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1. INTRODUCTION

According to a long-standing conjecture in model theory, simple groups
of finite Morley rank should be algebraic. The present paper is part of a
series aimed ultimately at proving the following:

Conjecture 1 (Even Type Conjecture). Let G be a simple group of finite
Morley rank of even type, with no infinite definable simple section of degenerate
type. Then G is algebraic.
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An infinite simple group G of finite Morley rank is said to be of even type
if its Sylow 2-subgroups are of bounded exponent. It is of degenerate type
if its Sylow 2-subgroups are finite. If the main conjecture is correct, then
there should be no groups of degenerate type. So the flavor of the Even
Type Conjecture is that the classification in the even type case reduces to
an extended Feit–Thompson Theorem. Those who are skeptical about the
main conjecture would expect degenerate type groups to exist. The Even
Type Conjecture confirms that this is the heart of the matter.

We believe that it is realistic to aim at a proof of the Even Type Conjec-
ture with existing tools. For the moment we concentrate on a special case,
called the “tame” case (see Section 2 for definitions). Generally speaking,
“nontame” proofs are nontrivial deformations of “tame” proofs, involving
a closer analysis of the more pathological configurations that arise. The
proof of any version of the Even Type Conjecture will be a rather elab-
orate affair (following the main lines of the characterization of groups of
characteristic 2 type—and a bit more—in finite group theory), and for this
reason we have pursued the rapid development of the theory in the tame
case as opposed to the more systematic development of the general the-
ory. However, others, notably Jaligot, are systematically pursuing the issues
that arise in the elimination of tameness, so we hope to see the Even Type
Conjecture proved in full generality in the near future. The only use of
the tameness hypothesis which is made in the present paper is via Fact 1.2
below; if this can be proved without the use of tameness then we have no
further need of that hypothesis here. Note however that that fact is applied
repeatedly. We will take pains to mention such uses explicitly.

The main result proved here is a classification theorem which is an analog
of a theorem of Goldschmidt [13] in the finite case, belonging to a family
of characterizations of SL2 which are very helpful in dealing with fusion
analysis.

Theorem 1.1. Let G be a simple tame K∗-group of finite Morley rank and
of even type. Suppose that G contains an infinite definable abelian subgroup
A which is contained in the connected component S of a Sylow 2-subgroup
of G and which is strongly closed in S. Then G � SL2�K� where K is some
algebraically closed field of characteristic 2.

Here “strongly closed” means the following: if a ∈ A, g ∈ G, and ag ∈ S,
then ag ∈ A.

This theorem is the key to the treatment of components in groups of even
type (which is the “bit more” alluded to above). We expect it to combine
with still conjectural forms of pushing up and Baumann’s theorem to yield
a short proof of the analog of Aschbacher’s global C�G� T � theorem. A
further indication of the usefulness of this theorem in the classification of
tame simple K∗-groups of finite Morley rank of even type is a work in
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preparation by Borovik, Cherlin, and Corredor [6] which proves a version
of Aschbacher’s standard component theorem by reduction to the strongly
closed abelian case. Moreover, there is now a detailed plan for completing
the proof of the Even Type Conjecture, at least in the tame case, by first
using Theorem 1.1 and some further analysis to eliminate certain standard
components which would obstruct the use of the amalgam method and then
by applying the amalgam method and a classification theorem for BN-pairs
(cf. [12] or [20]) to arrive at a point at which the analog of an identification
theorem of Niles applies. The present paper, together with the ongoing
work on pushing up and the global C�G� T � theorem, constitutes the last in
the series of papers laying the foundations of the analysis of tame groups
of even type by providing some general tools which are mostly connected
with fusion analysis.

One of the main tools in proving Theorem 1.1, or any of the classification
theorems of this type, is the following classification theorem:

Fact 1.2 [3]. Let G be a simple, tame, K∗-group of finite Morley rank
of even type. If G has a weakly embedded subgroup then G � SL2�K�,
where K is an algebraically closed field of characteristic 2.

Here weak embedding (cf. Section 2.4) is a natural generalization of
strong embedding and far more flexible in practice (see for example the
rapid elimination of cores in 2-local subgroups at the end of [3]). Tameness
will be discussed in Section 2.

Tameness does not actually enter into the proof of Theorem 1.1 given
here, except in so far as it is required when Fact 1.2 is invoked. Theo-
rem 1.1 can be rephrased more precisely as follows: under the stated hypothe-
ses, omitting the tameness, G has a weakly embedded subgroup. After the
present work was complete, Jaligot completed a proof of the generalization
of Fact 1.2 in which the tameness hypothesis is dropped [18, 19]. Taking
this into account, we see that Theorem 1.1 is also valid without a tame-
ness hypothesis and, as should now be clear, the proof of that form of
Theorem 1.1 is in fact given in the present paper, modulo [18, 19].

The proof of Theorem 1.1 reduces to the following result of Aschbacher–
Seitz type, which is occasionally of independent interest.

Theorem 1.3. Let G be a simple tame K∗-group of finite Morley rank
and of even type. Suppose that G has a standard component L of the form
SL2�K� for some algebraically closed field of characteristic 2. Let A be a Sylow
2-subgroup of L and U be the connected component of a Sylow 2-subgroup
of C�L�. If U is nontrivial then AU is a Sylow◦ 2-subgroup of G.

As one might expect, considerably more is true (ultimately, standard com-
ponents can be completely eliminated). However, it appears that this state-
ment, as formulated here, covers the critical configuration on which more
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general analyses depend. Standard components will be defined in Section 6.
As in the case of Theorem 1.1, one may also drop the tameness hypothesis
here, via ([19, 18]), using the arguments of the present paper without any
further modification.

The paper is organized as follows. The next section contains necessary
background material relating to a variety of conventional group theoretic
issues in the forms appropriate to the study of groups of finite Morley
rank. In Section 3 we lay out more specifically the basic facts relating to
strongly closed abelian subgroups and the relevant K-group statement. The
main line of argument then goes as follows: After some adjustment of the
strongly closed abelian group A to a “minimal” such group, we claim that G
has a weakly embedded subgroup and hence can be identified by Fact 1.2.
When this argument fails, the obstruction is always a configuration of the
form L × U where L is a subgroup isomorphic to SL2�K� for some alge-
braically closed field of characteristic 2, which furthermore meets A in a
Sylow 2-subgroup of L, and U is an infinite 2-group commuting with L.
There are two cases here, the more degenerate case in which A ∩ L < A,
where we speak of “A-special” components L, and the more plausible
configuration in which L contains A, which will capture the bulk of our
attention.

We eliminate A-special components in Section 4 using the theory of
groups generated by pseudo reflection groups, which is very powerful here.
Then in Section 5 we show how the weak embedding argument works in the
absence of the configuration L × U (A ≤ L). Then we devote two sections
to the analysis of L×U : first we give some Sylow analysis in Section 6, and
then we take a brief look at the Thompson rank formula (cf. [3]), leading to
a concluding contradiction arrived at via two Thompson rank computations
which yield inconsistent answers, in Section 7.

The analysis in Sections 6 and 7 amounts to the proof of Theorem 1.3,
as is explained in Section 6.

2. BACKGROUND

In the present section we review the main facts required for the proof
of Theorem 1.1. We use some of the basic facts and notions as given in [9]
without explicit reference, but the more substantial points are all given
explicitly below.

Definition 2.1. 1. A section of a group G is a quotient of the form
H/K where H and K are subgroups of G and K �H. Such a section is said
to be definable if H and K are definable.
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2. A bad group is a simple infinite group of finite Morley rank in
which every proper definable connected subgroup is nilpotent.

3. A bad field is a structure of finite Morley rank consisting of an
algebraically closed field together with a distinguished proper infinite sub-
group of its multiplicative group.

4. A tame group is a group such that none of its proper sections is
a bad group and which does not interpret a bad field. We note that, for
groups which do not interpret bad fields, the assumption that there are no
bad sections is equivalent to the assumption that there are no sections of
degenerate type in the sense of the Introduction. (This is not obvious, but
follows from results given in [9].)

5. A K-group is a group G of finite Morley rank such that every
infinite definable simple section of G is isomorphic to an algebraic group
over an algebraically closed field.

6. A K∗-group is a group G of finite Morley rank such that every
infinite proper definable section of G is isomorphic to an algebraic group
over an algebraically closed field. Equivalently, G is either a K-group or
a simple group all of whose proper definable subgroups are K-groups. As
we are concerned here with techniques relevant to an inductive proof of
the Even Type Conjecture, we confine ourselves in practice to the study of
simple K∗-groups of even type.

2.1. 2-Sylow Theory

There is a good Sylow theory for the prime 2 in our context:

Fact 2.2 [10]. 1. The Sylow 2-subgroups of a group of finite Morley
rank are conjugate.

2. If S is a Sylow 2-subgroup of a group of finite Morley rank then
S is nilpotent-by-finite and its connected component is the central product
of a definable, connected, nilpotent subgroup of bounded exponent and
a divisible, abelian 2-group. Moreover, these two subgroups are uniquely
determined.

This provides a rather good analog to the general structure of the con-
nected component of a Sylow subgroup in an algebraic group, where
depending on the characteristic we may be dealing with a maximal unipo-
tent subgroup or the 2-torsion in a torus (semisimple elements).

Accordingly we adopt the terminology suggested by this case:

Definition 2.3. 1. A unipotent subgroup is a connected definable sub-
group of bounded exponent (in our context, typically a 2-group and hence
nilpotent by Fact 2.2).
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2. A torus is a definable divisible abelian group.
3. For any prime p, a p-torus is a divisible abelian p-group. (A non-

trivial p-torus is not definable, but its definable closure [Definition 2.38] is
a torus.)

4. A group of finite Morley rank is of even type if the connected
component of a Sylow 2-subgroup is unipotent and nontrivial.

5. A group of finite Morley rank is of odd type if the connected com-
ponent of a Sylow 2-subgroup is a nontrivial 2-torus.

6. A group of finite Morley rank is of mixed type if the connected
component of a Sylow 2-subgroup is the central product of a nontrivial
unipotent subgroup and a nontrivial 2-torus.

7. A group of finite Morley rank is of degenerate type if the connected
component of a Sylow 2-subgroup is trivial (that is, the Sylow 2-subgroups
are finite).

The degenerate case is by far the hardest one to come to terms with.
The conjecture of course is that degenerate types and mixed types do not
arise. The nonexistence of infinite simple groups of finite Morley rank of
degenerate type is a strong form of the Feit–Thompson Theorem for this
context. On the other hand, one can dispose of the mixed-type case a priori
when working in the K∗-context.

Fact 2.4 [17]. A simple K∗-group of finite Morley rank cannot be of
mixed type.

This was proved initially under a tameness hypothesis, and the removal
of this hypothesis by some further fusion analysis constituted a major step
forward. The success of those arguments is one of the ingredients in our
optimism regarding the general form of the Even Type Conjecture.

For the sake of brevity we will refer to the connected components of
Sylow 2-subgroups as Sylow◦ 2-subgroups. (Ron Solomon patriotically pro-
poses the reading “SylOhio” for this notation.)

The following useful lifting result is given in [28].

Fact 2.5. Let G be a group of finite Morley rank and N be a definable
normal subgroup. Then the Sylow 2-subgroups of G/N are the images of
Sylow 2-subgroups of G.

2.2. Nilpotent and Solvable Groups

Definition 2.6. Let H be a group of finite Morley rank.

1. A 2⊥-group is a group that does not have involutions.
2. O�H� will denote the largest, definable, connected, normal 2⊥-

subgroup. This is called the core of H.
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3. We write N◦�H� for N�H�◦, C◦�H� for C�H�◦, and so forth.

4. The solvable radical, denoted σ�H�, is the largest normal solvable
subgroup of H.

5. F�H� is the Fitting subgroup, the largest normal nilpotent subgroup.

6. O2�H� is the largest normal 2-subgroup of H. In groups of even
type, this is definable.

The solvable radical and the Fitting subgroup are definable in G (see
e.g. [24]), but are not necessarily connected.

Fact 2.7 [25]. Let G be a nilpotent group of finite Morley rank. Then
G = D ∗ C, where D and C are definable characteristic subgroups of G, D
is divisible, and C is of bounded exponent.

Fact 2.8 [9, Exercise 1, p. 97]. An infinite nilpotent p-group of finite
Morley rank and of bounded exponent has infinitely many central elements
of order p.

Proof. See [1].

Fact 2.9 [9, Exercise 5, p. 98]. Any infinite normal subgroup of a nilpo-
tent group of finite Morley rank contains infinitely many central elements.

Proof. See [1].

Fact 2.10 [23]. Let G be a connected solvable group of finite Morley
rank. Then G/F◦�G� (hence, G/F�G�) is a divisible abelian group.

Fact 2.11 [9, Theorem 9.29]. Let G be a connected solvable group of
finite Morley rank. Then the Sylow p-subgroups of G are connected for
any prime p.

Fact 2.12 [8, Theorem 2; 7, Proposition C]. Let G be a solvable group
of finite Morley rank and H a normal Hall π-subgroup of G of bounded
exponent. Then any subgroup K of G with K ∩ H = 1 is contained in a
complement to H in G, and the complements of H in G are definable and
conjugate to each other.

Fact 2.13 [3]. Let H be a connected solvable group of finite Morley rank
and S be a Sylow 2-subgroup of H. Assume S is unipotent. Then S ≤ F�H�,
and therefore S is a characteristic subgroup of H.
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2.3. Automorphisms

Fact 2.14 [10]. Let T be a p-torus in a group of finite Morley rank.
Then �NG�T � 
 CG�T �� < ∞. Moreover, there exists c ∈ � such that
�NG�T � 
 CG�T �� ≤ c for any torus in G.

Fact 2.15 [9, Theorem 8.4]. Let � = G�H be a group of finite Morley
rank where G and H are definable, G is an infinite simple algebraic group
over an algebraically closed field, and CH�G� = 1. Then, viewing H as a
subgroup of Aut�G�, we have H ≤ Inn�G��, where Inn�G� is the group
of inner automorphisms of G and � is the group of graph automorphisms
of G.

Fact 2.16 [3, Proposition 3.4]. Let G be a connected K-group of even
type and T a connected 2⊥-group acting definably on G. Then T leaves
invariant a Sylow◦ 2-subgroup of G.

Corollary 2.17. With the notation of the previous fact, if U is a T -
invariant unipotent 2-subgroup of G then U is contained in a T -invariant
Sylow◦ 2-subgroup of G.

Proof. Apply the fact to N◦�U� with U maximal T -invariant and
unipotent.

Fact 2.18 [7]. Let G be a group of finite Morley rank and H a definable
normal subgroup of G. If x is an element of G such that x̄ is a p-element
of G = G/H then the coset xH contains a p-element.

Note in particular that if G is torsion-free then G/H is torsion-free.

Fact 2.19 [22]. Let α be a definable involutive automorphism of a group
of finite Morley rank G. If α has no nontrivial fixed points then G is abelian
and inverted by α.

Fact 2.20 [9, Theorem 9.7]. Let A�G be a group of finite Morley rank
such that A is abelian and CG�A� = 1. Let H �G1 �G be definable sub-
groups with G1 connected and H infinite abelian. Assume also that A is
G1-minimal. Then

K = ��Z�G�◦�/ann��Z�G�◦��A�
is a definable algebraically closed field, A is a finite-dimensional vector
space over K, G acts on A as vector space automorphisms, and H acts by
scalars. In particular, G ≤ GLn�K� for some n, H ≤ Z�G�, and CA�G� = 1.

Fact 2.21 [9, Theorem 9.8]. Let A�G be a solvable group of finite
Morley rank with A abelian and definable and G definable and connected.
Let B ≤ A be either G′-minimal or G-minimal. Then G′ centralizes B.
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Fact 2.22 [1]. Let Q and E be subgroups of a group of finite Morley
rank such that Q is normal, 2⊥, connected, solvable, and definable and E
is a definable connected 2-group of bounded exponent. Then �Q� E� = 1.

The following fact was stated in [3] with the assumption that Q is a
unipotent group. The definition of a unipotent group involves connected-
ness although the proof of the fact needs only Q to be of bounded exponent.
So we state the fact in this general form. It is worth noting that we will use
it in this more general form in Lemma 7.18.

Fact 2.23 [3]. Let Q and X be definable subgroups of a group of finite
Morley rank with Q a 2-group of bounded exponent, X a 2⊥-group, and X
acting on Q, and suppose that X acts trivially on the factors Qi/Qi−1 of a
definable normal series for Q. Then X acts trivially on Q.

2.4. Weak Embedding

Definition 2.24. Let G be a group of finite Morley rank. A proper
definable subgroup M of G is said to be weakly embedded if it satisfies the
following conditions.

(i) Any Sylow 2-subgroup of M is infinite.

(ii) For any g ∈ G \ M , M ∩ Mg has finite Sylow 2-subgroups.

Fact 2.25 [3]. Let G be a group of finite Morley rank of even type. A
proper definable subgroup M of G is a weakly embedded subgroup if and
only if the following hold:

(i) M has infinite Sylow 2-subgroups.

(ii) For any unipotent 2-group U of M , NG�U� ⊆ M .

Corollary 2.26 [3]. Let G be a group of finite Morley rank of even type
and M be a proper definable subgroup of G containing a Sylow 2-subgroup S
of G. Then M is a weakly embedded subgroup if and only if for any unipotent
2-group U of S, NG�U� ⊆ M .

We will need a rather precise formulation of a criterion for the exis-
tence of a weakly embedded subgroup, which was proved in [3] but stated
somewhat less explicitly.

Fact 2.27 (cf. [3]). Let G be a simple group of finite Morley rank of
even type and H be a proper definable subgroup with infinite Sylow 2-
subgroups which contains the connected component of the normalizer of
any nontrivial unipotent 2-subgroup of H. Let S be a Sylow◦ 2-subgroup
of H. Then there is a subgroup H1 of H containing S for which N�H1� is
weakly embedded in G.
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Proof. We recall the line of argument. Let � be the graph whose vertices
are the nontrivial unipotent 2-subgroups of G and whose edges are the pairs
�U1� U2� with �U1� U2� = 1. Let C be the connected component of � which
contains S. Let H1 = �⋃C�. Then N�H1� is the setwise stabilizer of C with
respect to the natural action of G on � and is weakly embedded in G.

The relevant classification theorem was given in the Introduction as
Fact 1.2. Here we wish to record some further information regarding what
is known in the absence of a tameness hypothesis. This will allow us to
somewhat reduce the number of occasions on which we invoke the full
classification theorem.

Fact 2.28 [1, 3]. If G is a simple K∗-group of even type of finite Morley
rank with a weakly embedded subgroup M , then M◦ is solvable. In partic-
ular, N◦

G�U� is solvable for any unipotent 2-subgroup U of G (Fact 2.25).

This is proved for strongly embedded subgroups in [1, Theorem 1.5] in
a slightly sharper form and for weakly embedded subgroups which are not
strongly embedded in [3, Theorem 5.1].

2.5. Structure of K-Groups

Fact 2.29 [1]. Let G be a connected nonsolvable K-group of finite
Morley rank. Then G/σ�G� is isomorphic to a direct sum of simple alge-
braic groups over algebraically closed fields. In particular, the definable
connected 2⊥-sections of G are solvable.

Fact 2.30 [4]. Let G be a perfect group of finite Morley rank such that
G/Z�G� is a simple algebraic group. Then G is an algebraic group. In
particular, Z�G� is finite [16, Section 27.5].

Our general reference for central extensions of algebraic groups
(especially those that are algebraic) is [29] (especially Chapters 3 and 7).

Notation 2.31. Let G be a group of finite Morley rank.

1. We write E�G� for the product of the subnormal connected qua-
sisimple subgroups of G. So, as in the finite case, E�G� is a central product
of quasisimple groups. In the K-group case these are algebraic.

2. B�G� will denote the subgroup generated by the unipotent
2-subgroups of G. B�G� is a definable connected subgroup of G.

Fact 2.32. Let H be a connected K-group of finite Morley rank and
of even type with abelian Sylow◦ 2-subgroups. Then H = L1 × · · · × Ln ×
σ�H� is a direct product, with Li � SL2�Ki� for suitable algebraically closed
fields Ki of characteristic 2.



430 altinel, borovik, and cherlin

Proof. By Fact 2.22, we have �B�H�� O�H�� = 1. Thus �B�H�,
σ◦�H�� = 1. It follows that �B�H��∞�� σ�H�� = 1, using the connec-
tivity of B�H��∞� and the Three-Subgroups Lemma, and thus by Facts 2.29
and 2.30 (together with the information provided by [29]) B�H��∞� is a
central product L1 ∗ · · · ∗ Ln with Li/Z�Li� � SL2�Ki�. As Ki has charac-
teristic 2, this is a direct product of simple groups. So it suffices now to
check that H = B�H��∞�σ�H� to conclude; this is essentially Fact 2.29, but
we must check that if U ≤ H and U/σ�H� is unipotent, then U ≤ B�H�.
This follows from the lifting of Sylow 2-subgroups (Fact 2.5).

Fact 2.33. Let H be a connected K-group of finite Morley rank of even
type such that O2�H� = 1. Then H = O�H� ∗ E�H�.

Proof. The argument is similar to the proof of Fact 2.32. As O2�H� = 1
and H is of even type, Fact 2.13 implies that σ�H�◦ = O�H�. Thus
we get �B�H�� σ◦�H�� = 1, and eventually �B�H��∞�� σ◦�H�� = 1. By
Facts 2.29 and 2.30, B�H��∞� = L1 ∗ · · · ∗ Ln where the Li are quasisim-
ple algebraic groups over algebraically closed fields of characteristic 2.
Using Facts 2.29 and 2.5 we get H = B�H��∞�σ◦�H� = B�H��∞�O�H�. As
B�H��∞� = E�H�, we are done.

Fact 2.34. Let L be a K-group of even type with L = L1 × · · · × Lt ,
where the Li are simple algebraic groups. If K is a definable simple
subgroup of L normalized by a Sylow 2-subgroup of L then K = Li for
some i.

Proof. Let U be a Sylow 2-subgroup of L which normalizes K. Then
U = U1 × · · · × Ut where each Ui is a Sylow 2-subgroup of Li. For some i
we have 1 �= �K� Ui� ≤ K ∩ Li�K. Therefore K ≤ Li and we may assume
L = Li is simple.

We claim that U ≤ K. In any case, as U normalizes K, U ∩K is a Sylow
2-subgroup of K. Since UK = CUK�K� ×K by Fact 2.15, we have U = �U ∩
K� × CU�K�. Let V = CU�K�. It suffices to show that V = 1. Consider the
subgroup H = NL�V �. By a theorem of Borel and Tits [5; 16, Section 30.3],
as explained in [14, (13-4)], F∗�H� = O2�H�, or equivalently, CH�O2�H�� ≤
O2�H�. But V ≤ O2�H� ≤ U so O2�H� = V × �O2�H� ∩ K� = V . Thus
K ≤ C�O2�H�� = O2�H�, a contradiction. This shows V = 1.

Thus U ≤ K ≤ L. Let w ∈ K be an involution with U ∩ Uw = 1. Then
�U� Uw� = L and thus K = L.

Finally, we rely on both the additivity and the definability of rank, which
are not general properties of Morley rank in general structures of finite
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Morley rank, but do hold in the specific context of groups. Definability may
be phrased as follows:

Fact 2.35 [9, Corollary 4.24]. Let G be a group of finite Morley rank
and φ�x� y� be a first-order formula in the language of groups. For each r
the set �a ∈ Mk 
 rk�Mn� a� = r� is definable.

We note also that these sets are nonempty for only finitely many values of
r; in other words, the parameter space is decomposed definably into finitely
many sets on which the rank function is constant. This plays a role in some
applications of the Thompson rank formula (for which, see Section 7).

2.6. 2-Local Subgroups

Definition 2.36. A 2-local subgroup of a group of finite Morley rank
is the normalizer of a nontrivial definable 2-subgroup.

The following result is stated in [3] under the hypothesis that the group
in question is tame. For our present use we require the more explicit form
which records what is actually proved:

Fact 2.37 [3]. Let G be a simple K∗-group of finite Morley rank of even
type and H a 2-local subgroup of G with O�H� �= 1. Then G has a weakly
embedded subgroup.

2.7. Miscellaneous

Definition 2.38. If G is a group of finite Morley rank and X ⊆ G,
then the definable closure d�X� of X is the intersection of all the defin-
able subgroups of G that contain X. The descending chain condition on
definable subgroups in groups of finite Morley rank implies that d�X� is a
definable subgroup.

Fact 2.39 [9, Exercise 2, p. 92]. Let G be a group of finite Morley rank.
Assume X ⊆ G. Then CG�X� = CG�d�X��.
Fact 2.40 ([30], cf. also [26, 31]). Let K be a field of finite Morley rank

and T a definable subgroup of the multiplicative group K× containing the
multiplicative group of an infinite subfield of K. Then T = K×.

As an historical aside, we note that the foregoing is one of the key ingre-
dients in the proof of Fact 2.30 (in the absence of a tameness hypothesis).
Unfortunately, when [4] was written the authors were not aware of the
history of this result.

The following fact is a slight generalization of a lemma in [11].
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Fact 2.41 [3]. Let E be a unipotent 2-group of exponent at most 4.
Assume that

0 → Z → E → E/Z → 0

is an exact sequence, where Z is central and both Z and E/Z are isomor-
phic to K+, K a field of characteristic 2 which is closed under taking square
roots. Assume also that T ∼= K∗ acts on E, inducing the natural action on
both Z and E/Z. Then E is abelian and either it is homocyclic or it is ele-
mentary abelian of the form E = E1 ⊕ E2, splitting as a T -module. In the
case where E is homocyclic one can obtain the multiplication table of E by
fixing x0 and x1 in E such that x2

0 = x1. In fact, any element of E can be
written as xa

0x
b
1, with a� b ∈ T , and the product of two distinct elements is

given by

x
a1
0 x

b1
1 x

a2
0 x

b2
1 = x

a1+a2
0 x

b1+b2+√a1a2
1 +

Zil’ber’s Indecomposability Theorem is one of the basic tools in many
arguments. Here we give the three corollaries that are used throughout the
paper.

Fact 2.42 [9, Corollaries 5.28 and 5.29, p. 86]. Let G be a group of
finite Morley rank.

1. If H and K are definable subgroups of G with H connected then
�H� K� is definable and connected.

2. The subgroup of G generated by any family of definable connected
subgroups is again definable and connected and is generated by finitely
many of them.

We also need the Clifford Theory; most of this is purely module-
theoretic.

Fact 2.43. Let H� G be groups with H  G and let V be an irreducible
G-module. Then

1. V is completely reducible as an H-module and its irreducible
H-submodules are G-conjugate.

2. If V �G has finite Morley rank and H◦ acts nontrivially on V then
V is the direct sum of finitely many irreducible H-submodules.

Proof. The first part is clear as the sum of all G-conjugates of any
H-irreducible submodule is G-invariant. For the second part, note that an
H-irreducible submodule is either finite or connected. If it is connected,
then the submodule generated by its conjugates is the sum of finitely many
of them, by Fact 2.42(2). If, on the other hand, the submodule is finite, then
it is centralized by H◦ and thus H◦ acts trivially on V .
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The degenerate situation not accounted for above is represented by a
vector space on which a linear group G acts, with H a finite group of
scalars, in finite characteristic.

We note one more purely group-theoretic fact which is quite useful. It
follows directly from basic commutator laws.

Fact 2.44 [15]. Let H� K be subgroups of the group G. Then H and K
normalize �H� K�.

We make occasional use of Frattini subgroups.

Notation 2.45. Let P be a nilpotent p-group of bounded exponent.
Then the Frattini subgroup -�P� is the subgroup generated by P ′ and
�xp 
 p ∈ P�. In the context of groups of finite Morley rank, if P is defin-
able then -�P� is definable since on the one hand P ′ is definable and on
the other hand -�P�/P ′ is clearly definable in the quotient.

Our group theoretic notation and terminology not explicitly explained
above are standard. Standard notions which require some adaptation in
passing from abstract groups (or algebraic groups) to groups of finite
Morley rank are explained further in [9]. The present paper is a sequel
to [1, 3] (and, ideally, also to [18]), but familiarity with those papers is
not essential beyond the points recalled above. It should be noted that the
study of the “even type” groups as an isolated case is justified by [2, 17].

3. STRONG CLOSURE

In this section we will prove some basic properties of strongly closed
abelian subgroups, including a K-group fact which will be used frequently
in the following. We use the following terminology, some of which was
mentioned in the Introduction.

Notation 3.1. Let A� G be groups.

1. If A ≤ H ≤ G then A is strongly closed in H relative to G if
whenever a ∈ A, g ∈ G, and ag ∈ H we have ag ∈ A.

2. When G is of finite Morley rank, we say that A is a strongly closed
2-subgroup of G if A is a 2-subgroup, contained in a Sylow◦ 2-subgroup of
G, and strongly closed in at least one such Sylow◦ 2-subgroup.

This terminology must be used with care. It would simplify matters
slightly in the 2-group situation if A were taken connected, and as we shall
see momentarily this is harmless for our purposes (the case in which A
is finite is also of some interest but was already handled in [3]). We now
list a number of elementary properties which are not only quite useful
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in themselves, but also have the general effect of rendering the termi-
nology more robust; notably, it does not matter which particular Sylow◦

2-subgroup is considered in applying the strong closure property as long
as it contains the specified group A. Except for �v�, these properties were
stated and proved in [3] for abelian groups that are strongly closed in a
Sylow 2-subgroup containing them. We restate them under the assumption
that the strong closure is only relative to a Sylow◦ 2-subgroup. This weak-
ening of the strong closure condition (that is, this strengthening of the final
result) is of considerable practical significance for applications.

Lemma 3.2. Let G be a group of finite Morley rank and even type, and let
A be a definable abelian 2-subgroup of G such that A is strongly closed in a
Sylow◦ 2-subgroup S of G.

(i) A is strongly closed in any Sylow◦ 2-subgroup that contains A.

(ii) A is a normal subgroup of any Sylow◦ 2- subgroup that contains it.

(iii) N�A◦� controls fusion in A.

(iv) Any definable N�A◦�-invariant subgroup of A is also strongly closed.

(v) If the Sylow 2-subgroups of G are connected and N is a definable
normal subgroup of G then AN/N is strongly closed in G/N .

Proof. For (i), (ii) argue as in [3]. For (iii) we proceed as follows. Let
a ∈ A and g ∈ G be such that ag ∈ A as well. Let S1 be a Sylow◦ 2-subgroup
of C�ag� containing A◦. After conjugation by an element of C�ag� we may
assume that A◦ and A◦g are in S1. Let S be Sylow◦ 2-subgroup of G in which
A is strongly closed. There exists h ∈ G such that Sh

1 ≤ S. In particular,
A◦h� A◦gh ≤ S. By strong closure of A in S we have A◦h = A◦ = A◦gh.
Hence g normalizes A◦. This proves (iii). Now (iv) follows from (iii).

For (v), we argue as in [13]. Let S be a Sylow 2-subgroup containing A.
By Fact 2.5 SN/N is a Sylow 2-subgroup of G/N containing AN/N . Let
a ∈ A and g ∈ G such that āḡ ∈ S. This implies ag ∈ SN . By conjugacy of
Sylow 2-subgroups there exists n ∈ N such that agn ∈ S. But A is strongly
closed, hence agn ∈ A, which implies that āḡ ∈ A.

Note that (iv) implies that an infinite definable strongly closed abelian
2-group can be taken to be a connected elementary abelian 2-group.

We now prove an important K-group fact:

Lemma 3.3. Let H be a connected K-group of even type with an infinite
strongly closed definable connected abelian 2-subgroup A. If A is not normal
in H then H has a normal subgroup of the form L � SL2�K�, with K an
algebraically closed field of characteristic 2, and L ∩ A is a Sylow 2-subgroup
of L; thus H = L × CH�L�.
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Proof. We proceed by induction on the rank of H. Let H1 be the sub-
group of H generated by the conjugates of A. This is definable and con-
nected by Fact 2.42. We may suppose H = H1, as otherwise we conclude
rapidly by induction.

If Z�H� is infinite, then induction applies to H̄ = H/Z�H�. Note that the
image Ā is again strongly closed abelian, by Lemma 3.2(v), and is connected
and not normal in H̄. In fact, NH̄�Ā� = NH�A�
 if Ag ≤ A · Z�H�, then
Ag ≤ AAg, a 2-group, and therefore Ag = A by strong closure. Thus we
get L̄  H̄, L̄ � SL2�K�, with L̄ ∩ Ā a Sylow 2-subgroup of L̄. Then taking
L as the full preimage of L̄ and L1 = L�∞�, we find that L1 is a perfect
central extension of SL2�K�, thus L1 � SL2�K� (Fact 2.30 and [29]) and
L1  H. Furthermore, L1 meets A · Z�H� in a Sylow 2-subgroup A1 of L1.
Let T be a maximal torus in NL1

�A1�. Then A1 = �T� A1� ≤ �T� AZ�H�� =
�T� A� ≤ A. The last inequality follows from Corollary 2.17 and the fact
that A is strongly closed.

If Z�H� is finite, then we may factor it out and the quotient is centerless;
we may return from H/Z�H� to H as in the preceding paragraph. So we
may suppose Z�H� = 1.

Now suppose O2
◦�H� �= 1. By strong closure of A in O2

◦�H� ·A, we have
O2

◦�H� ≤ N�A� and hence �O2
◦�H�� A� ≤ A∩O2

◦�H�. If B = O2
◦�H� ∩A

is not trivial, then B  H by strong closure, so B is central in H1 = H,
a contradiction. Thus O2

◦�H� ∩ A = 1 and hence �O2
◦�H�� A� = 1. But

then O2
◦�H� is central in H1 = H, giving the same contradiction. Thus

O2
◦�H� = 1. Similarly, since A centralizes O�H� by Fact 2.22, we find

O�H� = 1. Thus σ�H� is finite, σ�H� ≤ Z�H�, and σ�H� = 1.
Since σ�H� = 1, H is a product L1 × · · · ×Ln of simple algebraic groups

(Fact 2.29) over fields of characteristic 2. Let S be a Sylow 2-subgroup of H
containing A (given the structure of H, this is also a Sylow◦ 2-subgroup).
Then A is strongly closed in S and S is invariant under the action of some
maximal torus T of H. Thus A is T -invariant, and as C�T � = T we find
that A is the product of the subgroups A ∩ Li. In particular, for some i,
A ∩ Li is infinite. With such an i fixed, we will write L for Li and B for
A ∩ L. From the structure of simple algebraic groups we find L � SL2�K�
for some algebraically closed field K of characteristic 2; as B is T -invariant
it is a product of root subgroups, and as B is strongly closed in L and the
root system of L is indecomposable, B must be a Sylow 2-subgroup of L.
Also, H = L · CH�L�. Thus our claim holds in this case.

Note that, in the notation of Fact 3.3, Fact 2.15 implies that A = �L ∩
A� × CA�L�. In the following, whether CA�L� is trivial or not will play an
important role. Therefore we set the following definition:

Definition 3.4. Let G be a group of finite Morley rank of even type
with a strongly closed abelian 2-subgroup A. Suppose G has a definable
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subgroup L ∼= SL2�K� normalized by A such that L ∩ A is a Sylow
2-subgroup of L. In particular, A = �L ∩ A� × CA�L�. If CA�L� �= 1 then
L is called an A-special component.

4. NO A-SPECIAL COMPONENTS

In the present section we will prove the following theorem:

Theorem 4.1. Let G be a simple K∗-group of finite Morley rank of even
type, and suppose that G contains a nontrivial connected abelian 2-subgroup A
which is strongly closed in a Sylow◦ 2-subgroup and which is a minimal infinite
N�A�-invariant group. Then G has no special component with respect to A.

We will make use of a fact concerning K-groups. The tori occurring in
A-special components will be pseudo reflection groups in the sense of the
following definition, and this will lead us to consider K-groups generated
by pseudoreflection groups.

Definition 4.2. If A is an elementary abelian 2-group then a nontrivial
torus T acting on A is called a group of pseudoreflections on A if A =
CA�T � × �A� T � and T acts faithfully on the second factor and transitively
on its nonzero elements.

Remark 4.3. If G is a K∗-group of finite Morley rank of even type with
a nontrivial definable connected strongly closed abelian subgroup A, and L
is an A-special component, then L contains a group of pseudo reflections
on A.

Theorem 4.4. Let A�H be a connected K-group of finite Morley rank
and of even type, in which A is an elementary abelian definable 2-subgroup
and H acts irreducibly and faithfully on A. Assume that H contains a group
T of pseudoreflections on A. Then A can be given a vector space structure
over an algebraically closed field K in such a way that H � GL�A� acting
naturally.

Proof. Observe that A is infinite and connected. Furthermore,
O2 �H� = 1, since O2�H� centralizes a nontrivial subgroup B of A,
and by irreducibility we have B = A.

H = E�H� ∗ O�H� by Fact 2.33. It follows from Fact 2.21 that O�H� is
abelian; indeed, if B ≤ A is minimal nontrivial O�H�-invariant, then O�H�′
centralizes B, and hence by irreducibility CA�O�H�′� = A and O�H�′ = 1.
Thus O�H� = Z◦�H�.

Assume first that

Z◦�H� �= 1+ �∗�



groups of finite morley rank 437

Then by Fact 2.20 A has a natural vector space structure over an alge-
braically closed field K, with Z◦�H� acting via scalars and H acting linearly.
We assume dim A > 1.

Now T has some eigenspace L ≤ A on which T does not act trivially
(Fact 2.23), and as T is a group of pseudoreflections, T must act transitively
on L \ �0�. Hence L is one-dimensional and Z◦�H� induces all scalars. Thus
the elements of T are pseudo reflections also, from a linear point of view.

Let H1 be the subgroup of H generated by pseudoreflection subgroups.
As H acts irreducibly and H1  H, the action of H1 on A is completely
reducible (Fact 2.43). Write A = A1 ⊕ · · · ⊕ An as a sum of irreducible
H1-submodules. Each pseudoreflection subgroup acts nontrivially on exactly
one factor Ai. Hence H1 is the direct product of subgroups H

�i�
1 , where H

�i�
1

acts trivially on all factors Aj for j �= i; Ai is an irreducible H
�i�
1 -module.

In particular, the Ai are all the irreducible H1-submodules of A, and these
factors are therefore permuted by H, which is connected and irreducible.
Accordingly there is only one such factor, and A is irreducible as an H1-
module.

In particular, there are two pseudoreflection subgroups T1� T2 of H which
do not commute. The group �T1� T2� fixes a subspace of codimension 2 and
acts on a complementary space as a subgroup of GL2�K�. It follows by
inspection that this group contains a subgroup of root type in the sense
of [21].

Let H0 be the subgroup of H generated by subgroups of root type. Con-
sider an irreducible H0-submodule B of A. Note that dim B > 1, as other-
wise H0 acts trivially on B and hence on A. By McLaughlin’s theorem [21]
H0 induces SL�B� or Sp�B� on B. If T is a pseudoreflection subgroup of H
then T fixes a subspace of codimension 1 and hence fixes a nonzero vector
in B. So B is H1-invariant and thus A = B is H0-irreducible. Now SL�A� or
Sp�A� is normal in H. In the former case we have H = GL�A� as claimed,
and in the latter case H is an extension of Sp�A� by the scalars, which does
not in fact contain a pseudoreflection group except in dimension 2, where
in any case Sp�A� = SL�A�.

Now suppose that

Z◦�H� = 1 �¬∗�

In other words, H = E�H�. In this case we will arrive eventually at a con-
tradiction. Note that we can no longer view A as a finite-dimensional vector
space.

We show first that H is simple. Let T be a pseudoreflection subgroup
of H and let H1 be a simple factor of H not commuting with T . Using
Fact 2.44, we have �T� H1� = H1. Then T normalizes H1 and acts by inner
automorphisms, so T normalizes opposite Sylow 2-subgroups (maximal
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unipotent subgroups) S+, S− of H1. Set A± = CA�S±�. Then A+ ∩A− = 0,
in additive notation, since H1 is generated by S+ ∪ S− and has no fixed
points on A. As the groups A± are T -invariant, T acts trivially on at least
one of them, say A+. Let B ≤ A be H1-irreducible. Then B meets A+ and
thus T fixes B ∩ A+. As B is H1-irreducible and T normalizes H1, T stabi-
lizes B. If B = A then H = H1 because otherwise H will contain another
component, say H2, and the centralizer in A of a Sylow 2-subgroup of H2
will be a proper H1-invariant subgroup of A. Suppose B < A. As A is
completely reducible as an H1-module, it is the direct sum of H-conjugates
of B (Fact 2.43). The argument used to show that B is T -invariant proves
that T stabilizes each of these conjugates. Since T acts as a pseudoreflec-
tion group, the action of T on at least one of the conjugates of B, which
we may suppose to be B, is trivial. Then H1 = �T� H1� acts trivially on B, a
contradiction.

Thus H is simple. Let P be a maximal parabolic subgroup corresponding
to deletion of a terminal node in (a component of) the Dynkin diagram
and L be the associated Levi factor. Now L contains a maximal torus of H
and hence contains a pseudoreflection group T .

Suppose that V is a composition factor for A as an L-module and that T
acts trivially on V . As L′ is simple, either L′ acts trivially on V or �T� L′� = 1,
in which case �T� L� = 1.

We may exclude the case T ≤ Z�L� as follows. If T ≤ Z�L� then T is a
root torus in L. Hence T and some conjugate T g generate a subgroup L1 �
SL2 in H such that A/CA�L1� has rank 2t where t = rk T . We consider
the action of L1 on A1 = A/CA�L1�. T is a torus of L1 and normalizes
two “opposite” Sylow 2-subgroups S+� S− in L1, each of which centralizes
a nontrivial T -invariant subgroup of A1; the two subgroups involved are
disjoint as S+� S− generate L1. Now the Weyl group stabilizes CA1

�T � and
interchanges the centralizers of S+ and S−, so T acts nontrivially on each
of these two subgroups. However, as T is a pseudoreflection group this is
not possible.

Our conclusion is that L′ acts trivially on any composition factor on which
T acts trivially. However, L′ cannot act trivially on all the factors of a
composition series for A, as the 2⊥ elements of L′ would then act trivially
on A itself (Fact 2.23). Accordingly, let V be a composition factor of A
on which L′ acts nontrivially. By the above, T also acts nontrivially on V ,
and therefore it acts as a pseudo reflection group on V . By induction on
rk H we may suppose therefore that L � GL�V � acts naturally on V . In
particular, Z�L� acts as an algebraically closed field K on V .

We may suppose that V = A1/A0, where L normalizes A0 and A1, and
that L′ acts trivially on A0. As A0 is T -invariant and T acts nontrivially on
V , T acts trivially on A0. Thus L acts trivially on A0. Let T1 = Z�L� and let
a ∈ T×

1 . Then commutation with a induces an isomorphism γ
 V → �a� A1�
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which is an isomorphism of L-modules. Thus we may suppose that V is a
subgroup of A. Furthermore, T acts trivially on every composition factor
of A/V and hence by the above L acts trivially on every such composition
factor, forcing L to act trivially on A/V since it is generated by 2⊥-elements.

In particular, if T̂ is a maximal torus of H contained in L, then V = �T̂ � A�
and thus the Weyl group W of H acts on V . Let w ∈ W invert T1: then
for v ∈ V × and α a scalar we find �αv�w = α−1vw, and on considering
��α + β�v�w this yields �α + β�−1 = α−1 + β−1, a contradiction.

Lemma 4.5. Let H be a connected K-group of finite Morley rank and
of even type, and suppose that H contains a nontrivial definable connected
abelian subgroup A which is strongly closed in a Sylow◦ 2-subgroup of H.
Suppose that L ≤ H is isomorphic to SL2�K� for some field K and meets
A in a Sylow 2-subgroup of L. Then L is contained in the product of the
normal subgroups L∗ of H with the same properties: L∗ � SL2�K� for some
field (depending on L∗) and L∗ meets A in a Sylow 2-subgroup of L∗.

Proof. Let H0 be the product of the normal subgroups L∗ of H isomor-
phic to SL2�K� (for various fields K) and meeting A in a Sylow 2-subgroup.
Then H normalizes the factors of H0 and acts on each by inner automor-
phisms by Fact 2.15, so H = H0 × CH�H0�. Let H1 = CH�H0� and let L̄ be
the projection of L into H1. If this is trivial then we have our claim, and
otherwise L � L̄. Furthermore, A = �A ∩ H0� × CA�H0� since A also acts
by inner automorphisms on H0 and centralizes A ∩ H0. Now Ā is strongly
closed abelian in H1 by Lemma 3.2(v), and H1 is again connected. There-
fore by Lemma 3.3 and the definition of H0 it follows that Ā is normal in
H1. But L̄ does not normalize Ā, so we have a contradiction.

Recall that a connected definable subgroup L of G is called “special”
with respect to A, or A-special, if it is isomorphic to SL2�K� for some field
K, has L ∩ A as a Sylow 2-subgroup, is normalized by A, and commutes
with an involution i belonging to A.

Corollary 4.6. Let G be a K∗-group of finite Morley rank of even type
with a nontrivial definable connected strongly closed abelian subgroup A. If
L is an A-special component, L ≤ H < G with H definable and connected,
and A ≤ H, then L  H.

Proof. L ≤ ∏
i Li with Li  H and Li meets A in a Sylow 2-subgroup. As

�L� A∩Li�  L (Fact 2.44) and �L� A� �= 1, it follows that L = �L� Li ∩A� ≤
Li for some i, hence L = Li.

Proof of Theorem 4.1. A is strongly closed in a Sylow◦ 2-subgroup and
is a minimal infinite N�A�-invariant group. Assume toward a contradiction
that there is at least one A-special component L and let a ∈ A be an
involution centralizing L. By the preceding corollary L is normal in C◦�a�.
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Then the maximal torus of L normalizing L ∩ A acts as a group of pseudo
reflections on A.

Let H = N�A�/C�A�. Then we have shown that H (hence also H◦)
contains a pseudo reflection group. As H acts irreducibly and faithfully on
A, O2�H� = 1. Furthermore, by Fact 2.43, A is the direct sum of finitely
many H◦-irreducible factors Ai, which are conjugate under the action of
H/H◦.

By Theorem 4.4, each factor Ai carries a natural structure of Ki-vector
space for an appropriate field Ki, and H◦ acts on each factor Ai like
GL�Ai�. In particular, the tori in A-special components stabilize the Ai

and hence for any A-special component L, L ∩ A ⊆ Ai for some i.

Case 1. Suppose

the number of factors Ai is at least 2

and consider an A-special component L for A with L ∩ A ≤ A1. Let
T ≤ NL�A� be a maximal torus of L. Now A = �L ∩ A� · CA�L� with
CA�L� T -invariant. In particular, CA�L� contains Aj for j > 1. Hence
L  C◦�Aj� (Corollary 4.6). The connected group H◦ acts on C�Aj� and
hence normalizes L. Thus L∩A is H◦-invariant, forcing L∩A = A1. Thus
there is a unique A-special component meeting A in A1, and the same
applies to any Ai. Let Li be the A-special component with Li ∩ A = Ai.
For i �= j as Li ≤ C�Aj�, it follows that Li normalizes Lj . Accordingly the
group K generated by the Li is their product. We claim that N�K� satisfies
the criterion of Fact 2.27: for any nontrivial unipotent U ≤ N�K� we have
N◦�U� ≤ N�K�.

Observe first that by construction N�A� ≤ N�K�. Furthermore, for any
component Li we claim that N◦�Li� = N◦�K�. Evidently, N◦�K� ≤ N◦�Li�.
We show the converse. For any j we have Lj ≤ N◦�Li�, and as Lj is
A-special, Corollary 4.6 gives Lj  N◦�Li�. Thus N◦�Li� ≤ N◦�K�.

Now take a Sylow◦ 2-subgroup S of N◦�K� containing A and a unipotent
2-subgroup U of S. We claim that N◦�U� ≤ N◦�K�. As S normalizes A
and K, and A is a Sylow 2-subgroup of K, we have S = A · CS�K�. In
particular, S ≤ C�A� and thus U ≤ C�A�, so A ≤ N◦�U�. Now if A  
N◦�U� then N◦�U� ≤ N�A� ≤ N�K�, as desired. On the other hand, if
A is not normal in N◦�U� then there is a component L̂  N◦�U� of the
form SL2�K� for some algebraically closed field K, such that L̂ meets A in
a Sylow 2-subgroup. In particular, L̂ is normalized by A and is therefore
either A-special or contains A. If L̂ is A-special then L̂ is one of the Li

and N◦�U� ≤ N◦�L̂� = N◦�K�.
Suppose finally that A ≤ L̂  N◦�U�. Then there is a torus T of NL̂�A�

acting transitively on A. But then T ≤ H◦ and this contradicts our case
assumption.
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Thus in this case N�K� satisfies the criterion of Fact 2.27. Thus there is
a weakly embedded subgroup M of G, which we may suppose contains a
Sylow 2-subgroup of K. In view of the structure of K, it then follows that
K ≤ M . This contradicts Fact 2.28.

Case 2. Now suppose

H◦ is irreducible on A.

Then H acts like GL�A� with respect to some K-structure on A, for K a
suitable field. This case will lead directly to a contradiction.

Again consider a Sylow 2-subgroup S of N◦�A�. Then S must centralize
a nonzero element a0 ∈ A. As the elements of A are conjugate under the
action of H◦, we may suppose that a0 = a. In particular, S acts on L via
inner automorphisms and again S = A · CS�L�. But CS�L� commutes with
the torus of L, which lies in H◦, and CS�L� covers the Sylow 2-subgroup
of GL�A�, a contradiction unless A is one-dimensional and H◦ is the mul-
tiplicative group of K. Since NL�A� contains a torus acting faithfully on A
and having a nontrivial fixed point, this is impossible.

5. THE MAIN CONFIGURATION

In this section, as in Section 4, A will be an infinite definable strongly
closed abelian 2-subgroup minimal and invariant under the action of N�A�
(Lemma 3.2�iv�). G is the simple K∗-group of finite Morley rank and even
type which is under analysis. We will prove:

Theorem 5.1. Under the stated hypotheses, either G has a weakly embed-
ded subgroup or there is a definable subgroup L of G isomorphic to SL2�K�,
with K an algebraically closed field of characteristic 2, such that A is a Sylow
2-subgroup of L and C�L� contains a nontrivial unipotent 2-subgroup.

To apply the classification of groups with weakly embedded subgroups in
the present state of knowledge, we need to assume that G is tame.

Corollary 5.2. If in addition G is tame, then either G � SL2�K� for
some algebraically closed field K of characteristic 2 or there is a definable
subgroup L of G isomorphic to SL2�K�, with K an algebraically closed field
of characteristic 2, such that A is a Sylow 2-subgroup of L and C�L� contains
a nontrivial unipotent 2-subgroup.

The second possibility will provide the main configuration which must be
analyzed until a contradiction is reached in succeeding sections. This con-
tradiction is an analog, in a very special case, of a theorem of Aschbacher
and Seitz on centralizers of standard components.
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More specifically, we study the subgroup N◦�A�. We show that either
this subgroup satisfies the criterion of Fact 2.27, that is, that N◦�U� is
contained in N◦�A� for all unipotent U ≤ N◦�A�, or that a component
L of the desired type appears.

Lemma 5.3. Let X be a group of finite Morley rank of even type with an
infinite definable connected strongly closed abelian 2-subgroup A. Let H be a
definable subgroup of X which contains A, with A  H, and assume that for
every nontrivial unipotent 2-subgroup U ≤ CH�A�, N◦�U� ≤ H. Assume that
K is a definable subgroup of X such that K ∩A is infinite. Then �K ∩A�◦ is
a strongly closed abelian 2-subgroup in K.

Proof. Let B = K ∩A. Let S1 be a Sylowo 2-subgroup of H ∩K and S2
a Sylow◦ 2-subgroup of K such that S1 ≤ S2. We will show that S2 = S1. As
B  H ∩K, we have B◦ ≤ S1. Also note that �S2 ∩H�◦ = S1. Let x ∈ NS2

�S1�
and b ∈ B◦. Then bx ∈ S1 and as A is strongly closed in X (in particular,
in AS1), we conclude bx ∈ A. Thus bx ∈ A ∩ S1 ≤ B and we conclude
B◦x ≤ B. So we have NS2

�S1� ≤ N�B◦�. But B◦ ≤ C�A� and by assumption
this implies N�B◦� ≤ H. Hence, NS2

�S1� ≤ H. This implies S1 = S2 as
claimed. Therefore it will be sufficient to check that B◦ is strongly closed
in S1.

Now let k ∈ K and b ∈ A ∩ S1. Assume that bk ∈ S1. As S1 is connected,
it is contained in a Sylow◦ 2-subgroup of H which necessarily contains A
as well. Therefore bk ∈ A, and we have bk ∈ A ∩ S1 ≤ K ∩ A. Hence
A ∩ S1 is strongly closed in S1 relative to K. In particular, so is �A ∩ S1�◦ =
�A ∩ K�◦ = B◦.

We now embark directly on the proof of Theorem 5.1, more specifically
on the study of N◦�A�. As a matter of notation, set

H = N◦�A�+
Lemma 5.4. If U is a nontrivial unipotent 2-subgroup of C◦�A� then either

N◦�U� ≤ H or G contains a subgroup L of type SL2�K� in characteristic 2,
which commutes with U and has A as a Sylow 2-subgroup.

Proof. As U ≤ C�A�, we have A ≤ N◦�U�. If A is not normal in N◦�U�,
then using Lemma 3.3 we get N◦�U� = L×CN

◦�U��L�, where L ∼= SL2�K�
and L ∩ A is a Sylow 2-subgroup of L. Theorem 4.1 implies that A ≤ L;
in particular, A is a Sylow 2-subgroup of L. Since U and L normalize each
other and L is simple, we conclude �U� L� = 1.

In view of Lemma 5.4 we make the following assumption:

If U is a nontrivial unipotent 2-subgroup of H which commutes with
A then N◦�U� ≤ H.

�∗�
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Lemma 5.5. With the notation and hypotheses as above, suppose that U
is a nontrivial unipotent 2-subgroup of H such that N◦�U� is not contained
in H. Then

1. N◦�U� is of the form L ·CN
◦�U��L� with L definable and of the form

SL2�K� for some algebraically closed field K of characteristic 2. Furthermore,
with this notation:

2. CN
◦�U��L� ≤ H, L �≤ H, and H contains a Borel subgroup of L.

3. (a) NA�U� = L ∩ A = NA�L�.
Furthermore, for any u ∈ U×,

(b) these groups also coincide with CA�u�, and L  C◦�u�.
4. U is an elementary abelian group.

Proof. Ad 1. Let B = NA�U�. As UA is a nontrivial unipotent
2-subgroup containing A as a normal subgroup, we find that A ∩Z�UA� is
infinite by Facts 2.8 and 2.9, and thus B is infinite. By our assumption �∗�,
we have N◦�B◦� ≤ H. Hence N◦�U� �≤ N◦�B◦�. On the other hand, B◦ is
strongly closed in N◦�U� by Lemma 5.3. Hence, after applying Lemma 3.3
we have N◦�U� = L × CN

◦�U�
◦�L�, with L of the form SL2�K�, and L ∩ B

a Sylow 2-subgroup of L. In particular, �1� holds.

Ad 2. CN
◦�U�

◦�L� ≤ N◦�L ∩ B� ≤ H by assumption �∗�. L �≤ H since
L does not normalize A ∩ L. H contains a Borel subgroup of L by �∗�,
applied to L ∩ B. This proves (2).

Ad 3. (a) By definition B = NA�U�. We first show that B ≤ NA�L� ≤ L.
L  N◦�U� and B ≤ N�U� so B permutes the components of N◦�U�. As B
centralizes L ∩ B, B normalizes L. Thus B ≤ NA�L�.

Now let B1 = NA�L�. Then B1 = �L ∩ B1� · CB1
�L�. If CB1

�L� �= 1
we contradict Theorem 4.1 as follows. Let i be an involution in CB1

�L�.
A ≤ C◦�i�, thus C◦�i� satisfies the hypotheses of Lemma 4.5. We there-
fore conclude that C◦�i� contains a normal subgroup L1 isomorphic to SL2
and which intersects A in a Sylow 2-subgroup. This means L1 is A-special,
which contradicts Theorem 4.1. Thus B1 ≤ L, as claimed.

In particular, B ≤ L and thus B is a Sylow 2-subgroup of L. In particular,
B is connected, and B = NA�U� = L ∩ A = NA�L�.
Ad 4. Note first that L and U are normal in N◦�U�, with L simple,

and thus �L� U� = 1. Now let V = -�U� = -�UB� where - denotes the
Frattini subgroup. Our claim is that V = 1. Assuming the contrary, we may
replace U by V (which is also connected, as it coincides with U ′�x2 
 x ∈
U�). As N◦�U� ≤ N◦�V � < G, we find N◦�V � = L1 · CN

◦�V ��L1� with L1
again a component of type SL2. Here L1 ≥ B and thus L ∩ L1 �= 1. But
L∩L1  N◦�U� and thus L ≤ L1. On the other hand, U acts on L1 by inner
automorphisms and centralizes L, hence it centralizes L1. So L1 ≤ N◦�U�



444 altinel, borovik, and cherlin

and L1 = L. Now

UB < N◦
UA�UB� ≤ N◦

UA�-�UB�� = N◦
UA�-�U�� ≤ N◦�V � ≤ N�L�+

Thus UB < NUA�L� and B < NA�L�, a contradiction. Thus V = 1, proving
(4).

Ad 3. (b) Let B1 = CA
◦�u� with u ∈ U×. By Lemma 5.3, B1 is strongly

closed abelian in Cu
◦. As L ≤ Cu

◦, our assumption �∗� implies that no
infinite subgroup of B1 is normal in Cu

◦. Thus Lemma 3.3 implies that Cu
◦

is of the form L1 · CCu
◦�L1� with L1 a component of type SL2. As in the

argument above, we find L ≤ L1, then U centralizes L1, and finally L1 = L.
Thus L  Cu

◦ and we have C◦
u = L × CC◦

u
�L�.

Now let x ∈ CA�u�. Then L ∩ Lx ≥ B �= 1 and since Lx ≤ C◦
u as well

L ∩ Lx  Lx. This implies L = Lx, in other words, x ∈ NA�L�. This last
subgroup was shown in Part 3(a) to be equal to B. Thus CA�u� ≤ B. As
B = L ∩A by Part 3(a), B centralizes U , and we conclude that CA�u� = B.
This proves Part 3(b).

For the remainder of the analysis we fix the following

Notation 5.6. 1. U is a unipotent 2-subgroup of H.
2. L  N◦�U� is of type SL2, and L �≤ H.
3. B = L ∩ A and T is a torus in L normalizing B, so that B�T is a

Borel subgroup of L contained in H.
4. We take U to be a maximal unipotent 2-subgroup of C�L�.

We elaborate somewhat on the configuration identified in the previous
lemma.

Lemma 5.7. With the hypotheses and notation as above, we have:

1. If t ∈ T× then CA�t� = 1. In particular, A ∩ U = 1.
2. AU is a Sylow◦ 2-subgroup of H.
3. B = Z�AU� = �AU�′ = �A� u� for u ∈ U×.
4. N�AU� ≤ N�A� ∩ N�UB�.

Proof. Ad 1. As CA�t�  CN�A��t� and U ≤ CN�A��t�, U normalizes
CA�t�. As CB�t� = 1, the assumption CA�t� �= 1 forces U to centralize
elements of A \ B. But CA�U� = B.
Ad 3. We know B ≤ Z�AU�. That Z�AU� ≤ B follows easily from the

fact that CA�u� = B for u ∈ U×.
Now consider a commutator γ = �u� a� with u ∈ U×, a ∈ A×. By

Lemma 5.5(4), we have 1 = �u2� a� = γuγ, so γ ∈ CA�u� = B. Thus
�u� A� ≤ B and as T acts on both of these groups, with the action transitive
on B×, we find �u� A� = B for any u ∈ U×.
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Ad 4. As CA�u� = B for u ∈ U×, it follows that A and BU are maximal
elementary abelian subgroups of AU . We will show that A ∪ BU contains
all involutions of AU . This implies that A and BU are the only maximal
elementary abelian 2-subgroups of AU . Furthermore, A is strongly closed
in AU and hence is normalized by N�AU�; hence BU is also normalized
by N�AU�.

So consider an involution au ∈ AU . As a, u, and au are involutions, they
commute and thus if u �= 1 we find a ∈ B. Thus I�AU� = A× ∪ �BU�×, as
claimed, and (4) follows.
Ad 2. We consider a Sylow◦ 2-subgroup S containing AU and an element

s ∈ NS
◦�AU�. Then s acts on UB/B and thus there is some u ∈ U×, b ∈ B

with us = ub. But �u� A� = B so after replacing s by sa for a suitable
a ∈ A, we find us = u. Now L  Cu

◦ and s normalizes B, so s normalizes
L, and after a further adjustment by an element of B we have s ∈ C�L�.
All of this shows that N◦

S�AU� ≤ AC�L�. However, we have chosen U
to be maximal unipotent in C�L� and hence this implies N◦

S�AU� = AU ,
forcing S = AU .

Lemma 5.8. U is a Sylowo 2-subgroup of C�T �.
Proof. Let V be a Sylowo 2-subgroup of NC�T ��U�. Being in N◦�U�, V

normalizes L. V centralizes L since V centralizes T and its action on L is
by inner automorphisms. In particular, V ≤ C�B�. Then the assumption �∗�
implies V ≤ H, and by the maximal choice of U (Notation 5.6) we have
U = V .

Lemma 5.9. �E�CH
◦�T ��� B� = 1.

Proof. Let H1 = CH
◦�T � and Ĥ1 = C◦�T �. By Lemmas 5.5 and 5.8

and Fact 2.32, we have H1 = E�H1� × σ�H1� and Ĥ1 = E�Ĥ1� × σ�Ĥ1�,
where both E�H1� and E�Ĥ1� are products of components of type SL2 over
an algebraically closed field of characteristic 2.

As U is a Sylow◦ 2-subgroup of both H1 and Ĥ1, and E�H1� ≤ E�Ĥ1� is
normalized by U , we find that each component of E�H1� is a component
of E�Ĥ1�, using Fact 2.34, so E�H1�  Ĥ1.

Take an involution w ∈ L inverting T . Then w acts on Ĥ1 and permutes
the components of E�Ĥ1� while centralizing U , so w normalizes each com-
ponent of E�Ĥ1� and hence normalizes E�H1�.

Let T1 be a maximal torus of E�H1� normalizing U . Then T1 acts on
C�U� and hence normalizes L. Therefore �w� T1� ≤ L ∩ E�H1� ≤ CL�T � =
T ≤ σ�H1�, so �w� T1� ≤ E�H1� ∩ σ�H1� = 1. As the torus T1 acts on L
and commutes with w, we find �T1� L� = 1.

Consider H2 = C◦�T1�. By Lemma 5.3, �H2 ∩ A�◦ is a strongly closed
abelian 2-subgroup in H2, and by Lemma 4.5 L is contained in the product
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of the normal subgroups L∗ of H2 with the same structure—type SL2, with
L∗ ∩ �H2 ∩ A�◦ a Sylow 2-subgroup of L∗. Applying the hypothesis �∗�,
since L �≤ H, we find that there can be at most one such factor L∗, and
thus L ≤ L∗  H2.

We consider the Weyl group of E�H1� relative to T1. If w1 is any invo-
lution of E�H1� normalizing T1, then w1 commutes with T and permutes
the components of H2, so w1 normalizes L∗. Now as w1 is an involution
acting on L∗ and centralizing T , we find �w1� L∗� = 1, and in particular
�w1� B� = 1. As E�H1� is generated by T1 · �U ∩E�H1�� together with such
involutions, we find �E�H1�� B� = 1.

Lemma 5.10. B  H.

Proof. We have A ≤ O◦
2�H� ≤ AU . If O◦

2�H� > A then �O◦
2�H��′ = B

by Lemma 5.7, and hence B  H, as claimed. Therefore we will suppose
that O◦

2�H� = A, and in particular, by Fact 2.13, H is not solvable.
H̄ = H/σ◦�H� is a central product of quasi-simple algebraic groups in

characteristic 2, whose Sylow 2-subgroup is covered by U . As the torus T
commutes with U , it follows that T ≤ σ�H�.

Let R̄ be a Borel subgroup of H̄ containing Ū , with full preimage R.
By Schur–Zassenhaus (Fact 2.12) R splits as AU�T0 for some 2⊥-group T0
containing T . We claim that AU = F�R�. If we assume the contrary, then
O�N�AU�� �= 1, and then by Fact 2.37 G has a weakly embedded subgroup
M . Then M◦ is solvable (Fact 2.28), but a conjugate of M contains A, and
hence also H, contradicting our hypothesis above.

As AU = F�R�, it follows that T0 is a torus by Fact 2.10. Now σ◦�H�
splits as A�T2 with T ≤ T2 ≤ T0. Hence H ≤ AN◦

H�T2� ≤ AC◦
H�T � by

Fact 2.14, since T is the definable closure of its torsion subgroup, by
Fact 2.40. So it will suffice to show that CH

◦�T � normalizes B. Note also
that as H ≤ ACH

◦�T �, we know that CH
◦�T � is not solvable.

Now E�CH
◦�T �� centralizes B by the preceding lemma, and CH

◦�T � =
E�CH

◦�T �� × σ�CH
◦�T ��, as noted earlier. Let V = U ∩ E�CH

◦�T ��. Then
σ�CH

◦�T �� normalizes CA�V � and CA�V � = B (Lemma 5.5).

We now reach a contradiction as follows. By a Frattini argument N�A� =
N◦�A�N�AU� ≤ N�B�, and thus B is N�A�-invariant, which violates the
minimal choice of A. This completes the proof of Theorem 5.1.

6. 2-SYLOW STRUCTURE

We have shown that in a simple K∗-group G of finite Morley rank of even
type with an infinite definable abelian subgroup A which is strongly closed
in a Sylow◦ 2-subgroup, if G has no weakly embedded subgroup then, after
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taking A to be minimal N�A�-invariant, we arrive at a situation in which
A is a Sylow 2-subgroup of some proper subgroup L of the form SL2�K�,
where the Sylow◦ 2-subgroup of C◦�L� is nontrivial. This is the point of
Theorem 5.1. In the present section we show that this allows us to get a
detailed description of the Sylow◦ 2-subgroups of G. In the main case, they
will resemble Sylow subgroups of SL3 in characteristic 2. We will also show
that C◦�A� is solvable.

Lemma 6.1. Let G be a K∗-group of finite Morley rank of even type con-
taining a definable subgroup A�T isomorphic to a Borel subgroup of SL2�K�
for some algebraically closed field K of characteristic 2, with A the Sylow 2-
subgroup and T a maximal torus normalizing A. Then N◦�A� = C◦�A� · T .

Proof. Let T̄ be the image in N�A�/C�A� of T . By Fact 2.16 there is a
Sylow◦ 2-subgroup S̄ of �N�A�/C�A��◦ which is T̄ -invariant. As the 2-group
S̄ acts on A, CA�S̄� is nontrivial and T̄ -invariant. Hence S̄ centralizes A,
and as the action is faithful S̄ = 1.

As �N�A�/C�A��◦ is a connected K-group with trivial Sylow◦ 2-subgroup,
it is solvable (Fact 2.33). As A is N◦�A�-minimal (consider T ), by Fact 2.21
the induced action of N◦�A� on A is abelian. As T̄ acts transitively on A,
we find �N�A�/C�A��◦ = T̄ , which yields the claim.

We now find it convenient to introduce the notion of a standard compo-
nent, which in groups of even type is defined as follows.

Definition 6.2. Let G be a group of finite Morley rank and even type
and L be a definable connected quasisimple subgroup of G. Then L is
called a standard component for G if C�L� contains an involution, and L is
normal in C◦�i� for all such involutions.

This definition does not include the important condition which is
required in the finite case:

L does not commute with any of its conjugates. �∗�

It turns out that this condition can eventually be proved on the basis of the
definition as we have given it, but this result depends on the strongly closed
abelian classification given here, so it is not available at this point.

Lemma 6.3. Let G be a simple K∗-group of even type with an infinite
definable strongly closed abelian subgroup A. Suppose that L is a definable
subgroup of G with L � SL2�K� for some algebraically closed field K of
characteristic 2, that A is a Sylow 2-subgroup of L, and that L commutes
with some involution. Then L is a standard component for G.
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Proof. Let i be an involution commuting with L. Since A is strongly
closed abelian and lies in C◦�i�, by Lemma 3.3 there is a normal subgroup
L1 of C◦�i� of the form SL2�K1�, which meets A in a Sylow 2-subgroup;
then L normalizes L1 and hence the normal closure of L1 ∩ A in L is
contained in L1. Thus L = L1 is normal in C◦�i� and L is a standard
component for G.

Lemma 6.4. Let G be a simple K∗-group of even type with an infinite
definable strongly closed abelian subgroup A. Suppose that L is a definable
subgroup of G with L � SL2�K� for some algebraically closed field K of char-
acteristic 2, that A is a Sylow 2-subgroup of L, and that a Sylow◦ 2-subgroup
U of C�L� is nontrivial. Then AU is not a Sylow◦ 2-subgroup of C�A�.
Proof. Suppose on the contrary that AU is a Sylow◦ 2-subgroup of

C�A�, and hence also of N�A� by Lemma 6.1. Let H = N◦�L�. We claim
that

for V ≤ AU nontrivial unipotent, we have N◦�V � ≤ H+ �1�
We will first show that this produces a contradiction. If �1� holds then

Fact 2.27 applies and yields a weakly embedded subgroup M of G which
we may suppose contains AU , and hence also L. This violates Fact 2.28.

We first verify �1� in the special case V = A:

�1A� N◦�A� ≤ N�L�+
As N◦�A� is generated by its Borel subgroups, let B be one such. We
may suppose that U is chosen to be a subgroup of B. As AU is a Sylow◦

2-subgroup of B, B splits as �AU��T1 with T1 a 2⊥-group.
We show now that T1 is abelian. Let K = C◦�AU�. Then as K ≤ C◦�U�,

K normalizes L. As K ≤ C�A�, K = A · CK
◦�L�. By Fact 2.12, CK

◦�L�
splits as U × H1 with H1 = O�K�. If O�K� �= 1 then by Fact 2.37 there is
a weakly embedded subgroup of G, which as we have observed produces a
contradiction. Thus O�K� = 1 and C◦�AU� = AU . In particular, F◦�B� =
AU , and hence T1 is abelian, by Fact 2.10.

Let T be a torus in NL�A�. We claim T ≤ σ�N�A��, because T ≤
C�AU mod A�, and AU/A is a Sylow◦ 2-subgroup of N�A�/A (Fact 2.29).
Applying Fact 2.29 to N◦�A�, our claim follows. In particular, T ≤ B and
we may suppose that T ≤ T1. Let T2 = T1 ∩ C◦�A�. Then T1 = T · T2 as T
is transitive on A and T1 is abelian.

For t ∈ T2, we have �t� AU� = �t� U� ≤ CAU�T � = U . Thus W =

�T2� AU� ≤ U , W �= 1, and T2 ≤ N◦�W � ≤ N�L� as L is a component of
C�W �. So B = AUTT2 ≤ N�L�, as required, and (1A) follows.

We now deal with the general case of �1�. We have A ≤ N◦�V �. If A  
N◦�V �, then we have N◦�V � ≤ N◦�A� ≤ N�L�. Assume A is not normal
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in N◦�V �. Then, by Lemma 3.3, we have N◦�V � = L1 × CN
◦�V �

◦�L1�, with
L1 � SL2�K1� for some algebraically closed field K1 of characteristic 2, and
A ∩ L1 ∈ Syl2�L1�. As L1� V  N◦�V �, we have �V� L1� = 1.

Let T1 be a maximal torus in NL1
�A�. Now V� T1 ≤ N◦�A� ≤ N◦�L� by

(1A). As T1 acts regularly on A, V centralizes A and T1, and both act on
L, we find that �V� L� = 1. As L is a standard component for G, we have
L  N◦�V �, as required.

Our goal now is the following instance of Theorem 1.3.

Proposition 6.5. Suppose that

1. G is a simple K∗-group of finite Morley rank, and of even type.

2. L is a standard component of type SL2 in G, and A is a Sylow
2-subgroup of L.

3. U is a Sylow◦ 2-subgroup of C�L� and is nontrivial.
Then AU is a Sylow◦ 2-subgroup of C�A�.
This in conjunction with the previous lemma provides the contradiction

that completes the proof of Theorem 1.1. We will now show that it also
proves Theorem 1.3.

Proof of Theorem 1.3. The hypotheses are as above, and we now assume
in addition that AU is a Sylow◦ 2-subgroup of C�A�. We must show that
AU is a Sylow◦ 2-subgroup of G.

Let T be a maximal torus in NL�A� and let S be a T -invariant Sylow◦

2-subgroup of NG�AU� (Corollary 2.17). It suffices to show that S = AU .
Now Z�S� ∩ AU is infinite and T -invariant, hence in view of the action
of T on AU , either A is central in S or Z�S� ∩ AU ≤ U . But if Z�S�
meets U nontrivially, and u is an involution in Z�S� ∩ U , then as L is
a standard component and L� S ≤ Cu, we find that S normalizes L, and
hence S normalizes L ∩ AU = A; thus again Z�S� meets A, and hence it
contains A.

We conclude that in any case A ≤ Z�S�, so S ≤ C�A�. Hence S = AU ,
as claimed.

For the remainder of the paper we devote our attention to the proof
of Proposition 6.5. We fix the following additional hypotheses and nota-
tion, whose numbering continues that of the proposition. In view of the
hypothesis (5) which follows, we will seek a contradiction.

Notation 6.6. 4. NL�A� = A�T with T a maximal torus of L. S is
a Sylow 2-subgroup of C�A�, chosen so that S◦ is T -invariant (Corollary to
Fact 2.16).

5. S◦ > AU .
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6. V = NS�L� and Û = CV �L�. Thus Û◦ = U and V = A × Û .
7. W = �:1

◦Z��NS
◦�V ◦�mod V ◦�, or in other words, the pullback to S

of :1
◦Z�NS

◦�V ◦�/V ◦�.
Our goal at this point is to work out the structure of W first and then to

show that W = S◦.
We insert a useful general remark which has already made an appearance

above.

Lemma 6.7. G has no weakly embedded subgroup. In particular, 2-local
subgroups are core-free.

Proof. If G has a weakly embedded subgroup M , then we may suppose
that M contains U . By weak embedding, M contains L, and this contradicts
Fact 2.28. The last statement is Fact 2.37.

Lemma 6.8. V is elementary abelian.

Proof. Supposing the contrary, we have -�V � = -�Û� �= 1 with -

denoting the Frattini subgroup. Thus NS�V � ≤ NS�-�V �� = NS�-�Û�� ≤
NS�L� as L is a component of C�-�Û�� and S normalizes A. Hence
NS�V � = V and S = V , S◦ = AU , a contradiction.

Thus W has exponent at most 4.

Lemma 6.9. For v ∈ V \ A,

1. CS�v� = V ,
2. �W� v� = A.

Proof. We have v = ua with u ∈ Û× and a ∈ A. Hence CS�v� = CS�u�
and �W� v� = �W� u�, so we may take v = u ∈ Û×.

Ad 1. As L is a component of C�v� and S normalizes A, we have
CS�v� ≤ NS�L� = V .

Ad 2. We show that �W� v� ≤ A. As �W� v� is nontrivial (6.6(5) and
Part (1)) and T -invariant, our claim follows. So let γ = �w� v� with w ∈ W .
We may suppose w ∈ W \ V .

Suppose first that γ ∈ V . As w2 ∈ V ◦, we have 1 = �w2� v� = γwγ, so
w ∈ C�γ�; if γ /∈ A we find w ∈ V by part (1), a contradiction. Accordingly,
if γ ∈ V then γ ∈ A. This applies in particular if v ∈ V ◦ since γ ∈ V ◦ in
this case.

To complete the analysis we show that γ ∈ V . Let v0 ∈ V ◦ \ A. Then
γv0 = �wv0� v� = γ as wv0 ∈ wA. Hence γ ∈ CS�v0� = V , as required.

Corollary 6.10. W/A is elementary abelian.
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Proof. For w ∈ W \ V , as w ∈ C�w2� it follows that w2 ∈ A.

This gives adequate control on W . We aim next at showing W = S◦. To
this end, we introduce the following additional notation.

Notation 6.11. 1. Ŵ = �:1
◦Z��NS�W �mod W �.

2. W1 = �Z�Ŵ mod A� ∩ W �◦.
3. V1 = �Z�Ŵ mod A� ∩ V �.
We will also use the notion of a continuously characteristic subgroup.

Our usual notion of a characteristic subgroup is actually “definably
characteristic”—invariant under definable automorphisms of the ambi-
ent group. The condition for “continuously characteristic” is weaker—
invariance under all definable connected groups of automorphisms of the
ambient group.

Lemma 6.12. V1 > A.

Proof. Assume V1 = A. Then W1 ∩ V ◦ = A. As W is normal in Ŵ , we
have W1 > A. For v ∈ V ◦ \ A we find that �W1� v� ≤ A is nontrivial and
T -invariant, so �W1� v� = A and rk �W1/A� = rk A. Similarly, rk �W/V ◦� =
rk A and hence W = W1 · V ◦.

In addition, we have 1 → A → W1 → W1/A → 1, with T acting. The
action of T on both A and W1/A is standard (field multiplication), as
W1/A � �W1� v� as a T -module for any v ∈ V ◦ \ A. It follows that W1
is abelian by Fact 2.41.

To conclude, we will show that V ◦ is continuously characteristic in W .
This implies V ◦  Ŵ , and hence V1 > A.

Suppose first that W1 is elementary abelian. Then I�W � = V ◦× ∪W ×
1 , and

in particular, V ◦ and W1 are the only maximal elementary abelian subgroups
of W . Thus V ◦ is continuously characteristic in W .

Now suppose that W1 is homocyclic of exponent 4. Then I�W1� = A×. If
I�W � = V ◦× then again V ◦ is continuously characteristic in W , so suppose
that there is an involution of the form wv with w ∈ W1 \ A and v ∈ V ◦.
Then we can take v ∈ U . Then every coset of V ◦ in W \ V ◦ contains a
T -conjugate of wv, �wv�t = wtv. It is then easy to see that the involutions
of W \ V ◦ are of the form wtva with w� v fixed and t� a varying respectively
over T and A. If two such involutions w1va1 and w2va2 commute, we find
1 = �w1v� w2v� = �w1� v��w2� v�, forcing w1 = w2. It follows that V ◦ is the
unique maximal connected elementary abelian subgroup of W , and that it
is characteristic in W .

Corollary 6.13. S◦ = W .

Proof. Take v ∈ V1 \A. Then �Ŵ � v� = A = �W� v� and hence Ŵ =
W · CŴ �v� = W . Thus S◦ = W .
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Lemma 6.14. C◦�A� is solvable.

Proof. Let H = C◦�A� and H̄ = H/A. As H̄ is a connected K-group
of even type with abelian Sylow◦ 2-subgroups, by Fact 2.32 H̄ = L̄1 × · · · ×
L̄n × σ�H̄�, with L̄i � SL2�Ki�, where each Ki is an algebraically closed
field of characteristic 2. By Fact 2.30 (and [29]), L̄i is covered by Li �
SL2�Ki�, and then H = L1 × · · · × Ln × σ�H�.

However, the structure of S◦ does not allow this for n ≥ 1: for v ∈ V \A,
we see that V = CS�v� meets L1 in a nontrivial central subgroup of S◦.
As Z�S◦� = Z�W � = A by Lemma 6.9, we have A ∩ L1 �= 1, but A is
central in H.

7. FINAL ANALYSIS

For our concluding argument we need a form of the Thompson Rank
Formula, which is an analog of the Thompson Order Formula for finite
groups, in the context of groups of finite Morley rank of even type. This
has turned out to be a very useful tool in [3], but the version of the rank
formula given in [3] applies only to groups containing a finite number of
conjugacy classes of involutions. Here we give a more general form which
does not require this hypothesis.

We need a variant of the definability lemma given in [3]:

Lemma 7.1 (Variant of Lemma 6.2 of [3]). Let G be a group of finite
Morley rank of even type.

(i) If i, j are involutions then there is at most one involution in d��ij��.
(ii) If i and j are nonconjugate involutions then d��ij�� contains an

involution.
(iii) The function θ�i� j�, which associates to each pair �i� j� of involutions

the unique involution in d��ij��, when there is one, is definable.

Proof. The first two points are standard (cf. [3]). We prove (iii). For any
a, define Za = Z�C�a��. As Za is an abelian group of finite Morley rank
and of even type, it has the form Ba ⊕ Da with Ba a 2-group of bounded
exponent and Da a 2⊥-group. As Za ≤ G, the exponent of Ba is uniformly
bounded. Accordingly D = Da is definable, uniformly, from a. As G is of
even type, Da contains no involutions. As a is of uniformly bounded order
modulo Da, the group �a�Da is also definable uniformly in the parameter a.

So to conclude it suffices to check

I�d��a��� = I��a�Da�
Of course, d��a�� ≤ �a�Da, so it suffices to check that any involution i

in �a�Da lies in d��a��. In fact, one may check that �a�Da contains at most
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one involution and that if it does contain an involution then so does d��a��,
because a is then of even order modulo d��a��◦.
Fact 7.2 ([9, Exercise 14, p. 65]). Suppose G is a group of finite

Morley rank and A and B are two definable subsets of G. If f is a defin-
able function from A onto B, B = %iBi is a finite partition of B into
definable sets, and for b ∈ Bi, rk f−1�b� = ri is constant, then rk A = maxi

�ri + rk Bi�.
Let G be a group of finite Morley rank and suppose there exists n > 1

such that %n
1Xi is a definable partition of I�G�, where each Xi is a union of

conjugacy classes of involutions whose centralizers have constant rank ci;
thus each conjugacy class contained in Xi has rank g − ci, with g = rk G.

Take two distinct Xi, say X1 and X2, and define the map θ of Lemma 7.1
using these two sets. Thus θ 
 X1 ×X2 → I�G� is definable. For each i and
f ≤ rk�X1 × X2�, let Xif = �x ∈ Xi 
 rk�θ−1�x�� = f�. Then Xi = %Xif ,
where f varies over the set of fiber ranks for which Xif is nonempty. This
is a finite partition of Xi into definable sets Xif which are again unions of
conjugacy classes.

As the restriction of θ to Xif has fibers of constant rank, by Fact 7.2,
rk�X1� + rk�X2� = rk�Xif � + f ≤ rk�Xi� + f for some i and some fiber
rank f .

On each set Xi, conjugacy induces a definable equivalence relation ∼. If
Ci is a single conjugacy class contained in Xi, then rk�Xi� = rk�Xi/ ∼�+
rk�Ci� = rk�Xi/ ∼� + g − ci. We will denote ci − rk�Xi/ ∼� by c̃i, so
that rk �Xi� = g − c̃i. Thus the inequality rk�X1� + rk�X2� ≤ rk �Xi� + f
becomes g − c̃1 + g − c̃2 ≤ g − c̃i + f , that is, g ≤ c̃1 + c̃2 − c̃i + f . We will
write c̃3 for the relevant value of c̃i, but one should bear in mind that the
subscripts 1� 2� 3 stand for three indices i1� i2� i3, some of which may coin-
cide. This formula has the same form as the one given in [3], except that
ci is replaced by c̃i.

We resume the analysis from the point reached in Section 6. The nota-
tion and hypotheses were fixed in 6.5 and 6.6. The main notations were as
follows.

Notation 7.3. 1. G is a simple K∗-group of finite Morley rank, and
of even type.

2. L is a standard component of type SL2 in G, A is a Sylow 2-subgroup
of L, and NL�A� = A�T .

3. U is a Sylow◦ 2-subgroup of C�L� and is nontrivial.

4. S is a Sylow 2-subgroup of C�A� containing AU , and W = S◦ is
T -invariant.

5. V = NS�L� and Û = CV �L�. Thus Û◦ = U and V = A × Û .
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Furthermore, we recall the following essential properties.

Fact 7.4. 1. N◦�A� = C◦�A��T is solvable.
2. V is elementary abelian.
3. W > AU .
4. A = Z�W � and W/A is elementary abelian.
5. For v ∈ V \A, CS�v� = V and �W� v� = A.

Lemma 7.5. For u ∈ U×, we have C◦�u� = U × L.

Proof. Set H = C◦�u�. Then L  H as L is a standard component. Thus
H = L · CH

◦�L�. CH
◦�L� is solvable with 2-Sylow◦ U (Fact 7.4 (1,2)), and

hence splits as U�T1 (Fact 2.12). T1 normalizes V ◦.
For t ∈ T1 and w ∈ W we have �u� w� = �u� w�t = �u� wt� and hence wt ∈

wV (Fact 7.4(4,5)). Hence for v ∈ V ◦ we find �w� v� = �w� v�t = �wt� vt� =
�w� vt� (Fact 7.4 (2)) and �V ◦� T1� ≤ Z�W � = A. Thus T1 acts trivially on
V ◦/A and on A, hence also on V ◦, by Fact 2.23. So T1 ≤ O�C◦�u��. By
Lemma 6.7, O�C◦�u�� = 1.

Now we work with the following sets of involutions.

Notation 7.6. 1. I1 is the set of involutions which are conjugate to
an involution in A.

2. I2 is the set of involutions which are conjugate to an involution in
U .

Remark 7.7. The sets I1 and I2 are disjoint, as a Sylow◦ 2-subgroup of
the centralizer of one of these involutions is nonabelian in the first case
and abelian in the second (Fact 7.4(4), Lemma 7.5). Furthermore, by the
preceding lemma, the ranks of conjugacy classes are constant over I2 (this
is not an issue for I1, as it consists of a single class).

Lemma 7.8. W is a Sylow◦ 2-subgroup of G.

Proof. Let W0 be a Sylow◦ 2-subgroup of NG�W �. Then W0 ≤ N◦�A�
and as N◦�A�/C◦�A� is a torus, we have W0 ≤ C◦�A�. Hence W0 = W .
The claim follows.

Lemma 7.9. For a ∈ A× we have C◦�a� = C◦�A�.
Proof. Let B be a Borel subgroup of C◦�a� containing W . Then B

splits as W �T0 with T0 a connected 2⊥-group. By Fact 7.4(4), T0 ≤ N◦�A�.
Moreover, N◦�A� = C◦�A��T and �T0� a� = 1, so T0 ≤ C◦�A�. As
C◦�a�/σ�C◦�a�� is a product of simple algebraic groups in characteristic 2
and A commutes with T0, which covers a maximal torus in the quotient,
we find A ≤ σ�C◦�a��. As σ◦�C◦�a�� ≤ WT0, we find A ≤ Zσ◦�C◦�a��.
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Let B = A ∩ Z�C◦�a�� and T1 = �t ∈ T 
 at ∈ B�. For t ∈ T1, we have
C◦�a� ≤ C◦�at�, and hence C◦�a� = C◦�at� and therefore B = Bt . Thus
T1 = NT �B�. Now T1 acts transitively on B×, so the pair �B� T1� represents
a subfield of the field represented by the pair �A� T �. By finiteness of rank,
either B = A as claimed or else B is finite (cf. [27, Lemme 3.2]). Assume
that B is finite.

Let r ∈ C◦�a� act modulo σ�C◦�a�� as an involution normalizing
T0σ�C◦�a�� and exchanging T0W with an opposite Borel subgroup. Adjust-
ing r by an element of σ�C◦�a��, we may suppose that r normalizes
T0. Thus r acts on Cσ�C◦�a���T0� and in particular Ar ≤ Cσ�C◦�a���T0�.
Let B1 = A ∩ Ar . Then C�B1� contains σ◦�C◦�a��, W , and W r ; so
B1 ≤ Z�C◦�a��. Thus B1 is finite.

Now by Lemma 7.8, -�O2�C◦�a��� ≤ A and -�O2C
◦�a�� is r-invariant,

so -�O2�C◦�a��� ≤ B1 is finite. Thus O2
◦�C◦�a�� is elementary abelian.

Furthermore, rk�O2
◦�C◦�a��� ≥ rk�AAr� = 2rk�A� and by the structure of

W this forces O2
◦�C◦�a�� = AAr . Hence �T0� O2

◦�C◦�a��� = 1.
Let H be the subgroup generated by all conjugates of T0. Then

�H� O2
◦�C◦�a��� = 1. Since C◦�a� = Hσ◦�C◦�a�� and A commutes with

both factors, our claim follows.

Lemma 7.10. For a ∈ A× we have C�a� = C�A�.
Proof. It follows from the preceding lemma, together with A = Z�W �,

that A = O2
◦�Z�C◦�a���. Hence A  C�a�. By Lemma 6.1, we have

TC�A�/C�A�  N�A�/C�A�. Note also that A is TC�A�/C�A�-minimal.
By Fact 2.21,

TC�A�/C�A� ≤ Z�N�A�/C�A���
so �T� C�a�� ≤ C�A�. Thus for t ∈ T , a ∈ A×, and c ∈ C�a�, we have
atc = a�t−1� c−1�ct = act = at . Since T acts transitively on A we conclude that
C�a� = C�A�.
Lemma 7.11. Let θ 
 I1 × I2 → I�G� be the Thompson map. If A is

strongly closed in W , then the image of θ is contained in I2.

Proof. Let i = θ�a� u� lie in the image. We may suppose u ∈ U . As i ∈
C�u�, we have i ∈ N�L� (Lemma 7.5), and hence i centralizes a conjugate
of A in L. Without loss of generality i centralizes A.

Now a belongs to a conjugate A1 of A and i ∈ C�a� = C�A1�, by
Lemma 7.10. If A� A1 generate a 2-subgroup of C◦�i� then since A is
strongly closed in W we find A1 = A and a ∈ A, i = ua ∈ I2. Oth-
erwise, applying strong closure again in connection with Lemma 3.3 and
Theorem 4.1, we get components L1� L2  C◦�i� containing A1, A respec-
tively, of the form SL2. As A and A1 do not commute, these components
coincide.
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Now u ∈ C�i� and �u� A� = 1, so u ∈ N�L1�, and i ∈ d���ua��� ≤ �u� ·
L1. Since L1 ≤ C�i�, i /∈ L1, so i ∈ u · L1. As u ∈ C�A�, u acts on L1
like an element a1 of A. So iua1 ∈ L1 ∩ C�L1� = 1, and i ∈ uA ≤ V ◦\
A ⊆ I2.

The next few lemmas are only relevant when A is not strongly closed in
W . As we have indicated, the added generality will be useful in practice.

Lemma 7.12. Suppose that A1 is a conjugate of A such that A1 �= A and
A1 ∩ W �= 1. Then:

1. A1 ≤ W and A1 ∩ A = 1. Set B = A · A1. Then

2. B ∩ V = A and W = BV ◦.

3. I�W � = I�V � ∪ I�B�.
4. B = �Ag 
 g ∈ G� �A� Ag� = 1� = �AN�B��.

Proof. Ad 1. Take a ∈ �A1 ∩ W �×. Then A ≤ C◦�a� = C◦�A1�, so
A1 ≤ C◦�A�, which is solvable. So A1 ≤ O2

◦�C◦�A�� = W .
If a ∈ �A1 ∩ A�× then C◦�a� = C◦�A� = C◦�A1� and hence A1 ≤

Z�W � = A, a contradiction. Thus A1 ∩ A = 1. Accordingly B = AA1 is
an elementary abelian subgroup of W .

Ad 2. B is elementary abelian and rk B = 2 rk A. If v ∈ �B ∩ V � \A, then
by Fact 7.4 (5) we have B ≤ V . But V \A ⊆ I2 by Fact 7.4(5) and B \A
meets I1, a contradiction. Thus B ∩ V = A.

For v ∈ V ◦ \ A, by Fact 7.4(5) and rank considerations we have �v� B� =
A, so W = BC◦

W �v� = BV ◦.

Ad 3. If bv ∈ I�W � with b ∈ B and v ∈ V ◦, then b and v commute as
b2 = v2 = �bv�2 = 1. Now Fact 7.4(5) implies that either b ∈ V ◦ or v ∈ B.
This proves (3).

Ad 4. If A2 �= A is a conjugate of A and �A� A2� = 1, then A2 ≤ W , so
A×

2 ⊆ I�W �, while A2 ∩ V = 1. So A2 ≤ B. This proves the first equality.
For the second, take A2 = Ag ≤ B. We will show that g ∈ N�B�. We
have Bg = �Ah

2 
 h ∈ G� �A2� Ah
2 � = 1�, so B ≤ Bg. Thus B = Bg and

g ∈ N�B�.
Lemma 7.13. Suppose A is not strongly closed in W , and let B = �Ag 


g ∈ G� �A� Ag� = 1�. Then

1. N�B� acts transitively on B×.

2. rk U = rk A.

Proof. Let H̄ = �N�B�/C�B��◦. Note that N◦�A� ≤ N◦�B�. We claim

B is H̄-irreducible+ �∗�



groups of finite morley rank 457

Take B1 ≤ B H̄-irreducible. As �U� B1� ≤ B1, we find B1 ∩A �= 1; in view
of the action of T , A ≤ B1. In particular, B contains a unique H̄-irreducible
submodule, so B

N�B�
1 = B1. As A ≤ B1, point (3) of the preceding lemma

implies B = B1.
Now O2�H̄� = 1, as otherwise CB�O2�H̄�� < B is H̄-invariant. In view of

Fact 2.32,

H̄ = E�H̄� × O�H̄�
with E�H̄� a product of groups Li � SL2�Ki� for suitable fields Ki of
characteristic 2.

O�H̄� stabilizes CB�Ū� = A. Furthermore, T̄ ≤ O�H̄� since �T� U� = 1
and W = BU . By Fact 2.21, O�H̄�′ centralizes A, and hence B by irre-
ducibility, and O�H̄� is abelian. It follows that O�H̄� = T̄ .

By Fact 2.20, T̄ gives B a K-structure for some field K, and in view of
the action on A, T may be identified with K×. Furthermore, the action of
E�H̄� is K-linear. As rk B = 2 rk A, B has dimension 2. One expects E�H̄�
to reduce to SL2�K� with the same field and the natural representation,
and we will now check this.

Let L0 be a component of E�H̄�. Then B is L0-irreducible and hence
L0 = E�H̄�. Let T̄0 be a maximal torus of L0 normalizing Ū , and let w̄ be
an involution in L0 inverting T̄0. Let v1 ∈ A×, v2 = vw̄

1 , and consider the
representation of L0 over K with respect to this basis. Then Ū is repre-
sented by strictly lower triangular matrices M�u� and (in view of the action
of w̄ on T̄0) T̄0 is represented by diagonal matrices D�t� ∈ SL2�K�; let m�u�
and d�t� be the corresponding elements of K, that is, m�u� = M21�u� and
d�t� = D11�t�. Let Ka and Km be, respectively, the image of m on Ū and
the image of d on T̄0. Then Ka is an additive subgroup of K, Km is a mul-
tiplicative subgroup of K×, and Km acts on Ka by �t� u� '→ t−2u. As T̄0 acts
transitively on Ū , it follows that Km ∪ �0� is also closed under addition and
thus is a subfield of K. By finiteness of rank, Km ∪ �0� = K. Thus the base
field K0 of L̄0 can be identified with K, and the action is as expected.

In particular, N�B� acts transitively on B× and we can compare the ranks:
rk U = rk K0 = rk K = rk A.

Lemma 7.14. If A is not strongly closed in W , then I�G� = I1 ∪ I2.

Proof. We show first that I�W � ⊆ I1 ∪ I2 in this case. By Lemma 7.12(3),
we have I�W � = I�B� ∪ I�V �, and we know I�V � ⊆ I1 ∪ I2. By the preced-
ing lemma, I�B� ⊆ I1. Thus I�W � ⊆ I1 ∪ I2, and to conclude it will now
suffice to show that W is a Sylow 2-subgroup of G and not just a Sylow◦

2-subgroup.
Suppose that s ∈ N�W � and s2 ∈ W . We must show that s ∈ W .
Let B = �Ag 
 g ∈ G� �A� Ag� = 1�. Let a ∈ A×, �s� a� = 1. Then s ∈

C�a� = C�A�, so �s� A� = 1.
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Note that B and V ◦ are normal in N�W �. In particular, �s� V ◦� ≤ V ◦.
Take u ∈ U× with �s� u� ∈ A. By Fact 7.4(5), after replacing s by a suitable
sb with b ∈ B, we may suppose that �s� u� = 1. Then s acts on C◦�u� = LU
(Lemma 7.5) and normalizes W . In particular, s acts on L like an element
of A, so after a second adjustment we may suppose that �s� L� = 1. Then
s2 ∈ CW �L� = U . Choose b ∈ B \A so that �s� b� ∈ A. Then 1 = �s2� b� and
s2 ∈ U , so s2 ∈ A by Fact 7.4(5). But A ∩ U = 1, so s2 = 1.

As rk U = rk A, it follows as in Lemma 6.9(2) that �U� b� = A, and hence
after a third adjustment we may take �s� b� = 1. It is possible that we have
now obtained s = 1, in which case we are finished. Assume not, and we will
reach a contradiction.

As L ≤ Cs is a standard component and s is an involution, we have
L  Cs

◦. Now b acts on Cs
◦ and it is easy to see that L is the only component

of Cs
◦, so b normalizes L and hence also C◦�L� ∩ W = U . But this is not

so. We have reached a contradiction.

We now undertake some Thompson rank computations. We use the fol-
lowing notation throughout:

f = rk A( u = rk U ( g = rk G( cA = rk C�A�

Lemma 7.15.

rk I2 ≥ 4f + u+

Proof. We consider the partial Thompson map

θ0 
 I2 × I2 → I2

which is defined for pairs u1� u2 distinct in I2 for which d��u1u2�� contains
an element of I2.

The map θ0 has large fibers. The set ��a� b� ∈ I�L� × I�L� 
 ab is a 2⊥-
element of L� is a generic subset of I�L� × I�L�. It follows that for u1� u2 ∈
U we have θ0�u1a� u2b� = u1u2 over a generic subset of I�L� × I�L�. Thus,
as rk�I�L�� = 2f , the fiber rank of θ0 is at least 4f + u. On the other hand,
over a generic subset of I2 the fiber rank is at most rk �I2 × I2� − rk I2 =
rk I2, so we find

rk I2 ≥ 4f + u+

Lemma 7.16. Generically, the Thompson map θ 
 I1 × I2 → I�G� maps
into I2.

Proof. If A is strongly closed in W , then this map literally maps into I2.
If A is not strongly closed in W , then I�G� = I1 ∪ I2 and thus it suffices
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to show that the set D = �x ∈ I1 × I2 
 θ�x� ∈ I1� has rank less than
rk I1 + rk I2. Suppose therefore

rk D = rk I1 + rk I2+

Then the fiber ranks for θ over points of I1 will be rk I2.
But we may compute this fiber rank exactly. We are assuming that A

is not strongly closed in W , and hence that W is a Sylow subgroup of
G. Let B = �Ag 
 g ∈ G� �A� Ag� = 1�. Let a ∈ I1, say a ∈ A×, and let
a = θ�a1� v�. Then a1� v ∈ C�a� = C�A�. It follows that a1� v ∈ W and
hence that a1 ∈ B, v ∈ V \ A. Thus a = �a1� v�, and the rank of θ−1�a� is
rk B + rk V − rk A = 3f . This is considerably less than our lower bound for
rk I2, a contradiction.

Lemma 7.17. g = cA + 4f .

Proof. We consider the Thompson map θ
 I1 × I2 → I�G�, or more
exactly its restriction θ0 to the preimage of I2, which is generically defined
in I1 × I2 and quite possibly total. We claim that the rank of the fibers
of θ0 above I2 is constant and equal to 4f . Granted this, we have 4f =
rk�dom θ0� − rk�im θ0� = rk I1, or g − cA = 4f , as claimed.

So we now carry out the fiber rank computation. Fix u ∈ U . For a� b ∈
I�L� we have, generically, that ab is semisimple and that a · ub corresponds
to u under the Thompson map (that is, d��uab�� = �u�d��ab��, with the
second factor a torus). Thus r ≥ 4f .

Conversely, if θ�a� v� = u ∈ U× then u ∈ C�a� = C�A1� for some conju-
gate A1 of A, and thus a ∈ C◦�u� = U × L, forcing a ∈ L. Also, v ∈ N�L�
and as u is the image of �a� v� under the Thompson map, we have u ∈ vL,
equivalently v ∈ uL, and so v ∈ u · I�L�. This shows that r ≤ 4f .

Lemma 7.18. C◦�A� = W �T1 for some torus T1 (meaning T1 is definable,
abelian, and divisible) with rk NT1

�V ◦� ≤ rk U and rk T1/NT1
�V ◦� ≤ f −

rk U . In particular, rk T1 ≤ f .

Proof. C◦�A� is solvable with Sylow◦ 2-subgroup W . Thus it splits
definably as W �T1 for some 2⊥ group T1. Now C◦�A� is core-free, by
Lemma 6.7, so the Fitting subgroup is W and the quotient T1 is divisible
abelian (Fact 2.10).

Now we estimate rk T1/NT1
�V ◦�. We first estimate rk I�W �. For each

coset C of V ◦ in W , other than V ◦ itself, the rank of the set of involutions
in C is f : if w ∈ W \ V ◦ and w� wv are both involutions, with v ∈ V ◦,
then w and v commute and hence v ∈ A. Thus the rank of I�W � is at
most 2f . On the other hand, the rank of I�V ◦� \ A× is f + rk U . Thus
our estimate will follow if we show simply that distinct conjugates of V ◦

under T1 meet only in A. This is clear: if v ∈ ��V ◦�t1 ∩ �V ◦�t2 � \ A then
�V ◦�t1 = C◦

W �v� = �V ◦�t2 .
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We claim last that rk NT1
�V ◦� ≤ rk U . Let V1 ≤ V ◦ be minimal sub-

ject to V1 > A and V1 = CV
◦�X� for some X ≤ NT1

�V ◦�. (Most proba-
bly, V1 = V ◦ and X = 1.) Fix v ∈ V1 \ A. The structure of C◦�v� is given
by Lemma 7.5 since v is conjugate in W to an element of U , and this
implies that T0 = CT1

�V1� is finite. As T1 is abelian, NT1
�V ◦�/T0 acts on

V1. If t ∈ NT1
�V ◦� \ T0 fixes a point of �V1/A�×, then t fixes a point of

V \ A (Fact 2.23) and hence we contradict the minimality of V1 by con-
sidering CV �T0 ∪ �t��. Thus NT1

�V ◦�/T0 acts semiregularly on V1/A and
rk NT1

�V ◦� = rk �NT1
�V ◦�/T0� ≤ rk �V1/A� ≤ rk U .

We will use the notation u = rk U and t1 = rk T1 in conjunction with the
notation of the preceding lemma. In particular, as t1 ≤ f by Lemma 7.18,
we have cA = 2f + u + t1 ≤ 3f + u.

Now we can show, finally, that the configuration we have obtained is
inconsistent.

Proof. We have rk I2 = g − cV + rk�I2/ ∼� where cV = u + 3f is the
rank of C�v� for v ∈ I2 and ∼ is the equivalence relation of conjugacy in
G. We apply Lemma 7.15, taking g = cA + 4f , and then evaluate cA and
cV :

u ≤ rk I2 − 4f = �cA − cV � + rk�I2/ ∼� = �t1 − f � + rk�I2/ ∼�
or rk�I2/ ∼� ≥ u + f − t1 ≥ u.

Now representatives for I2/∼ are found in U , so rk�I2/ ∼� ≤ u.
Accordingly,

rk�I2/∼� = u and f = t1+

Then in view of the last lemma, rk NT1
�V ◦� = u. As NT1

�V ◦�/T0 acts
semiregularly on V1/A (in the proof of that lemma) we have rk �V1/A� = u
and V1 = V ◦. Now looking at the action of NT1

�V ◦�/T0 on V1 and at the
ranks, we conclude that V ×

1 is a single conjugacy class, and as V1 = V ◦ we
find rk �I2/∼� = 0, a contradiction.
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