, E s2, x f& for K = 0, 1, - 1 and 
are admissible fli’s. Thus 
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for i = 0, - 1, 1. Therefore S, and S-i have zero measure contrary to the 
assumption. Thus 6(q,, wr) = &(aO,, q) a.e. for every pair (q,, w,,), and hence 
b E A”. Since b is assumed not to be in A’, it follows that AC is maximal in 
G A* 

PROPOSITION 11.3. Let A’ be maximal among the u-complete Boolean 
subalgebras of B which are contained in GA. If D is the u-complete Boolean 
subalgebra generated by A u A’, then D is purely conditional. 

PROOF. If E. is not purely conditional, then by Propositions 10.1 and 
11.1, there is anf E B such that for F = (0, 1, f, 1 -f}, EDEF = p and hence 
F sGn. Consider A* = {fizo + (1 -f)a, 1 a,~A’).Ifg =fu,, + (1 -f) aI, 
then 

Es& = EAED~ = E-4 (%df) + QI (1 - h‘(f))) 
= constant multiple of 1. 

Thus A* g GA and hence A’ is not maximal relative to the condition A’ G G. 
This contradicts the hypothesis of nonpure conditionality and hence the 
proposition is valid. 

The converse of Proposition 11.3 is not valid, that is, the algebra generated 
by A u A’ may be purely conditional when A’ is not maximal. 

Example 11.2. Let L2(B, CL) be as in Example 11.1 and let 

If A is the subalgebra of B generated by (1, 1, 1, 0, 0,O) and A’ is the sub- 
algebra generated by (0, 1, 1, 0, 1, l), then A u A’ generates a subalgebra D 
of B where ED is purely conditional, while A’ is a proper a-subalgebra of the 
algebra A, generated by (1, 0, 0, 1, 0, 0) and (0, 1, 0, 0, 1, 0) and contained 
in GA. 

REFERENCES 

1. REYNOLDS, 0. On the dynamic theory of incompressible viscous fluids. Phil. 
Trans. Roy. Sot. A 136, 123-164 (1895). 

2. KAMPB DE FI&IET J. Sur un probleme d’algebre abstract pose par la dbfmition 
de la moyenne dans la theorie de la turbulence. Ann. Sot. Sk Bruxelles. Ser. I, 
63, 156-172 (1949). 

3. KAMPS DE FBRIET, J. Introduction to the statistical theory of turbulence, 
correlation and spectrum. Lecture Series No. 8, prepared by S. I. Pai, The Insti- 
tute of Fluid Dynamics and Applied Mathematics, University of Maryland 
(1950-51). 

4. BAHADUR, R. R. Measurable subspaces and subalgebras. Proc. Am. Math. Sot. 
6, 565-570 (1955). 



STRUCTURE OF AVERAGING OPERATORS 317 

5. BIFXHOFF, G. Moyenne des fonctions bomees. Colloq. intern. centre nut. recherche 
sti. (Paris). Algebre et Theorie des Nombres, No. 24, pp. 143-153 (1949). 

6. MOY, S-T. C. Characterization of conditional expectation as a transformation 
on function spaces. Pacific J. Math. 4, 47-63 (1954). 

7. ROTA, G. C. On the representation of averaging operators. Rend. Padova 30, 
52-64 (1960). 

8. BRAINERD, B. On a class of lattice ordered rings. Proc. Am. Math. Sot. 8, 
673-683 (1957). 

9. BFMNERD, B. On a class of lattice ordered rings II. Indag. Math. 19, 541-547 
(1957). 

10. ROTA, G. C. Endomorphismes de Reynolds et theorie ergodique. Compt. 
rend. 250, 2791-2793 (1960). 

11. MAHARAM, D. The representation of abstract integrals. Trans. Am. Math. Sot. 
75, 154-184 (1953). 

12. NAKANO, H. “Modem Spectral Theory.” Tokyo Mathematical Book Series 2, 
Tokyo, 1950. 

13. HALMOS, P. R. “Measure Theory.” Van Nostrand, New York, 1950. 
14. KLEE, Jr., V. L. Invariant extensions of linear functionals. Pacific J. Math. 

4, 37-46 (1954). 
15. NAMIOKA, I. Partially ordered linear topological spaces. &fern. Am. Math. Sot. 

No. 24 (1957). 
16. WRIGHT, F. B. Generalized means. Trans. Am. Math. Sot. 98, 187-203 (1961). 
17. BRAIN=, B. Sur la structure des operateurs moyennes. Compt. rend. 252, 

2058-2060 (1961). 
18. Lokvs, M. “Probability Theory,” 2nd ed. Van Nostrand, New York, 1960. 


