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Abstract

In Cervantes and Biegler (A.I.Ch.E.J. 44 (1998) 1038), we presented a simultaneous nonlinear programming problem
(NLP) formulation for the solution of DAE optimization problems. Here, by applying collocation on �nite elements, the
DAE system is transformed into a nonlinear system. The resulting optimization problem, in which the element placement
is �xed, is solved using a reduced space successive quadratic programming (rSQP) algorithm. The space is partitioned into
range and null spaces. This partitioning is performed by choosing a pivot sequence for an LU factorization with partial
pivoting which allows us to detect unstable modes in the DAE system. The system is stabilized without imposing new
boundary conditions. The decomposition of the range space can be performed in a single step by exploiting the overall
sparsity of the collocation matrix but not its almost block diagonal structure. In order to solve larger problems a new
decomposition approach and a new method for constructing the quadratic programming (QP) subproblem are presented in
this work. The decomposition of the collocation matrix is now performed element by element, thus reducing the storage
requirements and the computational e�ort. Under this scheme, the unstable modes are considered in each element and a
range-space move is constructed sequentially based on decomposition in each element. This new decomposition improves
the e�ciency of our previous approach and at the same time preserves its stability. The performance of the algorithm
is tested on several examples. Finally, some future directions for research are discussed. c© 2000 Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

Over the past two decades, major e�orts in chemical process modeling had been oriented to
the development of steady-state simulation an optimization tools. The success of these tools has
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produced an increasing interest in dynamic simulation and optimization, as the demand for solving
more advanced problems has grown. Common problems include control and scheduling of batch
processes; startup, upset, shutdown and transient analysis; safety studies and the evaluation of control
schemes.
Chemical processes are modeled dynamically using di�erential-algebraic equations (DAEs). The

DAE formulation consists of di�erential equations that describe the dynamic behavior of the system,
such as mass and energy balances, and algebraic equations that ensure physical and thermodynamic
relations. Although a lot of work has been done in the area of dynamic simulation, the direct
applicability to dynamic optimization is still limited. The use of initial-value formulations for DAEs,
which can be unstable in many cases, are examples of these limiting factors. As a result, there is
an increasing necessity for more e�cient and reliable optimization techniques in order to extend the
capabilities of the dynamic optimization tools to the dynamic optimization area.
The general dynamic optimization problem can be stated as follows:

min
z(t); y(t); u(t); tf ;p

’(z(tf ); y(tf ); u(tf ); tf ; p) (1)

s.t. DAE model

F
(
dz(t)
dt

; z(t); y(t); u(t); t; p
)
= 0; (2)

G(z(t); y(t); u(t); t; p) = 0; (3)

initial conditions:

z(0) = z0; (4)

point conditions:

Hs(z(ts); y(ts); u(ts); ts; p)) = 0; (5)

bounds:

zL6z(t)6zU;

yL6y(t)6yU;

uL6u(t)6uU;

pL6p6pU;

tLf6tf6tUf ;

(6)

where, ’ is a scalar objective function, F the di�erential equation constraints, G the algebraic
equation constraints, Hs the additional point conditions at �xed times ts, z the di�erential state
pro�le vectors, z0 the initial values of z, y the algebraic state pro�le vectors, u the control pro�le
vectors, and p is a time-independent parameter vector. For free end time problems, ts can also be
chosen as elements of this vector.
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This problem can be solved either by the variational approach or by applying a nonlinear pro-
gramming (NLP) solver to the DAE model. The �rst approach is an extension of the calculus of
variations, and works well for problems without bounds. However, if the problem requires the han-
dling of active constraints, �nding the correct switching structure and suitable initial guesses for state
and adjoint variables tends to be di�cult in practice. In this case, an NLP approach is recomended.
The methods that apply NLP solvers also fall into two groups, namely sequential and simultaneous

strategies. In the sequential strategy, the control functions are parametrized using a �nite set of control
parameters. The objective and constraint functions are then evaluated for a given set of parameters
by integration of the dynamic model using an existing DAE solver. The gradients with respect to the
parameters (sensitivities) are obtained from this solver and a small optimization problem is solved
in the space of the parameters. Several studies describe this approach; their algorithms di�er in the
integration technique and the method for obtaining sensitivities they use (see [20], for a review of
these methods).
The simultaneous approach, in contrast, couples the solution of the DAE system with the optimiza-

tion problem and therefore requires a large-scale optimization procedure. Despite this characteristic,
the simultaneous approach has advantages for problems with state variable (or path) constraints
and for systems where instabilities occur for a range of inputs. In addition, the simultaneous ap-
proach solves the DAE system only once, at the optimum point, and therefore can avoid intermediate
solutions that may not exist, be di�cult to obtain, or require excessive computational e�ort.
For solving simultaneous DAE optimization problems, successive quadratic programming (SQP)

is often the method of choice. Here large-scale SQP methods for DAE optimization problems can be
classi�ed as full-space or reduced space. Full-space methods take advantage of the DAE optimization
problem structure and the overall sparsity of the model. These are especially well suited for problems
with many degrees of freedom [4,5], as the optimality conditions can be stored and factored very
e�ciently. An important feature of these methods is that second derivatives of the objective and
constraint functions are usually required, and special precautions are necessary to ensure descent
properties.
When solving dynamic optimization problems in process engineering, the number of state variables

is usually much larger than the number of control variables (degrees of freedom ¡ 100). Here, a
full-space algorithm which exploits the almost block diagonal structure of the DAE optimization
problem was developed [1]. This approach decoupled the optimality conditions for each block of
the quadratic programming (QP) subproblem using an a�ne transform. In this way, the �rst-order
conditions in the state and control variables can be solved recursively, turning the e�ort of solving
it linear with the number of blocks. On the other hand, for many of these examples a reduced space
approach (rSQP) is easier to implement. With this approach, either projected Hessian matrices or their
quasi-Newton approximations may be used, thus avoiding the necessity of second derivatives. An
e�cient algorithm can be constructed by decoupling the algorithm into range and null spaces, solving
a smaller QP subproblem at every iteration. A similar partially reduced strategy was developed by
Schulz [14]. In addition, specialized decomposition procedures that take advantage of the structure
of the Hessian were explored by Steinbach [15].
In a previous study [9], we presented a simultaneous reduced-Hessian successive quadratic pro-

gramming (rSQP) algorithm. Here, the DAE system is discretized with a modi�ed sparse version
of the LSYSLV subroutine (from the DAE solver COLDAE). The variables are then partitioned
into dependent and independent variables. A Newton step for the dependent variables is obtained by
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solving a square system of equations in the range space. The step for the discretized independent
variables is obtained by solving a quadratic programming (QP) problem. For this system, unstable
modes are detected by selecting a numerically stable pivot sequence for the LU factorization of the
collocation matrix. Therefore, unstable modes are dealt with by selecting state variables as deci-
sions in the partitioning step. The system is thus stabilized without imposing additional boundary
conditions.
In this approach, the LU factorization exploits the overall sparsity of the collocation matrix, but

not its almost block diagonal structure. This is important for process engineering problems, because
these blocks can be large and sparse as well. Therefore, to handle much larger DAE optimization
problems, this elemental structure needs to be exploited. With many elements, the storage of the
A matrix requires considerable amounts of memory, which can slow down the algorithm and even
cause its failure. The objective of this work is to present a decomposition strategy that exploits the
almost block diagonal structure of the collocation matrix and at the same time preserves the stability
properties of our previous decompostion.
In the following section we brie
y describe the DAE discretization as well as the general nonlinear

programing algorithm we are using. Section 3 then includes the methodolgy used to apply the element
by element decomposition under this general framework. In Section 4 we present some examples,
and Section 5 concludes the paper and outlines some future directions.

2. DAE optimization

The DAE optimization problem is converted into an NLP by approximating state and control
pro�les to a family of polynomials on �nite elements. Here, we use a monomial basis representation
[3] for the di�erential pro�les, as follows:

z(t) = zi−1 + hi

ncol∑
q=1


q

(
t − ti−1

hi

)
dz
dti; q

; (7)

where zi−1 is the value of the di�erential variable at the beginning of element i, hi is the length of
element i; dz=dti; q is the value of its �rst derivative in element i at the collocation point q, and 
q

is a polynomial of order ncol, satisfying


q(0) = 0 for q= 1; : : : ; ncol;


q(�r) = �q; r for q= 1; : : : ; ncol;

where �r is the rth collocation point within each element. Radau points are used as they allow
setting constraints easily at the end of each element and they stabilize the system more e�ciently if
unstable modes are present. This will be discussed in the next section. The monomial representation
is recommended because it leads to smaller condition numbers and smaller rounding errors [3].
The control and algebraic pro�les are approximated using the same monomial basis representation,

which, in the absence of continuity across elements, takes the form

y(t) =
ncol∑
q=1

 q

(
t − ti−1

hi

)
yi;q; (8)
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u(t) =
ncol∑
q=1

 q

(
t − ti−1

hi

)
ui;q: (9)

Here yi;q and ui;q represent the values of the algebraic and control variables, respectively, in element
i at collocation point q. Also,  q is a Lagrange polynomial of order ncol satisfying

 (�r) = �q; r : (10)

The di�erential variables are required to be continuous throughout the time horizon, while the control
and algebraic variables are allowed to have discontinuities at the boundaries of the elements. It
should be mentioned that with representation (7), the bounds on the di�erential variables can only
be enforced directly at element boundaries. However, they can be enforced at the collocation points
by writing appropiate point constraints.
Here it is assumed that the number of �nite elements ne, and their lengths are pre-determined.

With this assumption, the substitution of Eqs. (7)–(9) into (1)–(6) leads to the following nonlinear
programming problem (NLP):

min
x∈R n

f(x) (11)

s:t: c(x) = 0; (12)

xL6x6xU; (13)

where x = (dz=dti; q; zi; yi;q; ui; q; t; p)T,

f :R n → R and c :R n → R m.

2.1. Reduced-Hessian successive quadratic programming (rSQP)

In [9,16] we have shown that rSQP is an e�cient method for solving DAE optimization problems,
especially when the dimension of the state variables is much larger than that of the control variables
(n � m). rSQP also adds robustness to the solution procedure by performing local factorizations.
This allows us to preserve and exploit the structure of the problem and to detect ill-conditioning
due to unstable modes. At each iteration k, a search direction dk is obtained by solving a quadratic
programming subproblem (QP1) created from (11) to (13):

min
d∈R n

g(xk)Tdk + 1
2d

T
k B(xk)dk (14)

s:t: ck + Akdk = 0; (15)

xL6xk + dk6xU; (16)

where g is the gradient of f, B denotes the Hessian of the Lagrangian function, and Ak = A(xk) is
the m× n Jacobian of the constraints at iteration k, and ck = c(xk).
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The variables are further partitioned into m dependent (W space) and n − m independent (V
space) variables. The independent variable space occupies the null space of A while the dependent
variable space occupies the range space of AT. Note that the control variables and parameters are
not necessarily the independent variables; this will depend on the basis selection that is discussed
later. With this partition A takes the form

A(x) = [C(x) N (x)]; (17)

where the m×m basis matrix C(x) is nonsingular. With this partition, the search direction is written
as

dk =WkpW + VkpV ; (18)

where the matrix V satis�es

AkVk = 0: (19)

Here we choose

Vk =
[−C(xk)−1N (xk)

I

]
(20)

and

Wk =
[
I
0

]
: (21)

The range space direction pW can now be determined as

pW =−[AkWk]
−1ck (22)

and the null space direction pV is obtained from the following reduced QP subproblem:

min
pV∈R n−m

(V T
k gk + V T

k BkWkpW )TpV + 1
2p

T
V (V

T
k BkVk)pV (23)

s:t: xL − xk −WkpW6Vkpv6xU − xk −WkpW : (24)

The reduced QP subproblem is solved using the active set algorithm QPKWIK [18], which is
an improved version of the original one by Schmid and Biegler [13]. This version incorporates
a trust region, which restricts the stepsize of dk to an area around xk where the Taylor series
approximations to the Lagrangian and the constraints provide an adequate model for the nonlinear
problem. The addition of a trust region can improve the convergence of the algorithm, especially
when the second-order information for the problem is poor. This implementation adds a trust region
constraint ‖dk‖6�k to (23)–(24) and moves the search direction from a Newton step direction to
a steepest descent direction. The trust region does not a�ect the direction of the Wpw step. Only its
length changes, as this step is generated before the solution of the QP.
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3. Element by element decomposition

In this section we consider a more detailed decomposition for the range and null space steps. We
�rst observe that the Jacobian of the discretized system of equations is represented by

A=




Z0init 0 0
Z01 DZ11 Y 11 U 1

1 P11
Z02 DZ12 Y 12 U 1

2 P12
...

...
...

...
...

Z0ncol DZ1ncol Y
1
ncol U 1

ncol P1ncol
Z0a D1

a Y 1a U 1
a P1a

I D1 0 −I 0 0
Z11 DZ21 Y 21 0 U 2

1 P21
. . . . . . . . .

...
. . . . . . . . .

...
Zne−1
ncol DZne

ncol Y
ne
ncol Une

ncol P
ne
ncol

Zne−1
a Dne

a Y ne
a Une

a Pne
a

I Dne 0 −I




;

(25)

where I represents the identity matrix, and Di is a matrix containing the coe�cients of the continuity
equations of the ith element. Zi

q; DZi
q; Y i

q; U i
q and Pi

q represent the Jacobian of the collocation
equations with respect to zi, dz=dti; q, yi

q, u
i
q and p; at collocation point q and element i. Zi

a, D
i
a,

Y i
a , U

i
a and Pi

a, correspond to the Jacobian of the additional constraints. As indicated in (25), it is
assumed that these constraints can be separated by elements.
In Cervantes and Biegler [9] we decompose this matrix A in a single step and exploit the overall

sparsity but not the almost block diagonal structure. However, as the number of DAEs and elements
is increased, the necessity of exploiting this feature becomes evident. In particular, storage and full
factorization of A can slow down the algorithm or even cause its failure when there is not enough
memory available.
These problems can be addressed by applying the original decomposition strategy in each �nite

element. In this way, the necessity of storing the complete matrix A is avoided. The factorization is
performed over smaller matrices, each one representing a �nite element. In most cases these matrices
will have the same structure and consequently allow re-use of the sparse matrix pivot sequence. To
explore this decomposition, consider the rows and columns of A, corresponding to element i,

Ai =




Zi−1
1 DZi

1 Y i
1 0 Ui

1 Pi
1

Zi−1
2 DZi

2 Y i
2 0 Ui

2 Pi
2

...
...

... 0
...

...
Zi−1
ncol DZi

ncol Y i
ncol 0 Ui

ncol Pi
ncol

Zi−1
a Di

a Y i
a 0 Ui

a Pi
a

I Di 0 −I 0 0



: (26)
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Here, it is assumed that the additional point constraints (the last row in (26)) can be separated by
elements. Now if no parameters p are present, the decomposition of this matrix can be performed
directly, as all the variables can be eliminated locally. In the case that a parameter is present, the
last column of Ai, which corresponds to the parameters, will be coupled to the entire system. In
this case, we create dummy parameters for each �nite element. An extra constraint for each �nite
element is also added in the QP, requiring all of these dummy parameters to be equal. This idea is
similar to the technique applied in [19] for treating design variables in multiperiod problems. The
matrix Ai will look the same after adding the dummy parameters, but now the last column will
correspond to local variables.
Each of these small matrices Ai is obtained using a modi�ed version of the subroutine LSYSLV

in COLDAE [2] a well-tested algorithm for collocation on �nite elements. These modi�cations allow
us to work with rectangular matrices which are stored directly in sparse form.

3.1. Basis selection and ill-conditioning detection

In order to apply the rSQP algorithm described in Section 2, each matrix Ai is partitioned into a
range and null space basis. This partition is performed by applying an LU factorization with partial
pivoting on the rectangular system Ai. Following [10], this LU factorization will yield a dichotomous
system in each element. If an unstable mode is present in the DAE, Ai is required to be partitioned
so that the end conditions of any increasing mode are �xed or become decision variables. Here, if a
di�erential variable zj has an increasing mode, dzj=dtncol would be speci�ed and would correspond
to a column in the null space. Correspondingly, a column corresponding to a control variable or a
parameter would be added to the range space. By considering the variables that span the columns
of the null space to be speci�ed as decisions, the decomposition approach is equivalent to solving
a discretized, linear BVP.
Consider now the partition of Ai into columns,

Ai = [Ai
z0 Ai

d z Ai
y Ai

zf Ai
u Ai

p]: (27)

This matrix will have the same structure for all the elements, and the pivot selection of the LU
factorization will partition the variables of each element i into dependent and independent variables.
Here there are a number of ways to obtain a stable partition. First, one can perform the basis selection
over more than one element or even on the whole matrix A, as in [9]. This approach provides a
time horizon that is long enough to detect unstable modes. After working with these larger matrices,
we can then apply the same variable partition to all the matrices Ai. However, this procedure can
be expensive and should be considered only if elemental partitioning does not capture all of the
unstable modes. As a result, we instead consider partitioning within each element.
For linear systems the partition in each element would be the same and this allows us to re-use

the sparse matrix factorization. For nonlinear systems the partition can be di�erent and there are
two possibilities to consider. First, when a dummy parameter or a control variable is selected as
dependent in element i and it was not selected in the elements i−1; : : : ; 1, we force it to be dependent
for all elements; and the corresponding state will always be selected as independent. The second
possibility is that in successive elements, di�erent state variables are chosen to leave the basis while
the same control or parameter enters the basis. In this case a di�erent factorization has to be used
for each element. In order to apply the elemental decomposition, the independent variables should
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only include columns from Ai
u, A

i
p and Ai

d z. This partitioning is performed following the procedure
described next.
To partition Ai, ill-conditioning is avoided by selecting a pivot sequence for the LU factorization

of the Ai matrix [11]. The objective of the pivot selection is to minimize the �ll-in during the
factorization but at the same time achieve numerical stability. Here the Harwell subroutine MA28
is used for the selection of the sequence. This subroutine uses Markowitz’s ordering strategy with
threshold pivoting for numerical stability. That is, it will choose the matrix element amj as a pivot
if it minimizes the quantity:

(rm − 1)(cj − 1) (28)

over all entries of the reduced matrix that satisfy the inequality

|a(k)mj |¿û max
l¿k

|a(k)ml |: (29)

Here rm is the number of entries in row m of the reduced matrix, cj is the number of entries in
column j and û is a preset threshold pivoting parameter in the range 0¡û61.
Eq. (29) therefore allows selection of columns from Ai

u and Ai
p to replace the unstable modes of the

DAE, by selecting a pivot sequence with numerical stability. A suitable modi�cation of this strategy
also allows to restrict the variables that can be selected as independent. For example, index one
algebraic variables, y, can always be selected as dependent variables as they are already associated
with the modes of the di�erential variables. This restriction is added by simply multiplying the
desired columns by a su�ciently large number. In this way, MA28 automatically sets a pivot in
those columns (of Ai

y) and chooses these variables as dependent. The same procedure is applied to
ensure that the variables corresponding to Ai

z0 and Ai
zf are selected as dependent variables.

By controlling the basis selection and exchanging columns from Ai
u, A

i
p and Ai

d z we now write
the partitioned matrix Ai as

Ai =

[
T i Ci 0 Ni

I Ĉ
i −I N̂

i

]
; (30)

where the �rst three colums correspond to the range space, and the last one to the null space. T i

represents the blocks corresponding to Zi−1 and Zi−1
a ; Ci now contains Y i and Y i

a and elements from
DZi, DZi

a, U
i, Ui

a, P
i and Pi

a; Ĉ
i
contains elements from Di and Di

a; Pi and Pi
a; and N̂

i
can contain

elements from Di and Di
a.

3.2. Wpw step and QP subproblem construction

As the whole matrix A is not stored anymore, we have to perform a forward elimination in order to
obtain the step for the dependent variables pw and C−1N for the construction of the QP subproblem.
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After the basis is selected, we can now use Eq. (30) to represent the matrix A as

A=




I
T 1 C1

I Ĉ
1 −I

T 2 C2

I Ĉ
2 −I

T 3 C3

. . . . . .

|

0
N 1

N̂
1

N 2

N̂
2

N 3

. . .



= [C | N ] (31)

and the corresponding right-hand sides are

cT = [0 c1 ĉ1 c2 ĉ2 c3 · · · ]: (32)

By premultiplying T i and Ci by the inverse of Ci in each element, the matrix C becomes

C̃ =




I
(C1)−1T 1 I

I Ĉ
1 −I
(C2)−1T 2 I

I Ĉ
2 −I
(Ci)−1T 3 I

. . . . . .



: (33)

We now obtain the step for the dependent variables by performing a forward elimination for the
right-hand side:



I
(C1)−1T 1 I

I Ĉ
1 −I
(C2)−1T 2 I

I Ĉ
2 −I
(Ci)−1T 3 I

. . . . . .

|

0
(C1)−1c1

ĉ1

(C2)−1c2

ĉ2

(C3)−1c3
...



: (34)

At the same time, we can also obtain the matrix C−1N , by performing the forward elimination for
di�erent right-hand sides



I
(C1)−1T 1 I

I Ĉ
1 −I
(C2)−1T 2 I

I Ĉ
2 −I
(Ci)−1T 3 I

. . . . . .

|

0 0
(C1)−1N 1 0

N̂
1

0
... (C2)−1N 2

... N̂
2

...
... (C3)−1N 3

...
...

...
. . .



: (35)



A.M. Cervantes, L.T. Biegler / Journal of Computational and Applied Mathematics 120 (2000) 41–57 51

Table 1
Computational results for one-parameter problem

Basis Discretized Vars Iterations=CPU (s)

Global Elemental Global Elemental

MA28 243 272 5=0:4 7=0:5
p indep. 243 272 Failed (WpW = 10

29) Failed (WpW = 10
29)

The factorizations of the matrices Ci are performed with the Harwell subroutine MA48, a well-tested
sparse linear solver.

4. Examples

In this section, we �rst present two well-known parameter estimation problems. The objective
here is to show that the stability properties of our previous approach still apply for the elemental
decomposition. We then demonstrate the e�ciency of the new decomposition on a larger chemical
engineering example. All the CPU times reported were obtained on an HP 9000=C110 workstation.

4.1. Ill-conditioned parameter estimation with one parameter

This is a parameter estimation problem with two states and one parameter due to Bock [6]. We
formulate this problem as an initial value problem:

min
n∑

i=1

(zm2 (i)− z2(i))2 (36)

s:t:
dz1
dt
= z2; (37)

dz2
dt
= �2z1 − (�2 + p2)sin(pt); (38)

[z1(0) z2(0)]
T = [0 �]T: (39)

The objective is to estimate the parameter p (p=�) given true values for z2 corrupted with random
noise at data points equal to the mesh points. The unknown parameter p was initialized to 2 and
the value of the constant � was set to 100. We solve the problem using 30 �nite elements and three
collocation points.
The ODE system contains one unstable mode. As seen in Table 1, if the problem is posed by

setting the parameter p as independent variable, the algorithm fails to converge. On the other hand, if
we select the basis with MA28 we are able to detect the unstable mode, and the algorithm converges
in �ve iterations using our previous (global) approach and in seven iterations using the elemental
decomposition. The di�erence in iterations is due to small di�erences in the QP solutions, especially
in converging to a tight tolerance, 10−6, on the Kuhn–Tucker conditions.
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The optimal state pro�les were compared with the analytical solution to ensure that the mesh
selection is valid. For both variables the error is not larger that the tolerance of the solution. In
this case, the utilization of an automatic integrator, such as DASSL, is not possible because of the
unstable nature of the problem.

4.2. Ill-conditioned parameter estimation with three parameters

We next consider the parameter estimation problem, modi�ed from Wright [22], and also studied
in [17]:

min
n∑

i=1

(zm1 (i)− z1(i))2 +
n∑

i=1

(zm2 (i)− z2(i))2 (40)

s:t:
[
dz1
dt

dz2
dt

dz3
dt

dz4
dt

dz5
dt

]T
=M [z1 z2 z3 z4 z5]

T + f(t); (41)

[z1(0) z2(0) z3(0) z4(0) z5(0)]
T = [1 1 1 1 1]T; (42)

where

M =




−	1 cos(2!1t) 0 !1 +	1 sin(2!1t) 0 0

0 −	2 cos(2!2t) 0 !2 +	2 sin(2!2t) 0

−!1 +	1 sin(2!1t) 0 	1 cos(2!1t) 0 0

0 −!2 +	2 sin(2!2t) 0 	2 cos(2!2t) 0

0 0 0 0 	3



;

(43)

and f(t) is chosen such that the solution of the ODE is

[z1(t) z2(t) z3(t) z4(t) z5(t)]
T = [et et et et et]T: (44)

This corresponds to

f(t) =




(1 + 1000 cos(2!1t)− !1 − 1000 sin(2!1t))et

(1 + 100 cos(2!2t)− !2 − 100 sin(2!2t))et

(1− 1000 cos(2!1t) + !1 − 1000 sin(2!1t))et

(1− 100 cos(2!2t) + !2 − 100 sin(2!2t))et

−9et



: (45)

The objective is to estimate the parameters 	1, 	2, 	3 (	i=10; 100; 1000) given 30 measured data
points corrupted with random noise (�) for z1 and z2. The parameters are initialized to 12, 120 and
1200, respectively. The system is unstable because of the presence of three unstable modes.
The problem was solved using 30 elements and three collocation points. The constants !1 and !2

were set to 30. The computational results are presented in Table 2. If we select the parameters 	i

as independent variables, the decomposition becomes unstable and the algorithm fails to converge. If
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Table 2
Computational results for three-parameter problem

Basis Discretized Vars Iterations=CPU(s)

Global Elemental Global Elemental

MA28 608 695 25=5:6 31=6:5
	i indep: 608 695 Failed (WpW = 10

57) Failed (WpW = 10
57)

we let MA28 select the basis the algorithm converges in 25 iterations for the global decomposition
and in 31 iterations for the elemental decomposition. Again, the di�erence in iterations is due to
small di�erences in the QP solutions, especially in converging to a tight tolerance, 10−6, on the
Kuhn–Tucker conditions. We also compared the optimal state pro�les with the analytical solution to
ensure that the mesh selection was correct. For none of them was the error larger than the tolerance
of the optimization problem.

4.3. Batch reactive distillation

The dynamic model is an index one DAE system, which was obtained by reformulating the
dynamic model of Ruiz and coworkers [12]. The general model of the column consists of the
following equations:

dMi

dt
= Fi + Vi+1 + Li−1 − Vi − Li +

nr∑
n=1

Ri;n: (46)

Here, Mi corresponds to the molar holdup on tray i, Vi and Li are the vapor and liquid 
owrates,
Fi is the feed 
ow rate, nr is the number of reactions, and Ri;n is the di�erence between the rates
of production and consumption of each reaction n.
The liquid mole fraction x of each component j can be expressed as

Mi
dxi; j
dt

= Fi(zi; j − xi; j) + Vi+1(yi+1; j − xi; j) + Li−1(xi−1; j − xi; j)− Vi(yi; j − xi; j) + R̂; (47)

where

R̂=
nr∑
n=1

vj;n
Mi

�i
ri; n − xi; j

nr∑
n=1

Ri;n: (48)

�i is the liquid molar density, zi; j is the molar fraction of j in the feed, yi; j is the vapor mole
fraction, vj;n is the stoichiometric coe�cient, and ri; n is the rate of production per unit volume. The
phase equilibrium relationship is represented by

yi; j = Ki; jxi; j; (49)

Ki; j = fj(Ti); (50)

while the sum of the vapor fractions on each tray is required to be equal to one,
nc∑
j=1

yi; j = 1: (51)
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Fig. 1. Re
ux ratio.

The vapor 
owrates are calculated using a modi�ed index one energy balance (see [9])

1
Mi

(
Vi+1(hvi+1 − hli) + Li−1(hvi−1 − hli)− Vi(hvi − hli) +

nr∑
n=1

Mi

�i
ri; n�HR

n

)

=
nc∑
j=1

@hli
@xi; j

dxi; j
dt

− @hli
@Ti

∑nc
j=1 Ki; j(dxi; j=dt)∑nc
j=1 xi; j(dKi; j=dTi)

; (52)

where hv and hl are the vapor and liquid enthalpies, and �HR
n is the heat of reaction.

This example considers the reversible reaction between acetic acid and ethanol [21],

CH3COOH + CH3CH2OH↔ CH3COOCH2CH3 + H2O:

The model consists of 12+5nt di�erential and 6+5nt algebraic equations, where nt is the number
of trays. The column, in all cases, was fed with an equimolar mixture of ethanol, acetic acid, ethyl
acetate and water. Only three collocation points and �ve elements were required to obtain accurate
state variable pro�les. The objective is to maximize the amount of distillate D produced within 1 hr
by manipulating the re
ux ratio as a function of time, as follows:

max
∫ tf =1

0
D dt (53)

s:t: DAE model (Eqs: (46)–(52)); (54)

xEsterD ¿0:4800:

Here, the mole fraction of ethyl acetate in the �nal distillate should be at least 0.48. We solved
this problem for 8, 15 and 24 trays. In all cases the problem was initialized with a feasible point
with a constant re
ux ratio of 20. For this example, the discretized control variables were selected
as independent variables, because the DAE system does not have unstable modes.
As seen in Figs. 1 and 2, the re
ux ratio is at its upper bound at the beginning, and at its lower

bound at the end, after obtaining the adequate composition of the distillate.
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Fig. 2. Ethyl acetate distillate composition.

Table 3
Computational results for batch distillation column

Trays DAEs NLP Vars. Iter. Total CPU(s) WpW ; C−1N (s=iter)

Global Elemental Global Elemental

8 98 1788 14 56.4 37.2 3.3 1.9
15 168 3048 32 245.7 207.5 7.7 5.6
24 258 4678 45 1083.2 659.3 22.4 12.9

The computational results are presented in Table 3. Using a Kuhn–Tucker tolerance of 10−6, both
decomposition strategies require the same number of SQP iterations but the elemental decomposition
is almost twice as fast. Moreover, by storing only the elemental matrices, far fewer memory resources
are required. In this case, we compare the optimal state pro�les with those obtained with DASSL
(tolerance 10−10); the error was never larger than 10−6:

5. Conclusions and future work

We have developed an e�cient and stable method for solving DAE optimization problems. We
show that IVPs can be solved with a forward elimination by transfering the unstable modes to
the independent variables of the rSQP algorithm. Under this scheme, the necessity of adding �nal
conditions is avoided. Therefore, the resulting algorithm is, in principle, as e�cient as any sequential
algorithm regarding the memory requirements. At the same time, the stability properties of the
simultaneous approaches are preserved.
Future research will concentrate on further bottlenecks in our reduced space, simultaneous ap-

proach. One important aspect is that the presence of a large number of constraints (due to discretized
pro�le bounds) can still lead to a huge quadratic programming problem, especially as the number
of DAEs and �nite elements is increased. This becomes a concern in our algorithm, as the solution
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time of the QP subproblem increases. To solve this problem we consider as future work the imple-
mentation of a barrier method [7,8] which will allow us to incorporate the inequality constraints into
the objective function and at the same time use the elemental decomposition presented in this work.
Also, while the degrees of freedom in dynamic process engineering problems are relatively small
(n � n − m), increasing the number of �nite elements and collocation points also leads to large,
reduced space QPs. These will be explored in the future by considering the elemental structure of
the Kuhn–Tucker matrix in greater detail.
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