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The aim of this paper is to deal with formal power series over a commutative semiring 4.
Generalizing Wechler’s pushdown automata and pushdown transition matrices yields a
characterization of the A-semi-algebraic power series in terms of acceptance by pushdown
automata. Principal regulated rational cones generated by cone generators of a certain form
are characterized by algebraic systems given in certain matrix form. This yields a charac-
terization of some principal full semi-AFL’s in terms of context-free grammars. As an
application of the theory, the principal regulated rational cone of one-counter “languages”™ is
considered.

INTRODUCTION

Berstel |1, p.267] states that “up to now, no characterization of the family of
context-free grammars generating the languages of a cone is known.” In this paper,
we will solve this problem for principal full semi-AFLs that have a generator
generated by a simple deterministic context-free grammar in the sense of Korenjak
and Hopcroft |6}, such that all leftmost terminal symbols of the right sides of the
productions are distinct.

The paper is divided into six sections. Since we work within the theory of formal
power series, Section 1 is devoted to the basic definitions and resuits of this theory as
given by Salomaa and Soittola [10]. Section 2 gives some definitions and results on
infinite matrices, infinite linear systems, and infinite automata. They are
generalizations of the work of Kuich and Urbanek [9]. Section3 introduces
pushdown transition matrices and pushdown automata as special case of infinite
automata. The classical characterization result that the context-free languages are
exactly those languages accepted by quasi-real time pushdown automata is
generalized to semi-algebraic formal power series and cycle-free pushdown automata.

In Section 4, we introduce regulated rational transductions and types of pushdown
automata. The main result of this section states that if the power series s is the
behavior of a cycle-free pushdown automaton of type ¢ and a regulated rational
transduction 7 is applied to s, then z(s) is the behavior of a cycle-free pushdown
automaton of typet, too. In Section 5, sets #/, of power series, 4 a commutative
semiring, are considered containing exactly all the power series that are the behavior
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378 W. KUICH

of cycle-free pushdown automata of typer It turns out that #% is a principal
regulated rational cone. The power series in % can be characterized as the first
components of the unique solutions of certain algebraic systems given in matrix form.
If the language-theoretic equivalent &' of #% is considered, then @' is a principal full
semi-AFL or a principal semi-AFL, depending on whether the generator of %' is
erasable or not.

The last section considers and characterizes those power series that are the
behavior of cycle-free pushdown automata with just a single pushdown symbol, i.e.,
the “one-counter languages” are considered.

1. FORMAL POWER SERIES IN NONCOMMUTING VARIABLES

A monoid consists of a set, an associative binary operation on this set, and a
neutral element with respect to this binary operation. A monoid is called commutative
iff the binary operation is commutative.

A semiring (4, +, -,0, 1) consists of a set 4 and of two binary operations, called
addition and multiplication, denoted by + and -, respectively, and two constant
elements 0 and 1 such that

(i) {4, +,0) is a commutative monoid,
(i) (4, -, 1) is a monoid,
(iii) the distribution laws a-(b+c)=a-b+a-c and (a+b)-c=a-c+
b.chold for all q,b,cE A,
(iv) O-a=a-0=0forallac 4.

Usually multiplication is denoted by juxtaposition and the same notation is used
for a semiring and its underlying set.

A semiring A is called commutative iff ab= ba for all a, b € 4. The two most
important semirings are

(i) The commutative semiring B = {0, 1} with 1 + 1 = 1. The remaining rules
for addition and multiplication are forced by the axioms.

(ii) The commutative semiring of nonnegative integers N with the usual
addition and multiplication.

In the sequel, let A be a semiring, £ be an alphabet, and Z'* be the free monoid
generated by X with the neutral element e.

Mappings r of Z* into 4 are called formal power series. The value of r at w € X*
is denoted by (7, w) and r itself is writtén as a formal sum r=3}_, ;. (r, w)w. The
values (r, w) are also referred to as the coefficients of the formal power series r.

The collection of all power series r as defined above is denoted by 4{X*)). Given
r € ALZ*)), the subset of Z* defined by {w| (r, w) # 0} is called the support of r and
denoted by supp(r). The subset of 4{X*)) consisting of all series with a finite
support is denoted by 4(Z*). Its series are called polynomials.
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Let r,, r,EALZ*). Then r,+r,€ AZ*) is defined by (r +r,.w)=
(riow)+(ry,w) and r,-r,€EA{Z*) is defined by (r,-r,,w)=3 ..,
(ry, w(rys wy), w€ I*, The sets A(Z*) and A(Z*) together with the operations of
addition + and (Cauchy) product - and the constant power series O and ¢ are again
semirings.

Let k > 0. Then the restriction R,(r) of a series r € A{Z*) is defined by R,(r) =
2wl <k (s w)w, where |w|, w € Z'*, denotes the length of w.

A sequence ry, ry,..., ¥ ... of elements of 4{Z*}) converges to the limit r € ALZ*)),
in symbols, lim,_  r,=r, iff for all k>0 there exists an m(k) > 1 such that for all
J 20 R(T iy +7) = Ri(T i) = Ry(r).

An element r € A(Z*) is called quasiregular iff (r,¢)=0. If r is quasiregular,
then lim,_, , 37, r/ exists. It is called the guasi-inverse of r and denoted by r*. A
subsemiring of A{Z*) is called rationally closed iff it contains the quasi-inverse of
every quasiregular element. The smallest rationally closed subsemiring of 4{X*)
that contains all polynomials is denoted by 4™ {(Z*).

For the rest of this section, let A be a commutative semiring and let Z = {z,.....z, |,
n> 1, be an alphabet with ZN X =@, the empty set. An algebraic system over
A{Z*Y (with variables in Z) is a set of equations of the form

Z;= Di> pEA(ZUI)*), 1<ign

It is called strict iff supp(p,) S (ZU)* Z(ZUX)* U e}, 1 <ign

Let 0=(6,y...0,), 0, CEALZUX)*Y), 1<ig<n, and pE A{Z U X)*). Then
o(p) € AYZ U £)*)) denotes the series obtained from p by replacing simultaneously
each occurrence of z; by o;, 1 i< n Hence ¢ is a substitution homomorphism o:
AUZ VX)) - AUZ U Z)*)), defined by o(z,)=0,, 1 <i<n, and o(x)=x, x € X.

An n-tuple ¢ = (g,,..., ) of elements of 4{Z*}) is called a solution of z;, = p,, 1 €
i<n iff o,=0(p;), 1 <ign

A slight generalization of Berstel |1, Theorem 1.5] yields that each strict algebraic
system has a unique solution (see [8, Theorem 34.3}).

A series in A{Z*)) is called A-semi-algebraic iff it is a component of the solution
of a strict algebraic system over 4{(Z*}. The collection of all A-semi-algebraic series
in A{Z*) is denoted by A™-2B{¥*%) This definition of AS™M-E(X*Y) s
equivalent to that of Salomaa and Soittola [10]. The collection of all quasiregular
series in 4™ 8T is denoted by AME(Z* ).

The classical theory of context-free and right-linear languages can be thought of as
the theory of power series in BS*™ 8¢ %% and B (X *}), respectively (see [8. 10]).

Let z;= p,, 1 <i< n, be an algebraic system over BLZ*) with variables in Z =
{z\swz,}. Then this algebraic system induces a context-free grammar =
(Z,Z,P,z,) with z,-»a€ P iff (p,,a)=1, 1 i< n By [8 Theorem 37.1], L(G)
equals the support of the first component of the minimal solution of z,= p,.
1<ign.
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2. MATRICES AND AUTOMATA

Throughout this section, 4 is a semiring, Z is an alphabet and I with or without
indices is an at most countable index set. The next definitions and results are slight
generalizations of Kuich and Urbanek [9].

A matrix M with entries in the semiring 4{X*) is a mapping M:I, X I,—
A{Z*). Hence the rows of M are indexed by I, and the columns of M are indexed
by I,. The (i, i,) entry of M is denoted by M, ,, i, €1,, i, €I,. The collection of
all matrices as defined above is denoted by (4{Z*»)'1*/2, If I, or I,, respectively, is
a singleton, M is called row or column vector, respectively. If I, and I, are finite, M is
called a finite matrix. If I, = {1,.., n} or I, = {l1,..,m}, n,m > 1, respectively, then
(A(Z* )y 1*"2 is also denoted by (4(Z*H)"*'2 or (A{Z*))' 1™, respectively.

A matrix M is called row finite (column finite, respectively) iff for each
i, € 1,(i, € I,, respectively) the set {i,| M, , # i 0} ({i,| M, ; # 0}, respectively) is
ﬁmte The null matrix 0 € (ALZ*»)1*"2 is defined by 0; ., =0 for all i, €1,
i, € I,. The matrix of unity E € (A{Z*))'*! is defined by E,l =0, 1,6 where J;
is the Kronecker symbol, i.e., §; ;, = 1ifi; =i, and §; ;, = 0if i, # iy, ll, hLHel

Let M,, M,€ (A((.E"")})"X’2 Then M, + M, € (A<<Z*>>)’ X2 is  defined by
(M, + M) o= M)y + (M), 4, €L HEL. Let M, € (AQE* )™ M, €
ALx *)))’ZX’J and let M, be row ﬁmte or M, be column finite. Then M, - M, €
(ALE*N)1*" is defined by

12

M, 'Mz)i,,i3= Z (Ml)il,iz(MZ)i2,i3’ Lhel, Lel.

iyel

Since by the extra assumption of M, being row finite or M, being column finite there
are only finitely many i, € I, such that (M), ,(M,), ., #0, (M, M,) i Eel,
iy € I; is well defined.

Let (4{Z*)»))*" denote the collection of all row and column finite matrices of
(ALZ*»)Y %"z, Then it is easily seen that ((A(Z*»)1*%2, +,0) is a commutative
monoid and {(A(Z*))}*/, -, E) is a monoid. Since the dlstrlbutlon laws hold true
and 0 is a multiplicative zero, (4{Z*»)}*!, +,-,0, E) is a semiring.

If matrices are partitioned into blocks with suitable index sets, then sum and
product can be defined in terms of these blocks in the usual manner.

Let M€ (A{Z*))*"2 and k>0. Then R (M)E (A{Z*))"**"2 is defined by
(R (M)); i, =R (M, 1), iy €1y, i, €L, A sequence M\, M,,..., M,...., of matrices in
(A(():*)))’ ZX’Z converges to the limit M € (A{Z*))''*", in symbols lim,_, M, = M,
1ff for all k > O there exist m(k) > 1 such that for all j > 0 R (M 1) = Rk(Mm(k,) =

R (M).

For M € (A{Z*))}*!, the powers M*, k > 0, are defined by M* =E and M**' =
MM* = M*M.

The quasi-inverse M* of M, when it exists, is defined to be the matrix M* =
lim,, 2%, M/. If M* exists, then M*=FE + M".

Given M € (A{Z*))"1*"2, the matrix (M, w), w € Z*, is defined by (M, w)
M, ,,w),i,€l,,i,€I, The matrix M is called quasiregular iff (M, ¢)=

iyiz?

i1, lz

i),y
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A matrix M € (A{Z*))}*! is called nilpotent of order n, n > 1, iff M" =0 and it is
called cycle-free of order n iff (M, ¢) is nilpotent of order n. It is called nilpotent or
cycle-free, respectively, iff there exists an n > 1 such that M is nilpotent or cycle-free.
respectively, of order n.

We now want to show that the quasi-inverse of a cycle-free matrix does exist.

LEMMA 1. Ler M€ (A{Z*M))*" be cyclefree of order n>1. Then for all
w € I* with |w| =k, (M*+*D"* w)=0 for all j > 0.

Proof. Let M=M,+ M,, My= (M, ¢)e, and M, quasiregular. Then (M" tg) =
(My+ M), e)= (M3, £)=0 for all j>0. Now let w€& Z* with |w|=k + L.
k > 0. Then

(M*Emri )= N (MO u)(M*O 0)=0  forall j>0. 1

uv=mw

COROLLARY 1. Let PE (A{Z*))*'2 and let M € (ALZ* ), *"" be cycle-free of
order n> 1. Let S, € (A{Z*))'*", k >0, be defined by S,=0, S,,, =P+ MS,,
k0. Then S, = (250 MOP and Ry(Ss 1ns)) = RS 1) Jor k>0./>0. and
lim,_ . S, =S exists.

THEOREM 1. Let M € (A{E*N)}*! be cycle-free. Then M* and M* do exist.
Proof. In Corollary 1, let P=E. |

An A{X*)-linear system is defined to be of the form Y =P + MY, where P €
(ALZEN)< M e (ALZ*))>*", and Y is a matrix of distinct variables whose rows
and columns are indexed by I, and I,, respectively. An A{Z*}-linear system is
called cycle-free of order n iff M € (A(Z* )™/t is cycle-free or order n. It is called
cycle-free iff there exists an n > 1 such that it is cycle-free of order .

A matrix S € (A{Z*))1*"2 is called a solution of an A{Z*))-linear system Y =
P+ MY iff S=P+ MS. Let S, € (AE*))""x, k > 0. be the sequence defined by
S,=0, S,,,=P+MS,, k>0. If this sequence converges to a matrix S€&
(ALZ* )", then S is referred to as the strong solution of Y = P + MY.

LEMMA 2. Let Y=P+ MY be an ALE*)-linear system. Let $,=0, S,,, =
P+ MS,. k>0, and assume the existence of lim, . S, = S. Then the strong solution
S is unique and S is a solution.

Progf. By definition, the strong solution is unique. Since lim, _, . S, does exist, for
any k >0 there exists an integer m(k) > 0 such that R.(S,,,, ;) = R,(Snu ) for all
J>20. Hence R(P+MS)=R(P+MS,,)=Ri(Snu.1)=RJ(S) for all k0.
This implies that S is a solution of Y =P + MY.

The next theorem shows that cycle-free systems have the nice property of a unique
solution.
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THEOREM 2. Let Y=P + MY be a cycle-free ALZ*))-linear system. Then its
strong solution is its unique solution.

Proof. Let §,=0, §,,,=P+MS,, k>0, and lim,_, S, =S. By Corollary 1,
the strong solution does exist and

(k+Dn—1

R(8)=R(Susnn) =Ry (( ;::0 Mj) P)-

Let T be. a solution of Y=P+ MY, ie.,, T=P+ MT. Then by substitution, 7=
QiZoM)P+ M'T for arbitrary [>1. Hence R (T)= (X ¢*,""~'M)P)+
R,M**V"Ty=R,(S) for all k>0, ie, T=S. 1

COROLLARY 2. Let Y=P+ MY be a cycle-free A{Z*)-linear system with
unique solution S. Let M =M, + M,, M,= (M, ¢)e, and M, quasiregular. Then S is
the unique solution of Y = M}P + MM,Y.

Proof. Let My =0 for some n> 1. Then
S=P+M,S+M,S=P+MP+M,S+MMS+M,S
= =P+MP+ -+ M7 'P+MS+M;"'MS+--+MS
=MFP + MFM, S.

The solution S is unique, since MM, is quasiregular. [

CoROLLARY 3. The cycle-free A{X*))-linear system Y =P + MY has the unique
solution S = M*P.

Proof. P+ MM*P=M*P. |}

We now turn to automata theory. The first definitions are based on Eilenberg |2].
An A{E* Y-automaton O = (I, M, q,, P) is given by:

(i) an at most countable set / of elements called states,
(i) a matrix M € (ALZ*))}* called the transition matrix,
(iii) g, € I called the initial state,
(iv) a column vector P € (A(Z*))}*! called the final state vector.

M, ,=r+0,p,q€ I then we say that the edge (p, g) with label r is in (. A path
c from p to ¢ in 7 is a finite sequence of edges (p,, P1)s (P1s Padses (Di_ 15 Di)s
P = Py, 9= Py, k> 0. It is written c: p— g. The integer k is called the length of the
path and is denoted by |c|. If r; is the label of (p,_,, p,), 1 < i<k, then the label |||
of the path ¢ is defined to be ||c|=r,r, --- r,. For each state ¢ € I we introduce the
null path 4, from g to g with [1,]=0 and ||1 || = &.

Let c: p— g and d: ¢— r be paths, then the composition cd: p— r is defined by
concatenation. We have |cd| =|c| + |d] and | cd]| = || ¢| || 4]l
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When it exists, the behavior ||| € A(X*) of an A{X™*)-automaton (7 =
(I.M, q,, P) is defined by
I =23 X llelip,.

qel ciqo—q

LEMMA 3. Let ¥ =(I, M, q,, P) be an A{Z*)-automaton. Then for all k >0,
D, q € I, the formal power series (M")M is the sum of all labels of paths c: p— q of
length k, i.e., :

M= X el

cip-q.lcl=k
Proof. The proof is straightforward. |

An A{Z*)-automaton (¥ = (I, M, q,, P) is called cycle-free iff M is cycle-free. We
note that cycle-free B{Z* )-automata correspond to quasi-realtime automata.

THEOREM 3. Let (¥ =(I, M, q,, P) be a cycle-free ALZ*)-automaton and let S
be the unique solution of Y=P+ MY. Then |(7| is well defined and ||(7|| =
(M*P), = S,

Proof WH qul Zc q0—~q “C”P qul Zf’:o Zc:qo—vq.lcl:k HC“ Pq = qul
Lo (MY, P,=(M*P), ,» by Lemma 3 and Corollary 3. §

3. PUSHDOWN AUTOMATA AND SEMI-ALGEBRAIC SERIES

We introduce the pushdown automaton as a special type of automaton as defined
in Section 2. Throughout the rest of this paper, 4 is a commutative semiring, X is an
alphabet, I" is an alphabet of pushdown symbols, and Q is a finite index set. The
items X, I, and @ may be indexed.

A matrix M whose entries are in the semiring (4 {Z*))?*¢ and are indexed by the
elements of I'* X I'* is a mapping M: I'* X I'* » (4¢Z*))?*?. All definitions and
results concerning the matrices of Section 2 are easily transferred to the matrices
defined above.

The collection of all matrices as defined above is denoted by ((4(Z*))¢*@)!" ",
It is obvious that (((A(Z*))?*2)]"*", +,.,0, E) is a semiring that is isomorphic to
the semiring ((4(Z* ) *@*xT"xQ 4 1. 0, E).

The next definitions and results are generalizations of the work of Wechler [11].
Let .7 =(Q,Z. T, 0, q,, py, F) be a pushdown automaton as defined by Harrison |5]
and let — be the move relation between instantaneous descriptions of .7, Let T be the
transpose operator |5, p. 4]. The move relation — defines a so-called pushdown tran-
sition matrix M € ((BLZ*))?*)I" " vy

(M ,x)=1 iff (g, x. 7)) (qy.6.73) 7,7, €T,

"|~"z)ql~qz

9,,-9,€Q, x€XUleh

Since .x. 1)+ (q,, & nY) implies n, = pn,, 7, =7m,7n, for some x, € I'* and
1 1 2 2 1 4 2 3t 4
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(q,,73)E 8(q,, X, p), M is of a certain regular structure. Furthermore, it is obvious
that for w € Z* and k>0, (g,, w, 7{) =" (g2, & 73) iff (M*),, ), .0,» W) =1 and
Q1> w, ”;r) =*(g & n-zr) iff ((M*)nl,nz)ql,qz’ w)= 1.

Let R € (B(Z*))%*", R = (R, ¢)¢ be defined by R, =¢ iff ¢ € F. If .7 accepts by
both final state and empty store, then L(.7*) = supp(((M*), . R), )

ExaMpLE 1 (Wechler [11]). Let £ be the Lukasiewicz language over X = {a, b},
i.e., £ is the language generated by the context-free grammar G = ({S}, {a, b},
{S—aSS, S - bl,S) (see [5, p. 323, Problem 16; or 1, p. 47]). Let % = ({q}, £, { p},

4, p, {q}), 9(a. &, )=, (g, a, p)= {(g, P*)}, 3(g, b, p)={(g, €)}, be a pushdown
automaton. Then .% accepts £ by both final state and empty store.
The pushdown transition matrix M € (B(Z*))5"**" of .7 is defined by

My pnir=a, M, ,u_y=b, n> 1, while all other entries of M are equal to 0. Since .%*

accepts £, £ = supp((M*),, ). 1

The concepts of pushdown automata and pushdown transition matrices are now
generalized. A matrix M € ((A{Z*»)2*9) %" is called a pushdown transition
matrix iff for n,, 7, € I'*

M, =M, if there exists perl, n,er*
with 7n,=pn, and =,=mn,,
=0, otherwise.

Hence a pushdown transition matrix is uniquely determined by the finite number of
its blocks M,  #0,pEl, nE€*.
An A{Z*Y-pushdown automaton .7 = (Q, T, 6, q,, p,» R) is given by:

(i) a finite set Q of elements called states,

(ii) an alphabet I of pushdown symbols,

(iii) a mapping 6: Q X (ZU {e}) X I'-> A(Q X I'*),

(iv) g, € Q called the initial state,

(V) Po S

(vi) RE (ALZ*H»)2*!, R = (R, &), called the final state vector.

An A{X*)-pushdown automaton .7 =(Q,TI,J,q,, py, R) defines a pushdown
transition matrix M € (A{Z*H))2*)" X" as follows:

(M’n‘"z)ql-qz
= N (g, x p)(qy, m))X, if there exist p €I, n, &€ I'*
xeZUle)
with 7, =pn, and =n,=n,x,
=0, otherwise,

Mrtl,rrz € (A«E*»)QXQ’ .M ETNY, q,,9,€Q.
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The matrix M is row finite, since for any p € I there exist only a finite number of
words 7 such that (6(q,, x, p), (q,, 7)) # 0. The matrix M is column finite since any
7, € I'* has only a finite number of factorizations 7, = 7, 7,.

An A{Z*)-pushdown automaton is called cycle-free iff its pushdown transition
matrix is cycle-free. The behavior ||.7|| € ALE*)) of a cycle-free 4{X*)-pushdown
automaton .7 is defined by

— ((MJr )Po‘ﬁ)%-q Rq = ((M+)P0~5R)Q\)'

qeg

By Theorem 1, the behavior of a cycle-free 4{(Z*)-pushdown automaton is well
defined.

THEOREM 4. Let .7 =(Q,TI,9d,qy, po-R) be a cyclefree A{Z*)-pushdown
automaton with pushdown transition matrix M. Let (1 = (I'* X Q. M", (p,.q,), R’) be
the cycle-free ALE*)-automaton with

M(,ﬂl ), 00420 (M’tnﬂz)‘h.qz’ (6 Q) R
Rz =0, ’ 99:9,€Q. 1,,mET* nel".
Then (7= (.|,
Proof. .
“()Zl[ = L (MI*)(po.qo).(n.qJ R(n q)
(z.g)el* xQ
= ‘\_j ((M+)p0,5)q0,aRq:"'9a!l' I
qeQ

Hence cycle-free 4(Z*))-pushdown automata are cycle-free 4{Z*)-automata as
defined in Section 2.

THEOREM 5. Let M € ((A{Z*N)?*%)," """ be a cyclefree pushdown transition
matrix. Then for all p, €I, {1 <i<m, m> 1,
(M*)pl-.-pm.ez (M*)p,.a (M*)

Dbt
Proof. Let PE€ ((A{Z*))¢*%))" ! with P,=E, P_=0, n€l*. If § is the

unique solution of ¥'= P + MY, then S, = (M*), ,, n € I'* by Corollary 3.
We claim §, ., =(M*), .- (M*), o p €N 1<i<m m>1, and S,=E.

or equlvalently (M*) (M*)nz's for z,, n, € I'’*. The claim holds true for
7, = €. Hence assume y
Sn'ng ”1”2 + (MS)n nz i M’t]nz.nsn
nel*
= Z Mﬂlnz-HJNzSn3ﬂ2= 2:. KAl nz(M*)vr E(M*)
myel* nyer*
=(M7), M%), .= (M*), M*), . 1}
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Our next goal is to show that r € A5™ 28 ¥'* ) iff r is the behavior of some cycle-
free A{Z*))-pushdown automaton. Given I' and Q, let I’ = Vool PETL
4154, € @} be a set of variables. Let Y(p) € (AT *))?*? with (Y(p))y, .0, = V5, .0,
PEI, q,,9,€ Q. Furthermore, let Y(e)=FE and Y(p, - p,)= Y(pl) - Y(P,,)s
DELIKi<Kmmal.

LEMMA 4. Let M= (M, e)e + 3,5 (M, x)x € (ALZ*N)2*O"*T" be a cycle-
free pushdown transition matrix. Let My= (M, ¢)e and M, =3 .., (M, x)x. Then
(M*), ., p ET, is the unique solution of:

i) Y(p)=2rer Mp.n Y(r), pET, and
(i) Y(p)=2.er MEM,),, Y(m) + (M), . pET.

Proof. Consider the A{X*)-linear system Y=P+MY with PE
(AgzZ*y)exy™= p,=E, P,=0, n€I", and let S be its unique solution. Then
by Corollary 3, §, = (M*), .. Hence S,=3_ .« M, ,,S,, and Theorem 5 implies that
S,, pPET, is the solution of (i). By Corollary 2, S is the unique solution of the
A{Z*)-linear system Y=MZP + M¥M, Y. Hence S, = (M{P), + (MFM,S), for
pET, ie, S,=M§), .+ e (MFM,), . S,. Then Theorem 5 implies that S,
p €T, is the solution of (ii). Since the algebraic system (ii) is a strict one, §,, pE T,
is the unique solution of (ii).

We now show that S,, p € I, is the unique solution of (i), too. Assume T(p) €
(ALZ*N)°*9, p€ET, is solution of (i). Let T(p, - p,)=T(p,) -+ T(py) P;ET,
1<i<mm>1,and T(e) =E. Let TE (A{Z*M)2*)I" X! with T, = T(n), n € I'*.
Then (P+ MT),=E=T,andforpe I, n € I'*,

(P+MT) Z PR,y n,— Z, Dy nzn

ner* na€l*
= 3 M,, T(n) T(n)=T(p) T(x)=T,,.
nel*

Hence T is unique solution of Y=P+MT and T=S. I

LEMMA 5. Let .# be a cycle-free A{Z*)-pushdown automaton and let a € A.
Then there exists a cyclefree ALZ* )-pushdown automaton 7' such that |.7°'|| =
ae + 1.2

Proof. Let #=(Q,T,0,q,, Py, R) define the pushdown transition matrix M. Let
Q'=0Q0U{it}, (Lt}NQ=0. Let e, € (A(Z*N)%"", (e,,),=0,,.46 and M'€E
((ALE*Y)2*xe)I"*XI" be a pushdown transition matrix defined by

M, =10 M M, R

Py

(0 e,M, . erMp.,,R+as)
0 G 0
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p€E T, neTI*, where the blocks of M,  are indexed by i, Q, {. An easy proof by
induction shows that for k > 2, n, € I'*, n, € I'*,

(Mlk)m.nz —

0 (MY, .. M, R

L IRN ¥

(0 eqo(Mk)Mv"z eqo(Mk)”h"zR)
0 0 0

Hence M’ is cycle-free and for pe I

0 e,(M*),, e, M), . R+at
M), = (0 M), (M*), R )
0 0 0

Let . 7' =(Q',I,d',i, py, R’), where ¢’ is defined by M’ and R; =0, R =0 for
g€ Q and R =¢. Then
17| =((M"*),, . R");=e,(M"), .R+ac=ae+|.7|. |

An algebraic system over AZ*) with variables in Z={z,.,z,}, z;= p;,
1<ign, is in Greibach normal form iff supp(p)<c XL UZZUZXZ?, 1<i<n
Salomaa and Soittola [10, Theorem IV.2.3] state that for all r € A*¥(Z*) there
exists an algebraic system in Greibach normal form such that r is the first component
of its unique solution. The analogous language-theoretic result is well known.

LEMMA 6. Let r € A™8{Z*Y). Then there exists a cycle-free A{Z*)-pushdown
automaton .# =(Q, T, , q,, Py, R) with 6(q, &, p) =0 for all g€ Q, p € T such that
h#1=r.

Proof. Without loss of generality, we may assume that r is the first component of
the unique solution of an algebraic system z,= p,, ! <i< n, in Greibach normal
form. Let Z={z,,..,2,}. Let #=({1},Z,5,1,z,,(g)) be an A{Z*})-pushdown
automaton with 8(1,x,z)=)" .. (pi,xn)(1,n), x€Z, 1<i<n Then the
pushdown transition matrix M € (4{Z*))* **" defined by .# has entries M, =
Sover (Pxmx, n€ Z*, 1<i<n,and || 2| = (M7), ..

We claim that 0 = (0,,..., 0,,) with g; = (M*), .. 1 <i< n, is the unique solution of
z;=p;, L <ign

o(p)=0 (}_ N (pi,xn)xn)= NM, (M),

xel neZ* neZ*

:(M+)z,-,£:(M*)z,-‘E:Ui’ lglgn

Hence || #|=0,=r. B
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THEOREM 6. A power series r is in AS™ M8(Z*Y) iff r is the behavior of some
cycle-free ALE* Y)-pushdown automaton.

Proof. (i) Let reA*™8(r+*Y r=(re)e+r,, r,€A™8(Z*). Apply
Lemma 6 on r,, then apply Lemma 5 with a = (r, ¢).

(ii) If r is the behavior of a cycle-free 4{Z*)-pushdown automaton .=
(Q.1, 3, 44 Py, R) with pushdown transition matrix M, then r = ((M*), ,R), . Since
(M*),,..=(M*), . is a component of the unique solution of a strict algebraic
system by Lemma 4 (ii), the entries of (M™), , are in Asemi-ag(xxY Hence r €

Asemi»alg«z*». l

Theorem 6 constitutes a generalization of the theorem of Wechler [11], which
characterizes the power series of 4*'3(Z*}) by A{Z*))-pushdown automata with one
state only.

p

4, REGULATED RATIONAL TRANSDUCTIONS

We introduce in this section regulated representations, regulated rational
transductions, types of pushdown transition matrices, and types of pushdown
automata. The major result of this section is that if the semi-algebraic power series r
is the behavior of a cycle-free pushdown automaton of type ¢, then z(r) is again the
behavior of a cycle-free pushdown automaton of typet, r a regulated rational
transduction.

Let u: X, - (ALEF))™™™, m> 1, be a mapping. If 4 is uniquely extended to a
monoid homomorphism y: Z¥ - (ALZ¥)H)™*™, then it is called a representation. By
Salomaa and Soittola [10], a representation u: Zf — (ALXF )" "™, m > 1, is called
regulated iff there exists a natural number & > 1 such that the matrices u(w), |w| > k,
are quasiregular. The notion of a regulated representation is introduced to allow an
extension of g to a semiring homomorphism g: ALZF D — (ALZFHY" ™™ by u(r) =
Zweﬁ (r’ W):u(w)’ re€ A<<E;k>>

Let QX m=Q X {1,..,m}. By a slight generalization of [9, Lemma 5], further
extensions of g yield semiring homomorphisms:

() u: (ALEFNCL*C > (ALZFEMN' P XCx™ by (u(M))g, . i0iarein
@My i, i ME ALZINYY 415 ¢, € @ 1<y, i, <m, and

(i) w: ((ALZFEN)C*9)7T = ((ALZFH) @xmx@xmyFXT" by (u(M))x, x, =
BM,, ) ME (AKZFN)*O) ", ny, my €T,

By Salomaa and Soittola [10], a mapping 1: A{ZF) - ALZF) is called
regulated rational transduction iff ©(r)=(r,e) ro + X" c5s (rs w)u(w), ,,» where ry €
A™CEF) and p: ZF - (A™CZFH)™™, m > 1, is a regulated representation. In case
of the Boolean semiring B, a mapping 7: B{X}) — B{Z¥) is called a rational
transduction iff t(r)= (r, &) ry + X c5: (o W) u(w), ,,, where r, € B™'(Z¥) and u:
ZFES (BPYZFY)™™™, m > 1, is a representation.

o]
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By [10, Theorem III.1.3], any rational transduction 7: B{Z¥) - B(Z¥) has a
factorization t=hor,, where 7.:B{ZF)-B{ZF) is a regulated rational
transduction and h: X, - X, U {e} extended to h: BYZF) - BLZF) is a semiring
homomorphism, i.e., 7(r) = h(z,(r)) for r € BLZ}F ).

The rational transductions are extensively treated in Berstel |1]; they are also
called a-transductions by Ginsburg [3]. The regulated rational transductions
correspond to the e-output bounded a-transductions of Ginsburg |3,p.35|. The
definition of a rational transduction as given above is easily deduced from
Berstel [1].

Let p:Z¥ - (A{ZFN)'*" be a regulated representation and let 7: A(Z}F) —
ALZ¥Y) be a regulated rational transduction defined by z(r)=(r.¢e)r,+
Ywers (nw)u(w), |, rE€ALZF). Let p:Z¥ - (A(ZFN)**? be the regulated
representation defined by

(3 1) s

Then 7(r) = (1 €) ry + Lyer; (W) pOW)y2 = (1, €) 7y + p(F), 40 r € AGET). Hence
without loss of generality, we may assume m > 2 and 7(r) = (r, €) ry + u(r), ,, in the
definition of a regulated rational transduction. This will be needed in the proof of
Theorem 7.

If I is a finite index set, let e, € (AKX *))' ™' be defined by (e,),=J; ;¢, i, jE .
Given an alphabet I" of pushdown symbols, a fype t is a finite subset of I" X I'* such
that t2 {(p, p)| p € I'}. A pushdown transition matrix M € (A{Z*H)2*)I" =" s
of typet < I'X I'* iff M, , + O implies (p,n) € t, pE I, n € I'*. The collection of all
pushdown transition matrices of type: as defined above is denoted by
(A )X )T,

LEMMA 7. Let M E (A(ZFN)2XI"*"" be a cyclefree pushdown transition
matrix of typet. Let u: ZF — (A™(E¥N)™*™, m > 1, be a regulated representation
and ry € A" (Z¥ ). Then there exists a cycle-free pushdown transition matrix M' €
((ALZEM2 YY" of type t, Q' = {1} U QU @ X m, such that for some q € Q,

O eq((M+ )p,s’ 8) rO e(q.]):u((M+ )p.s)
M), .= ( 0 (M"),.8) 0 )
0 0 u((M™),)

p € I, where the blocks are indexed by 1, Q, Q X m.
Proof. Let

0 €q7o €.
M,,=10 (M, ¢) 0 ), per,
0 0  uM

p.p)
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0 0 0
Mll).n_(o (Mp,n’s) 0 )3 Per, ﬂer*, ﬂ?‘:p
0 0 uM,,)

Obviously, M’ is of type t. We claim that for k > 1

0 eq((Mk‘l)n].nz’ 6) r() e(q.l)lu((Mk_l)nl.nz)
M), 0y = (0 ((M*), s €) 0 )
0 0 u(M*),, )

The claim is easily shown by induction on k. The proof is omitted. Hence M’ is
cycle-free. Since (M'*), =32, (M'*), ., the lemma is proven. [

Note 1. 1If in Lemma 7, r,=0, then it is sufficient to let M; , =uM, ), pET,
n€TI* Then (M'*), . =u((M™),.).

Let P be a set and M € (A{Z*))"*". Let P= )¢, P;, I an index set, be a disjoint
partition of P. Then M is said to be partitioned into blocks M(P,, P;) € (A{Z*))" ™",
i, j € I. The same definition holds for R € (4{Z*))"*".

If matrices or vectors are partitioned into blocks with suitable dimensions, then the
sum and product can be defined in terms of these blocks in the usual manner.

We give an intuitive description of the contents of the next lemma. Given M €
(A1 (Z*H)2*)I" X" by Theorem 4 we may assume that M is the pushdown tran-
sition matrix of a generalized pushdown automaton .7 = (I'* X Q, M, (Py» qo)s P)
whose edges are labelled by rational power series. Since (M, n)q‘ oy PET, mET™,
415 4, € @, is in A™(Z*)), there exists a finite automaton (75", = (05", , M™,

RO™ ) with |Z5" || = (M,

qu,qz q1:492 q1-.q92 )lll q°

For each n, € I'*, let /°™ o =(Q77,, X {pm, }, My, . (g5 qz,pn »R}",) be a

q1:92 qi+4q2°

copy of (3", . The automata % and /7", pE T, n, n, €ET™, q,, q, € Q, with

qy-47°

M, +0, are “combined” and yield an A(()J *)-automaton ?’— r*xQ',mM,
(Po o), P') with 0’ = QU U Q2% , P'(Q) = P, P'(Q%",) = 0, and [.5|| = .#|.

The edges of .7’ are given as follows: The edges of .# are deleted, the edges of
agi,r™ remain unchanged. For any 7z, € I'*, an edge labelled by ¢ leads from
(ql,pn ) to the initial state (g3, , pn,) of OZ""' ;7" An edge labelled by (R}, ),
q € 04.7,, leads from (g, pr,) to (g, nn,), ie., an edge whose label is the “weight” of
q leads from a final state of agrw o (g, nn,) The transition matrix M’ is given
by the edges of .#’. It turns out that M’ is a pushdown transition matrix and that .7’/
is a pushdown automaton.

The next lemma states that (M'"), (Q,Q)=(M")

equals the type of M.

and that the type of M’

p.t

LEMMA 8. Let M E ((A™'(Z*N)2*A)] <" be a cyclefree pushdown transition
matrix of type t. Then there exist a finite set Q', Q' = Q, and a cycle-free pushdown
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transition  matrix of typet M'E ((ALZ*FNML YT M = (M',e)e +
2oxer (M',X)x, such that for p€TL, (M'*),)NQ, Q)=(M"),, where
(M), NQ, Q) is the finite block of (M’ ™), . indexed by (Q, Q).

Proof. Since (M, ), ., € A™(Z*), pEF, nET* q,, q,€ Q, there exist by
{10, Theorem II.1.4] finite linear systems Z?'* = R>" + MP™ ZP~

qy 02 q1.492 41.92794,42°

Mz = N (ME

i, qz
xeX

x)x € (A <<Z*>>)le”qsz:l,’q2

»q2°

quasiregular, R2", = (R2" ., £)e € (A(Z*))%iw", for some finite sets o, s with

4,.q
S = (M77,)* R, such that for some ¢7'7, € Q“”t he

unique solutions Sg7, = (M7" )* Ry" |
5., component of S'* equals (M, ), .. Let e nqz_eq” e (A<<Z*>>)1XQ,“ -

then ef:" ST" =(M, ,,)q .ap- Let Q and Q0"  be pairwise d1s101nt for all p€ T,

q1,92% 41,97

n € I'*, such that M, | + 0 and 4,9, € Q, and let Q'=0u0 007, Let

(Egl"‘h 9394 al a3 al 41)04 Egln‘h € (A«E*»)QXQZ‘"”’
(FQI 72/43. 94 542,114 Rq;,az)qs’ le”qz € (A<<E*>>)le"qzxo

Then 3, 4.c0 By My ) Fo” -M
2 q2 91,92
The blocks of M’ = (A((Z*)})Q xe' p E I, n € T'* are defined as follows:
(i) M,.(0 0)=
(11) p(Q’ ql qz) = Ezlnqzv
(iil) M, (057, Q)=Fy7,
(IV) M, p(qu q2° th qz) M‘ll qz2°
All other blocks of M, p€ I, n € I'* are equal to 0. Obviously, M’ is of type .
We claim that for k£ > 0:
(l) ((M12k+ l)plnl,nz(Q’ Q)’ 8) = 0,
(if)
((M’2k+l)p,n|.nz(Q’ q, qz) 6) - ((Mk)plnl ny? 6) Egl"q, lf 7[2 = pn}’

=0, otherwise;

() (M), Q0% O €)= 8, L (MY),., . 0):
(v) (MY, o Q07,0079 6) =0, p, py, Py Py €T,

T, 7[1’ Tys Ty, 7I4€F*, ql’ 93, qs’ Q4 € Q

This claim is proved by a tedious but straightforward proof by induction on k. It is
omitted. The form of M’***! implies at once that M’ is cycle-free.

Our last claim is that

D) (M) (D Q) =(M"),, ..
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() (M'7),.(0, 05100 =0,
(i) (M7 )0 (0512015 Q) =6, (ME1IN* - FOLDUM™), s

qlvql’
(iv) M), (@57, Q7)) =0, forp,p,,p, €T, 1, 1y, My ET,

91> 92> 930 44 € Q-

Let Y=P+M'Y, with PE (A4(E*))? *?)" >  and P, =M ,, n € I'*. Then the
unique solution S of this cycle-free 4(Z*))-linear system is given by Corollary 3 to
be §S = M'*P, ie.,

Sn = (MI*P)n= Z (MI*)n,n]Mfltl,e'-: (MI+)7I,£'

ner*

We prove our claim by showing that (i)—(iv) is the solution of Y=P + M’Y.
The claims (ii) and (iv) obviously hold true,

(1)
M, (0, Q)+ (M'M'™),, (Q,0)
=2 2 2 X M, (0,00 M ), (@5, Q)
n3€l* pyel mel™* qs5.q4€0Q
=2 X EL(MIT)F M),
n4€l™ ¢s5.96€Q
= Z Mp,n4(M*)n4n,€=(M+)pn,e'
m,el*
(iii)

My (9032 Q) + (MM ), (03115, Q)
=050 0nmeF it t 2 M (Q00, QM' ), (0, 0)

nyel™
7 P Pas
+ 22 Y Y M (O

n3€l* piel’ nye€l™ q5.qe€Q
X (M), (@007, Q)
SR N AN I (N (07434 0) 0.7 A W (/X ¢)
+0p,5, My, o010 Q0 TDM 7 ), Q01271 Q)
=0, p,0nm e FOT 46, , FOUT(M ™)

PPy n, €7 Q1.9 p,p” 4y, YL E
P1s7] P1s7m1yk P17 k
+ JPsIHMlI(-Qz(Mql.lh) Fq[;Qz M )ﬂln‘.€
£ DYk FPis7y *
- 5P.P.(Mq|y02 FQ].GZ(M )nlmﬁ‘ l

Let tSI'XTI* be a type and . =(Q,T,J,q,, Py, R) be an A{Z*))-pushdown
automaton. Then .#° is said to have type ¢ iff the pushdown transition matrix defined
by .7 is of type t.
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THEOREM 7. Let .7 =(Q,I,0,q,, Po.R) be a cyclefree ALZ)-pushdown
automaton of type t and let 1: ALZF ) - ALZF)) be a regulated rational transduction.
Then  there exists a cyclefree A{X¥)-pushdown automaton .7°" =
(0".T,8", 1, py» R"), 0" 2 QU {1} of type t such that ||.7" ]| = 1(||.9°|).

Proof. Without loss of generality, let z(r)=(r,&)ry+u(r), ,, r€ALLF).
wr ZF o (A™EZFN)™™ m > 2, be a regulated representation and r, € A™ (Z¥).
Let M€ (AKZFN)2X)I %" be the cycle-free pushdown transition matrix defined
by . 7.

Let Q' ={1}UQUQXm and let M' € ((4{Z¥»)? ) " be the cycle-free
pushdown transition matrix constructed by Lemma7 with g=gq,. Let R'€
(A(EFH)2 " be defined by R'(1)=0, R'(Q)=R, R'(Q X m)=u(R)/ with [ €
ALZEN™ 1, fy= 8, e, 1<E <

Then

(s +)p0.ER,)1 = eqo((M+)p0.€’ &) Rry + €y, 1).‘1((1"1+ )p[,,e)ﬂ(R)f
= (Hlf)“’ 8) ry + e(qo,l):u((}‘4Jr )pO.HR)f
=(- 71, &) ro + ull-2 D, = (|- 7’ D-

Now apply the construction of Lemma 8 to the cycle-free pushdown matrix M’ of
type ¢, yielding M" € (ALZF M), with M" =3 . (M",x)x + (M", e)e
and (M"*), (Q.Q)=M'"), ., Q"20 20U {l}. Let R"€ (ALZF)N°* '
with R"(Q')= R’ and R"(Q" — Q') =0. Then

(M7 ) RT), = (M), Q" Q'Y RP(Q@'N), = (M), (R,

Let 6" be defined by M”. Then |.7"||=1(].#’})) and .»*" is cycle-frec and of

typetr. Nl

LEmMA 9. Let M, € ((ALZ*M))2Xe)\" <" be cycle-free pushdown transition
matrices of type t, i=1,2. Then there exists a cycle-free pushdown transition matrix
M E ((ALZ*FM* X Q0 ={11UQ,UQ, such that forpE T, q, € Q. i=1,2.

0 e, (M[),, e, (M),
(M+ )p.t:: 0 (M;)ps O )’
0 0 (M3),.

where the blocks are indexed by 1, Q,, Q,.
Proof. Let

0 elh eqz
MD.D:(O (Ml)p,p 0 >9 per’
O 0 (M2)p.p

571/25/3-9



394 W. KUICH

0 0 0
Mp.n=(0 (Ml)p,n 0 )’ Per, ﬂer*, 77.'¢p.
0 0 (MZ)p,n

Then the lemma is proven along the lines of the proof of Lemma 7. [}

THEOREM 8. Let .7 be cycle-free ALZ*Y)-pushdown automata of typet, i=1, 2.
Then there exists a cycle-free A(Z*))-pushdown automaton .7° of type t such that
1.2 =711 + | ]l

Proof. By Lemma9. |

5. PRINCIPAL REGULATED RATIONAL CONES

Throughout this section, 4 is a commutative semiring, £ is an infinite set of
symbols, X — £ is an alphabet, Z = {Zyses 2.}, n 2 1, is an alphabet with ZN X =g
and Q is a finite set. The item X may be indexed.

A nonempty set .%, of pairs (Z, s), where Z < Z is an alphabet and s € A{Z*)), is
called a family of series. A family of series &, is called a regulated rational cone
(respectively, rational cone) iff for every pair (Z,,s) €%, and every regulated
rational (respectively, rational) transduction : A(Z*) » A(ZF), Z,, £, X, the
pair (Z,, 7(s)) belongs to %,. A (regulated) rational cone %, is called principal iff it is
generated by a single pair (Z,s), £ Z, via (regulated) rational transductions. The
pair (X, s) is called the cone generator of %,.

We now specialize to the Boolean semiring B. Let % be a regulated rational cone
(respectively, rational cone) and let % = {L|L = supp(s), (Z,s)E % for some
X c X} be its language-theoretic equivalent. If L # @ for some L in #, then in
language theory, & is a trio (respectively, a full trio or rational cone). These families
of languages are extensively treated in Berstel [1] and Ginsburg [3]. If &} is prin-
cipal, then & is principal.

Let #; be a principal regulated rational cone generated by (Z,s), s € B(Z*),
s # 0, and let # be its language theoretic equivalent. Then by [10, Theorem IIL.1.4],
the principal rational cone generated by (Z2,s) is the closure of % under
homomorphism and by |3, Theorem 3.4.3|, the language-theoretic principal rational
cone generated by supp(s) is the closure of ¥ under homomorphism.

If ¢ is a regulated rational cone (respectively, rational cone) closed under
addition, then its language theoretic equivalent is called semi-AFL (respectively, full
semi-AFL).

Let Z = {z,,..., z,} be an alphabet of pushdown symbols, and let tc Z X Z* be a
type. Then the collection of power series 4°{2Z*)) is defined as follows: A power
series r &€ ALX*) is in A'{E*) iff it is the behavior of a cycle-free ALZ*)-
pushdown automaton % = (Q, Z, d, q,, z,, R) of type t.

Let Z be a fixed infinite set of symbols. The family of series % Y, is defined to be the
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set of pairs (Z,s), £ = Z an alphabet, such that s € 4'{Z*)). We show that #, is a
principal regulated rational cone that is characterized in the following way: A pair
(X, s) is in &', iff 5 is the first component of the solution of an algebraic system over
A{Z*Y given in a certain matrix form (depending on ¢).

Throughout this section, let t<Z X Z* be a type and X, = fa. .|z, M e
1 i< n} be an alphabet. The algebraic system over A(Z*))
;= N a7 1ign,

(zj,n) €t
is called the cone generator system for type t. Hence the cone generator system for
type ¢ is strict and the context-free grammar induced by it is simple deterministic in
the sense of Korenjak and Hopcroft [6].

Thus the cone generator system for type ¢ has a unique solution ¢ = (0,,...,5,). The
pair (X,, 0,) is called the cone generator for type t.

For r,, r,€A{Z*), let r,(Or,€EALZ*) be defined by (r,Or,,w)=
(r,, w)(r,, w). The series r, () r, is called the Hadamard product of r, and r,. If r,,
r, € BLZ*Y, then supp(r, & r,) = supp(r,) M supp(r,), i.e., the Hadamard product
represents intersection.

Let w € £*. Then v € X'* is a factor of w if w=w,vw, for some w,, w, € Z*. Let
¢ be a symbol, ¢ & X. Then r € A(Z U {c})*)) is termed c-limited iff there exists a
k> 1 such that (r, w)#0, w € (£U {c})*, and ¢/, I > 0, a factor of w, imply I < k.

Let h: (ZU {c})* - Z* be the homomorphism defined by h(c)=¢, h(x)=x.
XEZ. Let re A™{(Z U {c})*)) be c-limited and let t: A(Z U {c})*) > A(Z*)) be
a mapping defined by 7(s)=h(s D r), s€ALZ*). According to |10, Exer-
cise IV.7.4], the mapping r is a regulated rational transduction.

THEOREM 9. Let tc Z X Z* be a type. Then %', is a principal regulated rational
cone closed under addition. It is generated by (X,, 0,), the cone generator for typet.

Proof. Let z;=3', .e G, % | <i<n,be the cone generator system for type ¢
with unique solution ¢=(0,,..,0,). Define the cycle-free A4{Z*)-pushdown
automaton .7 = ({1}, Z, 4, 1, z,, (¢)) by

la, ,.z)=(Lm) if (z,,mer 1<ig<n,
d(1,a,2)=0, ac€X,, z€Z, otherwise.

Automaton .7 defines the cycle-free pushdown transition matrix M € (4(Z*))7 <
with M,  =a, if (z,n)€rand M, ,=0if (z;,n) &, 1 <i<n Hence .7 is of
type t and 0, =||.2’|| = (M+)z,,g by Lemma 6.

(i) Let :ALZF) > ALZ*) be a regulated rational transduction. Then by
Theorem 7, there exists a cycle-free 4{X*)-pushdown automaton .7°’ of type ¢ such
that 7(o,)=|.7'||. Hence t(c,) € A'LE*), (X, t(0,))EF, and the principal
regulated rational cone generated by (Z,, 0,) is a subcone of .
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(i) Conversely, let (Z,5)€%’. Then s€ A'(Z*) and there exists an
A{Z*)-pushdown automaton .7’ = ({1,..,m},Z,9d,1,z,,R), m> 1, of type ¢t and
cycle-free of order k, k > 1, such that || 2| =s. Let M € ((A{Z*))"*™)?"*#" be the
cycle-free pushdown transition matrix defined by .#*’. Then s = (M ™), ,R),.

Define the pushdown transition matrix M’ € ((A{Z*))(m+ DX (m+ DYZ7X2" y

M,., M,.R , (M., O
MZ,‘.E—< 0 0 )3 M —< )?

1<ign, n €. Obviously, M’ is cycle-free of order k& and

M*)pe (M7), R

Y= r*.
M= (T o) e

Let ¢ be a symbol with ¢ & X and let

M= \; (M’,x)x + (M', g)c c ((A<<(EU {C})*>>)(m+l)x(m+l))f'XZ‘.

X€L,

Let weE (ZU {e)*, w=w,cw,y, 120, w,, w, € (ZU {e))*, |w,|=j, 20, |w,|=
J» > 0. Since M” is quasiregular,

(M504 ) = (M5, (M, €)M, ) = (M0, w0 )M €)M, ).

Hence if (M")*'*/2, w) #0, then /< k—1 and (M" "), ), ,, is c-limited for 7,,
mEr* 1L, L<m+1. Let r,€A{LZ VU {c}))*) be defined as follows:
(re-w)=11if we (({e}Ufc}U .-« Uk THI)Y* and (r,, w)=0, otherwise. Then
re €EA™E U {e})*) is c-limited and (M"7), )i, O 1= (M""), )., for
T et 1, L<m+1

Let p: )} — (ALZ U {c})*N)m+ D>+ be the regulated representation defined
by

p(az,»,n)=Mz”,-.n’ (z,-,n)ét, lglgn
Let h: (XU {c})* - Z* be the homomorphism defined by A(c) =¢, h(x)=x, x € X.
Let 1: A{ZF) - A(Z*)) be the mapping defined by 7(r) = M((p(r)), n, O 1) r€
ALZED-
Since regulated rational transductions are closed under functional composition, 7 is
a regulated rational transduction. Since

01) = h((P©@ )1 mr1 O 1) = H(PM )z, D1 mer O 1)
= h(((M”+)zl,€)l.m+l @ rk) = h(((M,l+)zl,e)1,m+ l)
= ((M’+)z|,e)l.m+l = ((M+)z|,eR)l =59,

(X, s) is generated by (X,, g,) via the regulated rational transduction r.
By Theoem 8, #, is closed under addition. [}
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Let Y, = {y}_k| 1<Jj,ks<m, 1<ig<n}, m>1, be an alphabet of variables. Let
Y(z;) € (AYE)™ ™, 1Ki<n, be defined by (Y(z,));,= Vj,» 1<), k<m. Let
Y(e)=F and Y(zr)=Y(2) Y(n), zE€E Z, n € Z*.

An algebraic system over 4{X*% with variables in {p}UY,, m>1,

y=(@)R),  Y@)= Y M, Y@ 1<i<n

(z;,myet

is called a regulated rational cone system for type t iff

M= Y (M.x)x+ (M, e) € (ALZ* Y™ *
xeX
is a cycle-free pushdown transition matrix of type ¢ and R = (R, ¢)e € (ALZ*H)"*".
By Lemma 4, the regulated rational cone system for type ¢ as defined above has the
unique solution (((M*), .R),,(M*), ..., (M*), ,). The component ((M*), .R),
of the unique solution is called the first component of the solution.

THEOREM 10. Let t<Z X Z* be a type. Then (X,s)EF', iff there exists a
regulated rational cone system for type t such that s is the first component of its
unique solution.

Proof. (i) By definition, s is the behavior of a cycle-free A{Z*)-pushdown
automaton .#° = ({1,...,m}, Z, 4, 1,z,, R) of typet. Let M € ((A(Z*))™*™)?" **" be
the cycle-free pushdown transition matrix defined by.7. Then by Lemma 4,
((M*),, ¢»ees (M*), ) is the unique solution of

Yz)= N M, Y@x), 1<ign
(z;,n)et

Hence ((M*)., . R),=s is the first component of the unique solution of the regulated
rational cone system for type ¢

y=(Y@)R), Y)= Y M,

(z;,m)et

mY(n), 1<ign

(i) By Lemma 4, the regulated rational cone system for type ¢

y= (Y(ZI)R)U Y(Z,-)= 2 Mz,-.v:Y(T[)’ lgign,

(z;,met

has the unique solution ((M*), ,R);, (M*), ... (M*), ). Hence there exists a
cycle-free A{Z*)-pushdown automaton .# = ({l,...,m}, Z,6,1,z,,R) defining M
such that ||.2°||=((M"),, ,R),=((M*), .R),. Hence the first component of the
unique solution is in 4°¢Z*). §

We now turn to language theory, i.e., we consider the Boolean semiring B. Let
#' = {supp(s) | (£, s) € ¥ for some X < X}. Then either #' = {@F} or #' is a semi-
AFL containing {e}. A set & of languages is erasable iff the smallest semi-AFL
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containing ¥\U {{¢}} equals the smallest full semi-AFL containing & [4]. Let
(£,,0,), 6,EBLZ}), 0,#0, be the cone generator for typet. If {supp(s,)} is
erasable, then #* is the principal full semi-AFL generated by supp(c,). Hence we
have proved

THEOREM 11. Lettc Z X Z* be a type and let (X,,0,), 0, E B{E}¥), 0,+# 0, be
the cone generator for type t. Let {supp(c,)} be erasable. Then %" is the principal full
semi-AFL generated by supp(a,).

In this case Theorem 10 gives a characterization of #' in terms of context-free
grammars. If {supp(c,)} is not erasable, then # is the principal semi-AFL generated
by supp(o,). If we modify Theorem 10, then we get a characterization of the principal
full semi-AFL generated by supp(s,). A context-free grammar G=({y}UY,,
Z,P,y), m>1, is called a full semi-AFL context-free grammar for type t iff it is
induced by an algebraic system over B{Z*)) with variables in y U {Y,,}

y=(Y(z,)R), Y@= > M, Y&, 1<i<n,

(zj n) et

where

M

iy

o= S M, XX+ (M, 8)e € (BLEFN)™,

xX€X

(z,m) €L 1<i<n and R = (R, £)e € (BEE*H)™*".

THEOREM 12. Let t<Z X Z* be a type and let (£,,0,), 0, € B{X}¥), 0, # 0, be
the cone generator for typet. Then the language L is in the principal full semi-AFL
generated by supp(o,) iff L is generated by a full semi-AFL context-free grammar for
typet.

Proof. By |3, Theorem 3.4.3] and Theorem 10. 1§

6. ONE-COUNTER LANGUAGES

In language theory, a language L is called a one-counter language iff it is accepted
(by empty tape) by a pushdown automaton with a single pushdown symbol. The goal
of this last section is to characterize those power series in A{X*)), A a commutative
semiring, that are the behavior of an A4({Z*)-pushdown automaton with a single
pushdown symbol.

Let Z = {z} and rocl € Z X Z* be the type rocl = {(z, ¢), (z, z), (z, z%)}.

LEMMA 10. The power series s is the behavior of a cycle-free A{Z*))-pushdown
automaton with a single pushdown symbol iff (Z,s) € €7\,

Proof. Let #=(Q,Z, 0, q,,2z R) be a cyclefree A{Z*)-pushdown autom-
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aton which defines the cycle-free pushdown matrix M € ((A(Z*N)Y )7 7.
Let s=|.7|=(M"),,R),. Let m=max{i|M, #0} and let ME
((A(E*p)exm-x@xtm=DNZ XZ" be an A(Z*)-pushdown transition matrix

roch

defined by M! ., M! ., M , € (A{Z*))@xm~ W x@xm=1 a5 follows:

0 0 -« M,
720 R |

00 .. 0

M. M. . M, n
M= M M., Mz.fm

0o 0 M.,

M,,. O 0
, Mo M, 0
z,z22 . . . 5

where the blocks are indexed by Q X {1}, Q X {2},..., @ X {m — 1}. It is obvious that
for k> 1:

(i) (M), .,=0forj,>0,

() (M), Q X {irhy @ X {ia])=0forj, > 0. 1 <iy <m— 1 1 <iy<m— 2,
and

(“1) (M/k)zil.;iz(Q X {il}’ Q X {12})2 (Mk)z(frl”’"“‘”l.z"'l Dim 14y for jl > 0,
J2>0, 1<i,<m—1, 1<i,<m—1 and for j,>0, j,=0, 1<i,<m—1. i,=
m— 1.
Hence M’ is cycle-free and (M'*), (O X {1},@ X {m—1})=(M"). .

Let . =(QXx(m—1),2Z,06,(qy,1),2,R’), be the cycle-free 4{Z*}-pushdown

automaton of type rocl, with ¢’ given by M’ and R'(@ X {i})=0, I1<ig<m—2,
R'(Q X {m—1})=R. Then

|- = ((M’+)z.eRl)(q0.l)
m-—1

= (}_ (M), QX {1}, @ X {i})R'(Q X m))
(qgs 1)

i=1

=((M'"), QX {1}, @ X {m—~ 1} R(Q X {m—11)y,. 1
= ((M+)z.cR)q0: “?” = S.

The converse obviously holds true. 1l
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LEMMA 11. Let s, and s,, respectively, be the unigue solutions of the algebraic
systems z=a,z* +a, and z=a,z’ +a,z +a,, respectively. Then there exists a
regulated rational transduction 1 A{{a,, a,}* ) - 4L{a,,a,,a,}*), such that
(s,) =5s,.

Proof. Define the regulated rational transduction t by ©(r)= (u(r)),,, r€
A{{ay, ap}*)), and \ ,

0 afa, 0 afa,
a,) = = .
Ha= (g aea)  #@=(g our)
Let / and r be substitutions defined by l(q;) =afa;, r(a;) =a;af, i=0,2. Then
(s,) = I(s,). Since

I0ew) = aFr(w)x, w(s)= > > (s,,wx)afr(wix, Z={ay, a,}

xeX welX*

We claim that z(s,) = s,.
©(s,) = (a,8,5, + a,) = l(a,) I(s,) I(s,) + I(a,)

=af (Z,ZZ Z (S5 Wi X, )51, W2 X,) r(azwlxlwz)xz) +afa,,
Xy X wy W
where x,,x, € X, w,, w, € Z*. Since (s5,, w) € {0, 1} for w € Z*, (5,,a,wx) =1 iff
WX = W, X, W, X,, and (s,, w,x,) = (s,, w,x,) = 1, we have
w(s;) = N Z (81, WX, )(815 Waxy) F(@a, wi X, wy) X,

=
X1, X2EX Wy, wreXl*

+a,+a;f (Z p (sl,azwx)r(azw)x)—I»al*a0

xeX welt

=azl(sl)l(sl)+a0+al<>_" > (sl,wx)a;kr(w)x)

x€Xl wer*

=a,l(s,) I(s\) + a,l(s,) + a;=a,1(s,) 7(s,) + a,7(s;) + a-
Hence 1(s,) is the unique solution of z=a,z* + a,z + a, and 1(s,)=s,.

THEOREM 13. Let s € ALZ*Y). Then the following statements are equivalent:

i) &, s)ezy,
(ii) (Z,s) is in the principal regulated rational cone generated by the unique
solution of z =a,z* + a,,
(iii) s is the first component of the unique solution of a regulated rational cone
system for type rocl,
(iv) s is the behavior of a cyclefree A{Z*)-pushdown automaton .7°=
(Q,T,,4,,2,R) with I = {z}.
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The equivalent language-theoretic results to Theorem 13(i,ii,iv) are well known.
The work of Kuich and Urbanek [9] yields two more characterizations of s with

(Z,s)e &,

COROLLARY 4. The cone #'°' is a principal rational cone closed under addition.

Its language-theoretic equivalent #*°% is a principal full semi-AFL.

Proof. The family of one-counter languages is uniformly erasable by [4]. Apply

Theorem 11. 1
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