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A B S T R A C T

Since the mid 1990s, the intriguing dynamics of the brain at rest has been attracting a growing body of

research in neuroscience. Neuroimaging studies have revealed distinct functional networks that slowly

activate and deactivate, pointing to the existence of an underlying network dynamics emerging

spontaneously during rest, with specific spatial, temporal and spectral characteristics. Several

theoretical scenarios have been proposed and tested with the use of large-scale computational models

of coupled brain areas. However, a mechanistic explanation that encompasses all the phenomena

observed in the brain during rest is still to come.

In this review, we provide an overview of the key findings of resting-state activity covering a range of

neuroimaging modalities including fMRI, EEG and MEG. We describe how to best define and analyze

anatomical and functional brain networks and how unbalancing these networks may lead to problems

with mental health. Finally, we review existing large-scale models of resting-state dynamics in health

and disease.

An important common feature of resting-state models is that the emergence of resting-state

functional networks is obtained when the model parameters are such that the system operates at the

edge of a bifurcation. At this critical working point, the global network dynamics reveals correlation

patterns that are spatially shaped by the underlying anatomical structure, leading to an optimal fit with

the empirical BOLD functional connectivity. However, new insights coming from recent studies,

including faster oscillatory dynamics and non-stationary functional connectivity, must be taken into

account in future models to fully understand the network mechanisms leading to the resting-state

activity.

� 2014 The Authors. Published by Elsevier Ltd.  
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1. Brain activity during rest

Someone who is awake but not consciously performing any
task, physical or mental, is said to be resting. In this state, unlike
sleeping, the person is conscious and ready to respond promptly to
any sort of external stimulation or cognitive requirement. One
could say that the person is somehow on stand-by: although still
and quiet, she is awake, ready to suddenly chase a fly that lightly
lands on her arm, or to immediately turn her head towards the
least disturbing sound. Notably, while the person is resting and the
body is static, the brain instead seems to be actively engaged,
exhibiting slow spatiotemporally organized fluctuations of neuro-
nal activity. The patterns of brain activity observed during quiet
wakeful rest are distinguishable from the ones observed during
goal-directed behaviour or when the brain falls asleep (Deco et al.,
2013a; Kalcher et al., 2013; Larson-Prior et al., 2011; Mennes et al.,
2011).

Several studies have speculated on the link between this resting
brain activity and underlying high-order cognitive processes such
as moral reasoning, self-consciousness, remembering past experi-
ences or planning for the future (Buckner et al., 2008; Lou et al.,
1999; Morcom and Fletcher, 2007; Saxe and Kanwisher, 2003;
Wagner et al., 2005). However, findings of resting brain patterns in
anesthetized monkeys (Vincent et al., 2007) and, more recently, in
rats (Lu et al., 2012), points to a more fundamental origin of resting
brain activations (Fig. 1) (even if animals may also have a need for
self representations).

To date, the blood-oxygen-level dependent (BOLD) signal used
in functional magnetic resonance imaging (fMRI) has been the first
and most widely used technique in studies of brain activity during
rest (Biswal et al., 1995, 2010). But evidence of coordinated
spontaneous activity has been detected in data collected with
other functional imaging techniques such as optical imaging (Arieli
et al., 1996), positron-emission tomography (PET) (Raichle et al.,
2001), electroencephalography (EEG) (Goldman et al., 2002; Laufs
et al., 2003; Moosmann et al., 2003), electrophysiology (Leopold
et al., 2003) and more recently magnetoencephalography (MEG)
(Brookes et al., 2011; de Pasquale et al., 2010). All these techniques
have their own specificities, sensitivities and spatio-temporal
resolutions and the data may be affected by different kinds of
physiological signals and artefacts (see Section 2). As such, it is
crucial to take into account the type of signal being measured by
each technique in order to understand the neurophysiological
meaning of resting-state activity and how it relates at multiple
spatial and temporal scales.

Explorations into the organization of resting-state activity in
the brain have revealed the existence of temporally correlated
activity – or functional connectivity – between different voxels in
the brain, some belonging to brain areas specific for different tasks,
defining the so-called resting state networks (RSNs). Despite the
evidence from the empirical side, the significance of functional
connectivity in brain activity during rest remains under debate.
Over the last years, a growing number of theoretical and
experimental studies have aimed to investigate the origin of the
correlation patterns defining RSNs using different neuroimaging
techniques. However, it is still not clear whether RSNs are an
epiphenomenon or not. Studies using diffusion-MRI to detect
white matter pathways in the living brain have inspected the
relationship between RSNs and the underlying map of long-range
axonal connections (Hagmann et al., 2008; Sporns et al., 2000) (see
Section 3). Importantly, a remarkable match has been found
between the neuroanatomical network and resting-state func-
tional connectivity, indicating that functional connections be-
tween brain areas may be mediated through white-matter fibres.
Bottom-up computational models can be used to simulate the
interactions between brain areas in the structural network and
compare the results with empirical functional data. Although the
empirical data is typically contaminated by physiological signals
(which vary strongly across the human brain and therefore are
difficult to remove entirely), a good fit with the model results (free
from any type of physiological and behavioural artefacts) indicates
that at least some part of resting-state functional connectivity
originates from neural interactions in the white-matter network.
In Section 4 we review the existing models of resting-state activity
obtained through different reduction lines.

To understand the mechanisms leading to the dynamics
observed in the brain at rest, one can look at the brain as a
dynamical system. Indeed, the complex space–time structure of
the brain’s wiring diagram, together with a myriad of biochemical
processes, form a dynamical framework capable of holding an
infinite number of mental states over which cognition unfolds
(Kelso, 2012; Tononi et al., 1994). The existence of different input-
dependent stable states in the brain has been evident since the first
human electrophysiological recordings, which revealed that strong



Fig. 1. Comparison of the default mode network (DMN) in rats, monkeys and humans. The regions composing the DMN exhibit correlated neuronal activity during rest.

Adapted from Lu et al. (2012).
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alpha rhythms (8–13 Hz) were substituted by beta rhythms (13–
30 Hz) when subjects opened their eyes (Berger, 1929). Over the
years, electrophysiological studies have identified characteristic
brain rhythms ranging from <0.1 to 600 Hz that appear and
disappear according to the mental state in which the brain in
engaged (Buzsáki, 2006; Niedermeyer and Lopes da Silva, 2005).
Moreover, with the improvement of neuroimaging techniques, it
became possible to map the sources of such rhythms across the
brain, resulting in a temporal and a spatial pattern for each brain
regime. Notably, consistency was found in the spatio-temporal
signature of brain states across healthy humans. However, current
neuroimaging techniques detect only epiphenomena of brain
activity, such as blood oxygenation levels or as electrical
discharges, and the complex neural mechanisms at the genesis
of these observations remain until today incompletely understood.

Among all brain regimes, the resting state is particularly
interesting from the perspective of dynamical systems because it
seems to exhibit an exploratory dynamics, in which one or more
states (i.e. RSNs) may be visited (i.e. activated) over time, but
subsequently deactivated, never setting in a fixed point, resulting
in a non-stationary regime. How such type of behaviour emerges
from the brain architecture, in particular from the interaction
between neurons, may be investigated by means of computational
models, bringing together concepts of neurophysiology and
theoretical physics. In more detail, the collective dynamics of a
group of neurons may be represented as a dynamical unit
(governed by a set of dynamical equations) with a particular
behaviour in the spontaneous state. Several of these dynamical
units may be coupled together according to realistic brain
connectivity. The dynamical repertoire of the system (i.e. the
different regimes it may display depending on the model
parameters) may be investigated through simulations (an analytic
solution is rarely possible due to the complexity of the system) in
order to determine the conditions under which an exploratory
behaviour as the one observed during rest could emerge (see
Section 4).

2. Signatures of resting-state activity

In the following we review some of the most prominent
findings in the vast resting-state literature, including both
haemodynamic and electrophysiological studies.
2.1. Resting-state haemodynamic fluctuations

When unexpected results emerge from a scientific experimen-
tation, history tells us that they should not be left unexamined.
This happened to Biswal and colleagues (1995) while trying to
identify the brain regions that co-activated during bilateral finger
tapping. Against any prediction, they noted that the areas involved
in finger movement exhibited correlated activations not only
during the task, but also during rest. Even after ensuring that the
hands were immobilized, they found slow (<0.1 Hz) fluctuations in
the BOLD signal of the sensorimotor cortex that were strongly
correlated across hemispheres. The existence of slow correlated
fluctuations during rest was particularly disturbing for studies
aiming to detect only task-related (evoked) neuronal activations
since they rely on the comparison with a baseline activity. Indeed,
this ongoing activity was found to contribute for the variance
observed in evoked cortical responses (Arieli et al., 1996) (more
recent observations indicate that this variance is also intrinsically
related to spontaneous power fluctuations of ongoing neuronal
oscillations (Becker et al., 2011)). In order to take into account
these task-independent functional activations in studies of evoked
cortical responses, it became necessary to define a baseline – or
default mode – of brain activity (Gusnard et al., 2001; Mazoyer
et al., 2001; Shulman et al., 1997). Later, Greicius et al. (2003)
performed a functional connectivity analysis of the default mode
and provided evidence for the existence of a cohesive default mode

network (DMN). Regions within the DMN were found to be more
functionally connected during passive resting-state than during a
task. For this reason, the DMN is called a task-negative RSN. Deeper
explorations into resting-state dynamics revealed other groups of
brain regions exhibiting correlated activations, with BOLD signal
changes comparable to the ones found in task-related experi-
ments. The mapping of such functional networks uncovered
cortical systems usually involved in active cognitive processes,
such as vision, language, movement, executive processing, as well
as in the basal ganglia (Beckmann et al., 2005; Damoiseaux et al.,
2006; De Luca et al., 2006; Fox et al., 2005; Robinson et al., 2009;
Smith et al., 2009). Unlike the DMN, these functional networks
exhibit stronger functional connectivity when engaged in a task
and are denominated task-positive RSNs (see Fig. 2).

Although fMRI has been widely used to study resting-state
activity, it is important to note that the BOLD signal is not a direct



Fig. 2. Consistent resting-state networks across healthy subjects detected with fMRI. 10 distinct patterns with potential functional relevance were detected using tensor

probabilistic independent component analysis, consisting of regions known to be involved in motor function, visual processing, executive functioning, auditory processing,

memory, and the default-mode network, each with BOLD signal changes up to 3%. All functional images have been co-registered into a standard structural MRI template

(MNI).

Adapted from Damoiseaux et al. (2006).

J. Cabral et al. / Progress in Neurobiology 114 (2014) 102–131 105
measure of neural activity. Fluctuations in the BOLD signal are due
to variations in the magnetic susceptibility of a given voxel in the
brain, which in turn may reflect a regional change in cerebral blood
flow and/or deoxyhemoglobin concentration (Frahm et al., 1994;
Logothetis et al., 2001; Ogawa et al., 1990). Raichle et al. (2001)
verified the neurophysiological basis of resting-state BOLD
fluctuations by measuring the oxygen extraction fraction using
PET. However, the exact neural mechanisms at the genesis of
resting-state dynamics (occurring at faster time-scales) cannot be
accurately assessed using this technique. Furthermore, the BOLD
signal is sensitive to physiological noise (such as heart and
respiratory signals, among others). The full removal of these
signals is not yet achievable, which results in a low signal to noise
ratio (SNR) of BOLD time-series (Boubela et al., 2013; Chang et al.,
2013; Kim and Ogawa, 2012; Long et al., 2005; Triantafyllou et al.,
2005). Nevertheless, the very high spatial resolution of the fMRI
technique (�1 mm) allows locating precisely the activation sites in
the brain, even in deep sources. In addition, the analysis of resting-
state data recorded over long time periods (i.e. �20 min)
compensates for the low SNR of the BOLD time-series.

Over the last decade, the robustness of resting-state dynamics
has been validated by consistency across healthy subjects and
high-reproducibility across research groups (Cole et al., 2010).
Recently, Biswal and colleagues assembled over 1400 healthy
resting-state fMRI data collected independently at 35 international
centres and performed the biggest fMRI study of the healthy brain
to date (www.nitrc.org/projects/fcon_1000) (Biswal et al., 2010).
High reproducibility was found across studies and individuals
revealing a universal architecture of positive and negative
functional connections despite the variability induced by physio-
logical signals to the BOLD time-series. In particular, Kalcher et al.
(2012) identified 16 networks consistent over the whole group of
1000 subjects, some of which closely matched the RSNs most often
reported in the literature. In addition, sex and age were found to
contribute to inter-individual variability. Sex-related differences
(also reported in Liu et al. (2009) with 300 subjects, 43% men) are
supposedly related to phenotypic variations due to the sexual
dimorphism in genomic expression. On the other hand, lower
functional connectivity was observed in advanced ageing (free
from Alzheimer’s disease) suggesting that the disruption of
resting-state functional connectivity may be related to cognitive
decline (Andrews-Hanna et al., 2007; Kringelbach et al., 2011).

2.2. Electrophysiological signatures of resting-state activity

The relationship between the BOLD signal and the underlying
neural activity was deeply investigated by Logothetis and
colleagues (2001), who performed simultaneous fMRI and intra-
cortical electrical recordings in anesthetized monkeys, showing
that spontaneous fluctuations in local-field potentials correlated
positively with the local BOLD signal around the electrode. Intra-
cortical electrophysiological recordings, as well as EEG and MEG,
are techniques that register the voltage fluctuations (with either
electric or magnetic sensors) resulting from ionic current flows
that occur when a large number of neighbouring neurons
discharge simultaneously and therefore are more directly related
to neural activity than the BOLD signal (Hansen et al., 2010).

If the spontaneous BOLD fluctuations are indeed a reflection of
underlying neural activity, we can expect some components of
electrophysiological signals to exhibit spontaneous low-frequency
fluctuations with large-scale correlation patterns similar to those
observed with resting-state fMRI. As these measures have a better
temporal resolution (in the range of 1 kHz) they are valuable tools
to perform temporal and spectral analysis of resting-state activity.

http://www.nitrc.org/projects/fcon_1000
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However, except from the highly invasive methods where
microelectrodes are placed directly in a precise cortical location,
EEG is non-invasive at the expense of spatial accuracy, especially
for deep sources. Scalp EEG measures the tangential and radial
components of electric currents emerging from both sulci and gyri
and has a spatial resolution of around 2 cm.

A number of studies have investigated the electrophysiological
counterpart of BOLD signal fluctuations using simultaneous record-
ings of fMRI and EEG signals (EEG–fMRI) in resting humans.Goldman
et al. (2002) mapped the regions whose BOLD signal changed reliably
with modulation in posterior alpha activity, finding that increased
alpha power was correlated with decreased MRI signal in multiple
regions of occipital, superior temporal, inferior frontal, and cingulate
cortex, and with increased signal in the thalamus and insula.
Subsequent studies have corroborated these findings, pointing to
aninverserelationshipbetweenoccipitalalphaactivityandtheBOLD
signal in the cortex, suggesting that alpha activity in the occipital
cortex may be associated with metabolic deactivation (de Munck
etal.,2007;Difrancescoetal.,2008;Feigeetal.,2005;Goncalvesetal.,
2006; Laufs et al., 2003; Moosmann et al., 2003). Considering the
pericentral (rolandic) EEG rhythms, Ritter and colleagues (2009)
foundthattherolandicalphaandbetaspectralpowerswereinversely
correlated with the BOLD signal in the postcentral cortex and
precentral cortex, correspondingly. These findings point to the
direction that EEG ‘‘idle rhythms’’ may be associated with lower
metabolic activity. Exploring a wider range of frequencies, Laufs and
colleagues (2003) filtered the EEG signals into distinct frequency
bandsand comparedthe modulationsof the power ineachfrequency
band (or band-limited power, BLP, fluctuations, see Fig. 3 for an
illustration)withtheBOLDtimecourses.Theyfoundthatthepowerof
17–23 Hz oscillations (in the beta-band) was positively correlated
with the haemodynamic fluctuations found in the posterior
cingulate, the precuneus and the left and right temporo-parietal
and dorsomedial prefrontal, which are similar to the regions
identified by Greicius et al. as the DMN (Greicius et al., 2003). These
findingssuggestthatfluctuationsinBOLDsignalatrestmayatleastin
part reflect band-limited power fluctuations of neuronal activity
happening at faster frequencies. However,EEG sensors fail tocapture
signals from subcortical regions which in turn are more prone to
physiologicalfluctuations.Assuch,thecorrespondencebetweenEEG
powerandBOLDsignalmayvarystronglyacrossthebrainandshould
be restrained to the cortical surface.

For a deeper exploration of power fluctuations during rest,
Leopold and colleagues used multiple electrodes to record neural
Fig. 3. Amplitude fluctuations of band-passed oscillations at different frequency

bands. The amplitude envelope (red) of oscillations filtered in a restricted frequency

range (black) are proportional to the squared root of the power. Recent EEG and

MEG studies point to a relationship between these envelope fluctuations and the

BOLD signal fluctuations observed during rest. However, the frequency range (or

carrier frequency) that best captures BOLD fluctuations remains under debate.
activity at different locations of the visual cortex of awake
monkeys (Leopold et al., 2003). They observed that the power of
the local field displayed fluctuations at many time-scales, with
particularly large amplitudes at very low frequencies (<0.1 Hz).
Furthermore, they found that these fluctuations exhibited high
coherence between distant electrode pairs (but still in the visual
cortex), particularly for power fluctuations in the gamma-
frequency range. They proposed that such power fluctuations
might make a significant contribution to the high amplitude
fluctuations observed in the time course of resting state signals
obtained with fMRI.

In 2005, developments in resting-state fMRI studies revealed
the existence of robust RSNs characterized by particular temporal
signals using independent component analysis (ICA) (Beckmann
et al., 2005). To investigate if the temporal signals of each RSN
could be related to EEG power fluctuations in a particular
frequency band, Mantini et al. (2007) recorded simultaneous fMRI
and EEG and, applying ICA to the BOLD signals identified six robust
RSNs over a group of 15 healthy subjects. The temporal signal
associated with each RSN (i.e. the corresponding temporal ICs)
were then correlated with the EEG power variations of delta (d),
theta (u), alpha (a), beta (b), and gamma (g) rhythms. They found
that each RSN was characterized by a specific electrophysiological
signature that involved the combination of different brain
rhythms. For example, in agreement with the results from Laufs
et al. (2003) their findings indicate that the functional activation of
the DMN correlates better with beta-frequency EEG power (13–
30 Hz). However, due to the low spatial resolution of EEG,
investigations were limited to temporal signals and did not
explore the correspondence between the cortical maps of EEG
rhythms and the spatial maps of the RSNs detected with fMRI.

Later, Shmuel and Leopold simultaneously recorded fMRI time-
series and intra-cortical electrophysiological signals from 1 single
recording site in the visual cortex of anesthetized monkeys
(Shmuel and Leopold, 2008). They demonstrated correlations
between slow fluctuations in BOLD signals in widespread areas in
visual cortex of both hemispheres and concurrent neuronal
activity from the recording site, where the neural signal consisted
of either the spiking rate of a small group of neurons or LFP
fluctuations (especially in the gamma band). Using intracranial
electrophysiological recordings in humans, Nir et al. (2008) found
slow (<0.1 Hz, following 1/f-like profiles) spontaneous fluctua-
tions of neuronal activity with significant inter-hemispheric
correlations. These fluctuations were evident mainly in neuronal
firing rates and in gamma (40–100 Hz) LFP power modulations in
agreement with the results from Shmuel and Leopold (2008).
Furthermore, multiple intracranial recordings revealed clear
selectivity for RSNs in the spontaneous gamma LFP power
modulations (He et al., 2008; Miller et al., 2009). These results
point to slow spontaneous modulations in firing rate and gamma
LFP as the likely correlates of spontaneous fMRI fluctuations in the
human sensory cortex.

Finally, a recent study investigated how the BOLD signal in
humans performing a cognitive task is related to neuronal
synchronization across different frequency bands (Scheeringa
et al., 2011). The authors simultaneously recorded EEG and BOLD
while subjects engaged in a visual attention task known to induce
sustained changes in neuronal synchronization across a wide range
of frequencies. Trial-by-trial BOLD fluctuations correlated posi-
tively with trial-by-trial fluctuations in high-EEG gamma power
(60–80 Hz) and negatively with alpha and beta power. Gamma
power on the one hand, and alpha and beta power on the other
hand, independently contributed (in an anti-correlated manner) to
explaining BOLD variance. These results indicate that neuronal
dynamics underlying high- and low-frequency synchronization
contribute differently to the BOLD signal.
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2.3. Detection of resting-state patterns using MEG

Perhaps the first study dedicated to investigate the neuronal
correlates of resting BOLD signal using MEG was performed by
Nikouline and colleagues in 2001 (Nikouline et al., 2001). The
authors investigated inter-hemispheric phase synchrony and
amplitude correlation of beta oscillations in a resting condition.
Beta oscillations in the left and right hemisphere were found to
exhibit transient synchronized activity. Importantly, the ampli-
tude of these oscillations (which is proportional to the squared root
of the power) was larger when the synchronization index was
strongest, and correlated across hemispheres over long time
intervals (>1 s). The authors suggested that the low-frequency
amplitude modulation of spontaneous rhythmic activity may be
the source of correlations of low-frequency haemodynamic
responses, generally interpreted as functional connectivity. This
work appears to be the first demonstration of band-limited power
correlations between the two hemispheres during rest.

Almost a decade later, and following the electrophysiological
studies indicating that spontaneous BOLD fluctuations could be
driven by slow amplitude modulations of neural oscillations, Liu
et al. (2010) characterized the power modulations of spontaneous
MEG rhythms recorded from human subjects during wakeful rest
(with eyes open and eyes closed) and light sleep. Through spectral,
correlation and coherence analyses, they found that resting-state
MEG rhythms demonstrated ultraslow (<0.1 Hz) spontaneous
power modulations that synchronized over a large spatial distance,
especially between bilaterally homologous regions in opposite
hemispheres. Their observations suggest that coherent power
modulations of spontaneous rhythmic activity (especially in the b-
band) reflect the electrophysiological signature of the large-scale
functional networks. A couple of months later de Pasquale and
colleagues used a seed-based method to characterize the MEG
signatures of two well-characterized RSNs: the dorsal attention
and the default mode networks (de Pasquale et al., 2010). Taking
into account the non-stationarity of MEG activity, they found that
the band-limited power of the RSN seeds were only synchronized
for restricted periods in time, resulting in a transient formation of
RSNs. Their results indicate that RSNs manifest in MEG as
synchronous modulations of band-limited power primarily within
the theta, alpha, and beta bands, which correspond to rhythms
slower than the g-frequency oscillations generally associated with
the electro-physiological correlates of event-related BOLD
responses.

The first work to show that MEG can independently detect the
spatial patterns of RSNs, in the same manner that has been
demonstrated in fMRI, was recently performed by Brookes and
colleagues (Brookes et al., 2011) As a first step, the MEG data was
frequency filtered into bands of interest (d, u, a, b, and g) and
projected into source space using a beamformer spatial filter. Then,
ICA was applied to the band-limited amplitude fluctuations,
resulting in 8 RSNs with significant similarity to the RSNs derived
independently using fMRI (see Fig. 4). Importantly, most resting-
state networks were linked to b-band amplitude fluctuations. This
outcome confirms the neural basis of haemodynamic networks
and demonstrates the potential of MEG as a tool for understanding
the mechanisms that underlie RSNs.

In a recent MEG study, Hipp and colleagues found that
spontaneous oscillatory neuronal activity exhibits frequency-
specific spatial correlation structure in the human brain (Hipp
et al., 2012). To discount spurious correlation of signal power
caused by linear signal leakage, a new analysis approach was
developed in which the source estimates of spontaneous neuronal
activity reconstructed from MEG are orthogonalized, discarding in
this way in-phase relationships. They found power envelope
correlations between homologous early sensory areas (see Fig. 5).
Overall, correlation of power across cortical regions was strongest
in the alpha to beta frequency range (8–32 Hz) and correlation
patterns depended on the underlying oscillation frequency.
Furthermore, they identified frequency-specific hubs residing in
the medial temporal lobe for the theta frequency range (4–6 Hz), in
lateral parietal areas for the alpha to beta frequency range (8–
23 Hz) and in sensorimotor areas for higher frequencies (32–
45 Hz). These results reinforce the idea that interactions in various
large-scale cortical networks may be reflected in frequency-
specific power correlations.

MEG has a higher spatial resolution than EEG because of the
higher sensitivity of MEG sensors and because magnetic fields are
less distorted by the skull and scalp than electric fields (Hansen
et al., 2010). Making the appropriate corrections to account for
linear signal leakage (Brookes et al., 2012; Hipp et al., 2012) the
spatial resolution of MEG can be as precise as 2 mm for sources in
the cortical surface. However, MEG detects only the tangential
components of cortical activity (from the sulci) and the local
magnetic fields originating in deep (subcortical) sources may be
distorted, limiting spatial accuracy. As such, the analysis of resting-
state MEG data has often been restricted to cortical areas.

2.4. Electrophysiological correlates of resting-state BOLD fluctuations

All electrophysiological studies presented in the previous
sections have aimed to investigate the neurophysiological
counterpart of resting-state BOLD fluctuations. Overall, results
indicate that resting-state BOLD fluctuations are driven by slow
modulations of neural activity, which are manifested by transient
increases in the amplitude (or in the power) of fast oscillations in a
certain frequency range.

However, regarding the question whether there is a specific
carrier frequency whose power modulations serve as the best
candidate for the neuronal correlates of spontaneous BOLD signal
fluctuations, there seems to be a debate. On one side, the intra-
cortical recordings performed by Leopold et al. (2003), Nir et al.
(2008) and Shmuel and Leopold (2008) propose a direct relation-
ship with the power of gamma-frequency oscillations. Although
restricted to the recording site, their studies indicate that the BOLD
signal is positively correlated with the local gamma LFP. To the
extent that their findings can be generalized to other cortical areas,
these findings indicate that BOLD functional connectivity between
remote regions during rest can be linked to slow increases in
neuronal activation levels happening in the gamma-band. Indeed,
the elevated energy requirements of high-frequency neural
oscillations represent a mechanistic link between the functional
connectivity of brain regions and their respective metabolic
demands (detected in the BOLD signal) (Lord et al., 2013).

On the other hand, most of the studies using external
recordings, such as EEG and MEG (Brookes et al., 2011; de Munck
et al., 2007; de Pasquale et al., 2010; Difrancesco et al., 2008; Feige
et al., 2005; Goncalves et al., 2006; Hipp et al., 2012; Laufs et al.,
2003; Liu et al., 2010; Moosmann et al., 2003; Nikouline et al.,
2001) have identified correlated fluctuations in the power (or the
amplitude) of oscillations in the alpha and beta frequency ranges,
revealing functional networks that closely match the ones
obtained in fMRI studies. This relationship was investigated using
simultaneous recordings of EEG–fMRI and results point to an
inverse correlation between the BOLD signal and the power in the
alpha band, indicating that these ‘‘idle rythms’’ may be associated
with deactivation and decreased metabolic rate.

Since each technique has intrinsic limitations and the results
are not exclusive, both scenarios could coexist. Indeed, according
to the results from Scheeringa et al. (2011), a negative correlation
exists between the powers at high and low frequencies, indicating
that the BOLD signal might be associated to interactions between



Fig. 4. Comparison of brain networks obtained using ICA independently on MEG and fMRI data. (A) DMN; (B) left lateral frontoparietal network; (C) right lateral frontoparietal

network; (D) sensorimotor network; (E) medial parietal regions; (F) visual network; (G) frontal lobes including anterior cingulate cortex; (H) cerebellum. All networks were

identified using b-band power fluctuations, except the DMN, which was detected using a-band power fluctuations.

Adapted from Brookes et al. (2011).

Fig. 5. Power envelope correlations between orthogonalized spontaneous signals from homologous early sensory areas. (a) Inter-hemispheric correlations between auditory

(b), somatosensory (c) and visual (d) cortices, as a function of the carrier frequency. Correlations are increased in the alpha and beta frequency ranges (8–30 Hz).

Adapted from Hipp et al. (2012).
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gamma-band activity (related to increased metabolic rate) and
alpha/beta-frequency oscillations (decreased metabolic rate).
Furthermore, rhythms from different frequency bands lead to
different correlation patterns, suggesting a complex interplay
between multiple frequency bands (de Pasquale et al., 2010;
Mantini et al., 2007) which in turn may reflect different aspects of
neuronal processing (Palva and Palva, 2012; Womelsdorf et al.,
2007). However, an accurate answer requires simultaneous
recordings of both fMRI and electro-physiological signals across
the whole brain, which is unavailable in the present days.
Alternatively, one can explore the mechanism at the genesis of
these slow electrophysiological power fluctuations and their
relationship with the BOLD signal by means of computational
models, which serve to test theoretical predictions (in Section 4 we
explore these models in detail).

2.5. Altered resting-state activity in disease

Over the last decade, a large number of studies have reported
altered resting brain activity in a wide range of mental illnesses.
These results not only illustrate the importance of balancing resting-
state dynamics for an optimal cognitive function, but also provide
insights to understand the intrinsic mechanisms leading to and
potentially treating the diseased brain (Kringelbach et al., 2011).
However, it is important to note that substantial methodological
limitations arise when recording data from patients with psycho-
logical disorders due to higher motion and physiological artefacts.
The correction of these artefacts likely reduces any significant BOLD
signal and therefore the alterations reported in resting-state activity
in disease must be discussed with caution.

In Alzheimer’s disease (AD), for example, functional connectiv-
ity during rest was found to deteriorate within all systems with the
progression of the disease (Binnewijzend et al., 2012; Damoiseaux
et al., 2012; Greicius et al., 2004; Zhou et al., 2010). Furthermore,
Supekar et al. (2008) characterized resting-state functional net-
works using graph theory and found that functional brain
networks in AD showed loss of small-world properties, character-
ized by a significantly lower clustering coefficient.

Regarding schizophrenia, several studies have reported a
widespread decrease in the functional connectivity of patients
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during rest (Bassett et al., 2012; Liang et al., 2006; Lynall et al.,
2010; Skudlarski et al., 2010), supporting the hypothesis that
schizophrenia may arise from the disrupted functional integration
of segregated brain areas. Further analysis of resting-state activity
in schizophrenia using graph theory indicate a subtle randomiza-
tion of functional networks, with decreased small-world proper-
ties, lower clustering coefficients and less high-degree hubs (Liu
et al., 2008; Lynall et al., 2010; Bassett et al., 2012).

Resting-state alterations have been found in many other mental
illnesses including dementia (Buckner et al., 2000; Rombouts et al.,
2009), autism (Cornew et al., 2012; Cherkassky et al., 2006;
Kennedy et al., 2006; Lai et al., 2010; Weng et al., 2010), mild
cognitive impairment (Rombouts et al., 2005), multiple sclerosis
(Bonavita et al., 2011; Faivre et al., 2012; Schoonheim et al., 2013)
and major depression (Greicius et al., 2007; Sheline et al., 2009;
Veer et al., 2010). Despite the strong evidence of disrupted resting-
state activity in disease, the use of resting-state data for clinical
purposes is still in progress since it requires consistency across
studies before it can be used in a meaningful way at the single-
patient level (Greicius, 2008; Fox and Greicius, 2010).

In some cases, resting-state functional connectivity was found
to correlate with cognitive performance (i.e. Lynall et al., 2010),
which indicates that resting-state correlations may be closely
related to the binding mechanisms that support the integration of
information in the brain.

Overall, more detailed investigations of the highly coherent
functional and structural brain networks in health and disease
have the potential not only to increase our understanding of
fundamental brain function but of how best to modulate the
balance. In particular, some of the problems found in neuropsy-
chiatric disorders could inform future treatment, e.g. potentially
with deep brain stimulation (Kringelbach et al., 2011).

3. Networks of the brain

Mapping the brain is complex but is helped by the fact that the
brain, in the same way as many biological, social and chemical
systems, is a network composed by a large number of inter-
connected dynamical units. The map of neural connections in the
brain has been called the Connectome (Hagmann, 2005; Sporns
et al., 2005), a term inspired by the effort in mapping the human
genetic code, or Genome.

Connections in the brain may refer to anatomical links, such as
synapses or fibre pathways (anatomical/structural connectivity),
statistical dependencies such as correlation or coherence (func-
tional connectivity) or to directed causal interactions (effective
connectivity) between distinct units within a nervous system. Such
units may correspond to individual neurons, neuronal populations,
or anatomically segregated brain regions.

Exploring the whole connectome at a cellular scale is highly
complex and hardly tractable, since the human cerebral cortex
contains at least 1010 neurons linked by 1014 synapses (Sporns,
2009). The only organism from which the full map of neuronal
connections is known in its entirety is the one millimetre-long
worm Caenorhabditis elegans, but it took over a decade to complete
the identification of its 300 neurons and 7000 connections (White
et al., 1986).

In the context of resting-state activity, it is convenient to go
beyond the cellular scale and focus essentially on the long-range
white matter pathways connecting segregated brain areas. These
long-range connections are particularly important because they
strongly constrain how brain regions communicate, defining the
wiring diagram over which spatially segregated information is
integrated in the nervous system (Jirsa and Kelso, 2000; Sporns
et al., 2000; Tononi et al., 1992, 1994). Spatially distributed
and functionally specialized brain areas are continuously
communicating and co-operating to respond to cognitive
demands, perceive sensory stimuli and generate coordinated
movement. Although the neuronal mechanisms under which
cortical regions communicate remain unclear, the neuroanatomi-
cal network is believed to serve as the structural substrate upon
which coordinated functional integration occurs (Bressler and
Tognoli, 2006; Ghosh et al., 2008a; Jirsa and McIntosh, 2007; Knock
et al., 2009; Sporns et al., 2000).

Combining functional and structural imaging modalities has
revealed that resting-state functional networks reflect, to some
extent, the underlying structural connectivity (Damoiseaux and
Greicius, 2009; Greicius et al., 2009; van den Heuvel and Hulshoff
Pol, 2010; van den Heuvel et al., 2009a). However, the bond
between structural and functional connectivity is not straightfor-
ward: although structural connectivity is a good predictor of
functional connectivity – i.e. if there is a direct anatomical
connection, there is likely a functional connection – the opposite is
not necessarily true. Indeed, robust functional connectivity has
been observed in the absence of a direct anatomical link (Koch
et al., 2002). Recent studies suggest that resting-state functional
connectivity also reflects polysynaptic anatomical pathways
related to cerebro-cerebellar circuits (Buckner et al., 2011; Habas
et al., 2009; Krienen and Buckner, 2009; O’Reilly et al., 2010).
Indeed, it was found that spontaneous fluctuations in the motor
cortex are functionally coupled to their topographically appropri-
ate contra-lateral regions in the anterior lobe of the cerebellum
(Buckner et al., 2011). Furthermore, patients with focal pontine
strokes, were found to display selectively reduced functional
connectivity between the motor cortex affected and the contra-
lateral cerebellum, providing additional evidence that resting-
state functional connectivity reflects polysynaptic anatomical
pathways (Lu et al., 2011).

Considering that coupled brain regions have a causal relation-
ship and the connectivity is directed, the functional network
architecture may be inferred using Granger Causality (GC) or
Dynamic Causal Modelling (DCM) (Friston et al., 2003, 2013;
Kasess et al., 2010; Liao et al., 2010; Penny et al., 2004; Stephan
et al., 2008). These methods are principally used to test or predict
dynamical responses to causal events (Marreiros et al., 2010).
Recently, Friston et al. (2011) proposed an extension to conven-
tional DCM to include endogenous or random fluctuations and
allow in this way the application of DCM to resting-state BOLD
time series. However, its application to resting-state data is still
limited and so far restricted to the DMN (Di and Biswal, 2013; Li
et al., 2012).

While the origin of resting-state functional connectivity
remains unclear, computational models of neural network
dynamics (which we describe in detail in Section 4) are valuable
tools to investigate the role of the anatomical network in shaping
functional connectivity during rest (Fig. 6) (Ritter et al., 2013).

3.1. Brain parcellation

The first step to define brain networks is to define the nodes in
the network. To do so, it is necessary to divide grey matter at the
desired scale according to specific strategies for anatomical or
functional partitioning. Several brain parcellation templates are
available in the literature, ranging from the canonical classification
into lobes (i.e. frontal, parietal, temporal and occipital lobes) to as
much as several thousand regions of interest. Once the parcellation
scheme is defined, different strategies can be used to define the
links between nodes.

One of the first and most widely known parcellation schemes of
the human cortex was performed by the German anatomist
Brodmann (1909) based on the cytoarchitectural organization
of neurons. In 2002, a parcellation scheme was proposed by



Fig. 6. Exploring the structure–function relationship using computational models. Diagram illustrating how computational models can serve to explore the relationship

between anatomical structural networks and resting functional networks. The dashed line (- -) indicates the feedback of the model’s performance, that is necessary to tune

the parameters of the model.
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Tzourio-Mazoyer et al. with the intention of standardizing the
anatomical labelling of brain regions in neuroimaging studies
(Tzourio-Mazoyer et al., 2002). Automated anatomical labelling
(AAL) was performed on a brain template consisting on a high-
resolution structural MRI scan from a healthy male supplied by the
Montreal Neurological Institute (MNI) (Collins et al., 1998). The
cortical and subcortical grey matter of the standard MNI brain was
divided into 90 brain regions (45 in each hemisphere). The AAL
parcellation template is included in the Statistical Parametric
Mapping (SPM) package (Friston et al., 1994) and is freely available
to the neuroimaging community. To date, more than 2000 research
articles have used the AAL parcellation template (based on citation
index), including studies of resting-state functional connectivity
(Achard and Bullmore, 2007; Achard et al., 2006; Bassett et al.,
2012; Braun et al., 2012; Liu et al., 2008; Lynall et al., 2010;
Salvador et al., 2005b; Sanz-Arigita et al., 2010; Supekar et al.,
2008).

Another parcellation scheme used in studies of large-scale brain
connectivity is the one created by Hagmann and colleagues (2007).
Grey matter was divided into 66 cortical regions and then
individually subdivided into small regions of interest (ROIs)
resulting in 998 ROIs, each covering 1.5 cm2 of the cortical surface.
Two labelled meshes (one mesh with the 66 regions and another
with the 998 ROIs) were created on the average brain and were
registered onto the brain of individual participants using Free-
surfer (surfer.nmr.mgh.harvard.edu). Recently, the same group
proposed a robust method for constructing normalized parcella-
tions at different scales, iteratively regrouping the 998 ROIs into
bigger ROIs, resulting in 5 scales of cortex parcellation, e.g. 66, 133,
241, 483 and 998 regions (Cammoun et al., 2012).

The analysis of brain networks may also be performed at the
voxel level, i.e. the smallest cubic element in a volumetric image.
The exact size of a voxel will vary depending on the technology
used. Typically, fMRI voxels represent a volume of 27 mm3 (a cube
with 3 mm length sides), which contain about 1 million neurons. In
van den Heuvel et al. (2009b), functional network properties were
explored at the voxel scale (64 mm3), resulting in graphs with
�9500 nodes. In another work from the same group, RSNs were
Fig. 7. The Macaque connectivity. The coupling weights Cnp indicate the strength of conne

The CoCoMac database, created by Rolf Kötter, represents one of the first attempts to 
defined by applying a voxel-based clustering method (van den
Heuvel et al., 2009a). In large-scale models, however, the
simulation of systems with several thousands of interconnected
nodes is highly expensive from the computational perspective and
low-dimension parcellation schemes have been typically used in
models of large-scale resting-state activity.

3.2. Anatomical structural networks

Historically, the mapping of white matter connections was
performed post-mortem by histological dissection and staining, by
degeneration methods or by axonal tracing. These classical
techniques, however, were time-consuming and generally applied
to restricted areas in the brain. In an attempt to assemble data from
different white matter tracing studies of the macaque brain, Kotter
(2004) created the online database for the ‘‘Collation of Connec-
tivity on the Macaque brain’’ (CoCoMac www.cocomac.org),
allowing for continuous updating and refinement of such
anatomical connection maps. From this database, Kötter and
Wanke derived a realistic connectivity map of one hemisphere of
the primate brain, proposing a coarse parcellation of the primate
cerebral cortex into 38 regions, which reflected broad and rather
uncontroversial divisions (Fig. 7) (Kotter and Wanke, 2005). This
connectivity map has been used in models of large-scale resting-
state brain activity (Deco et al., 2009; Ghosh et al., 2008a; Honey
et al., 2007) revealing that the large-scale connectivity topology of
cerebral cortex, together with time delays and in the presence of
noise, defines a dynamic framework from which spontaneous
patterns similar to the ones observed in the resting brain emerge.

For human brains, however, the manual tracing of white matter
pathways has not been performed. Some works have tried to infer
human anatomical networks from cortical thickness/volume
measurements obtained with structural MRI. This approach relies
on the fact that cortical volume is strongly correlated between
regions that are axonally connected (Lerch et al., 2006). In this way,
a whole-brain network can be inferred from human MRI data by
estimating, for each brain area, the cortical volume (or thickness)
for a large sample of subjects and then computing the correlation
ctions (classified as weak (1), medium (2) or strong (3)) from region p to n (directed).

obtain a large-scale anatomical connectome of the mammalian brain.

http://www.cocomac.org/
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matrix (Bassett et al., 2008; Chen et al., 2008; He et al., 2007).
However, there is still no direct proof that correlations of grey
matter volume over the whole brain across subjects are indicative
of axonal connectivity.

In recent years, a revolution in connectomics (i.e. the science
concerned with assembling and analyzing connectome data sets,
Hagmann, 2005) has happened helped by the technological
advancements in Diffusion MRI. This method permits the non-
invasive detection of white matter fibre pathways using a specific
MRI sequence that is sensitive to water anisotropy, i.e. the
direction of water diffusion in a body. The detection of fibre tracts
with diffusion MRI relies on the fact that water propagates along
the orientation of the fibres because the myelin sheath provides a
barrier perpendicular to the fibres. Diffusion tensor imaging (DTI)
(Wedeen et al., 1995) estimates the main direction and strength of
anisotropic diffusion in each voxel while diffusion spectrum
imaging (DSI) explores the strength of anisotropy in all directions,
allowing the crossing of multiple fibres in a single voxel (Wedeen
et al., 2005).

Once diffusion images are obtained, the detection of fibre tracts,
or tractography, is obtained by constructing three-dimensional
curves of maximal diffusion coherence using computational
algorithms. Together with efficient computational tractography
algorithms, this technique permits the rapid and almost automatic
construction of comprehensive maps of brain connectivity. The
Human Connectome Project (www.humanconnectomeprojec-
t.org) aims to provide an unparalleled compilation of neural
connectivity data based on Diffusion MRI studies (Fig. 8).

To define a low-resolution structural network using Diffusion
MRI, the connection strength Cnp between two brain areas n and p

is scaled by the number of white matter tracts detected between
voxels in each area, which can range from 0 to as much as several
thousand tracts per connection.

The first mappings of human whole-brain anatomical connec-
tivity using Diffusion MRI tractography were performed almost
simultaneously by Hagmann and colleagues (2007) and Iturria-
Medina and colleagues (2007). In Hagmann et al. (2007),
anatomical networks were composed by 500–4000 nodes and
were derived from the brains of 2 healthy subjects. Subsequently,
low-resolution parcellation was proposed, this time dividing the
cortex into 66 regions (Fig. 9) (Hagmann et al., 2008). This
anatomical network was used in the first large-scale model of
human resting-state functional connectivity (Honey et al., 2009).
Iturria-Medina et al. analyzed anatomical connectivity at lower
resolution, first focusing on the connectivity between 71 grey
matter structures, across 5 healthy subjects (Iturria-Medina et al.,
2007) extended later to 20 healthy participants and 90 cortical and
subcortical regions according to the AAL parcellation scheme
(Iturria-Medina et al., 2008). To date, the largest sample of healthy
Fig. 8. White matter fibres detected in vivo using Diffusion MRI. Im
structural brain networks using DTI and the AAL parcellation was
from 80 young adults (Gong et al., 2009).

3.3. Dynamic functional networks

The simultaneous activation of spatially segregated functional-
ly specialized brain regions defines a functional network, and these
regions are said to be functionally connected. Unlike structural
networks, functional networks are only active for a period in time,
representing a transient brain state where different brain areas
activate simultaneously, supposedly integrating segregated infor-
mation (Tononi et al., 1998, 1994).

Evoked functional networks can be easily captured by compar-
ing a measure of brain activity during a particular task with
baseline data sets. During rest, however, the definition of an
activation paradigm becomes unfeasible. Still, even when no task-
related process is triggering the activation of a certain functional
network, several studies have reported the transient activation of
distinct functional networks during rest. Functional connectivity
can be inferred from resting-state recordings using different
approaches, namely correlation measures, ICA, PCA, mutual
information, covariance and coherence analysis.

The classic and most widely used method to infer the strength
of network interactions (or functional connections) consists in
estimating the linear (Pearson) correlation coefficient between
temporal signals (Bandettini et al., 1993; Biswal et al., 1995). If two
regions activate and deactivate at the same time, there is likely a
functional connection. The Pearson correlation coefficient between
two series X and Y of size N is given by the following equation:

rX;Y ¼
PN

n¼1ðXn � X̄ÞðYn � ȲÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1 ðXn � X̄Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1 ðYn � ȲÞ2

q
Using correlation measures to investigate resting-state pat-

terns, two levels of analysis are possible: (1) looking at the
correlation between one specific region and the rest of the brain,
i.e. seed-based correlation, or (2) exploring all possible functional
connections by studying the correlation matrix. To perform an
analysis at the seed level, information about the main activation
sites of a certain RSN must be provided. After identifying the seeds
belonging to a RSN, then co-activations seed maps can be built by
overlapping the correlation maps of each seed (Fox et al., 2005).
The brain regions that correlate with all the seeds from a RSN are
identified as part of that RSN.

Performing the correlation matrix between signals (estimated
either at the voxel or regional level) provides information
regarding all pair correlations in the brain. Each line in the matrix
corresponds to a seed, and the entries in that line correspond to the
ages from the gallery of the Connectome Project by R. Buckner.

http://www.humanconnectomeproject.org/
http://www.humanconnectomeproject.org/


Fig. 9. Anatomical network with 66 cortical regions. Anatomical connectome derived by Hagmann et al. (2008) using DSI averaged over 5 healthy subjects. Top-left:

Parcellation scheme dividing each hemisphere into 33 anatomically segregated regions (adapted from Hagmann et al. (2008)). Top-middle: White matter tracts detected

using DSI and tractography. Top-right: Schematic representation of the anatomical network, where regions are represented by red spheres placed at their centre of gravity

and the link’s thickness is proportional to the number of fibre tracts detected in each connection. Bottom-left: The coupling weights are proportional to the number of tracts

detected. White colour means that no fibre connecting the two corresponding regions was detected. Weights were normalized so that 0 � Cnp � 1. White = no connection.

Bottom-right: Distance between regions given as the average length of the fibres connecting a pair of regions.
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correlation coefficient between the activation level in that seed and
all the remaining regions (columns). One advantage of computing
correlation matrices is that they can be studied using graph theory,
not only to evaluate the topological properties of functional
networks, but also for the detection of functional modules and
hubs. Investigating correlation matrices at the voxel level can be
computationally costly so it is common to average the signals from
voxels falling in the same cortical region (defined according to a
parcellation scheme), and then analyze the correlation matrix at a
much lower resolution (as in Honey et al., 2009). Moreover,
wavelet analysis can be applied to the temporal signals to compute
frequency-dependent correlation matrices. For example, this
approach allows searching for the frequency range over which
maximal differences are observed between healthy controls and
subjects (Bassett et al., 2012; Lynall et al., 2010; Supekar et al.,
2008). Despite its usefulness for detecting linear statistical
dependencies, the correlation analysis has certain limitations.
The most important relies on the fact that RSNs are not spatially
independent and can overlap. In other words, the same cortical
region can belong to more than one RSN at a time and therefore
activates whenever one or another RSN is engaged. In this way, the
activation pattern of that region turns out to be a sum of the
activation patterns of each RSN it belongs to, which cannot be
captured using correlation-based approaches (Smith et al., 2012).

Recent studies propose the use of ICA to extract RSN spatial
maps from coordinated BOLD fluctuations (Beckmann, 2012;
Beckmann et al., 2005; Damoiseaux et al., 2006; De Luca et al.,
2006; Mantini et al., 2007). ICA is a computational technique for
identifying hidden statistically independent sources from multi-
variate data. Importantly, ICA can be spatial (optimizing for spatial
independence between components) or temporal (optimizing for
temporal independence between components). In other words,
spatial ICA allows mapping the areas in the brain that consistently
activate together, while temporal ICA maps the regions in the brain
that mostly contribute to a given temporal signal. To date, nearly
all applications of ICA to fMRI (including resting-state fMRI) have
used spatial ICA, because ICA requires a large number of samples to
function well, and in fMRI there are orders of magnitude more
voxels than time points. However, for finding temporally
independent, potentially spatially overlapping, functional net-
works, temporal ICA provides a better approach (Boubela et al.,
2013; Smith et al., 2012). Applying ICA to resting-state signals
relies on the assumption that brain activity during rest results from
the additive combination of independent spatial signals. ICA is a
particular case of blind source separation and the signal in each
point xn(t), n = 1, . . ., N can be written as a composition of the
different independent components ICk(t), k = 1, . . ., K with coeffi-
cients an,k in the following way:

xnðtÞ ¼ an;1ICðtÞ1 þ an;2IC2ðtÞ þ � � � þ an;kICðtÞk

An important note to consider in ICA is that the number of
independent components K is, in theory, equal to the number of
sources N because ICA cannot sort (nor scale) the source signals
in correct order. However, reducing the number of sources
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(or dimensions) is possible by previously performing principal
component analysis (PCA). PCA performs a linear mapping of the
data to a lower dimensional space in such a way that the variance of
the data in the low-dimensional representation is maximized. In
practice, it is obtained by computing the eigenvalue decomposition
of the covariance matrix of the signals. Then, the eigenvalues are
sorted according to the proportion of variance they account for.
Dimension reduction is possible by selecting the eigenvalues (i.e.
principal components) that represent most of the variance.

Beckmann et al. (2005) used probabilistic-ICA (PICA) to detect
RSNs that exhibit high spatial consistency across subjects and
closely resemble discrete cortical functional networks (such as
visual cortical areas or sensory-motor cortex). Later, Damoiseaux
et al. (2006) used the same technique and identified 10 robust RSNs
across healthy subjects with potential functional relevance,
consisting of regions known to be involved in motor function,
visual processing, executive functioning, auditory processing,
memory, and the DMN (see Fig. 2). Moreover, they report these
networks exhibit significant baseline dynamics, with percentage
BOLD signal changes up to 3% (comparable with the signal changes
found in task-related experiments). The extraction of RSNs from
whole-brain resting-state BOLD signals using ICA is particularly
important because it does not require any prior information
regarding the expected location of RSNs (see Fig. 10). Brookes et al.
(2011) applied ICA to the amplitude envelopes of band-passed
source-projected MEG signals and detected 8 IC spatial maps that
closely matched the RSNs found with fMRI. These ICs were
estimated from the envelopes of alpha- and beta-frequency
oscillations (see Fig. 4). Other methods for characterizing
resting-state fMRI networks include partial correlation (Fransson
and Marrelec, 2008), coherence and partial coherence (Salvador
et al., 2005b), and phase relationships (Sun et al., 2005).

Both correlation and IC analysis rely on the linear relationship
between regions. Other nonlinear functional connectivity
Fig. 10. Identification of an RSN using temporal ICA. An independent temporal componen

the brain (top) by selecting the set of voxels n whose BOLD signals, xn(t) have stronger co

the IC waveform reveal a peak <0.1 Hz.

Adapted from Mantini et al. (2007).
measures from information theory, such as mutual information,
have been applied to resting-state data (Hartman et al., 2011;
Hlinka et al., 2011). Hlinka and colleagues defined functional
connectivity matrices using both linear (Pearson correlation) and
non-linear functional connectivity measures and evaluated the
resulting networks using graph theory (Hlinka et al., 2011). Their
results show that, at least from a graph-theoretical perspective, the
nonlinearities in resting-state activity are practically negligible
when compared to the inter-subject variability of the graph
measures. On the group-average level, the nonlinearity effects are
unnoticeable as they vary individually. In addition Lynall and
colleagues analyzed resting-state data using both mutual infor-
mation and correlation measures at different wavelet scales, and
found that correlation measures allowed a better distinction
between healthy controls and schizophrenia patients (Lynall et al.,
2010). The linear dependency of resting-state BOLD time-series is
probably linked to the low temporal resolution typically used in
BOLD-fMRI studies (i.e. in the order of a couple of seconds), which
does not allow the detection of fast non-linear interactions. Recent
advances in ultra-fast spatial encoding and inverse reconstruction
have increased the temporal resolution of whole-brain fMRI to
time scales on the order of 100 ms and faster. This unprecedented
temporal resolution has been shown to significantly increase BOLD
sensitivity resulting in improved detection of single trial task
activation and resting state networks (Posse et al., 2012, 2013).

3.4. Characterizing brain networks using graph theory

The first approach to capture the organizational properties of
brain networks is to model them as graphs whose nodes represent
dynamical units and whose links stand for the connections
(structural or functional) between them. A large number of
measures have been defined in the field of graph theory to
characterize the topology of graphs (Boccaletti et al., 2006).
t ICk(t) (green) is extracted from the BOLD signals using ICA and then mapped over

ntributions from ICk(t) as indicated by the coefficients an,k. The spectral properties of
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Moreover, the availability of free Matlab libraries for graph
analysis of brain networks, such as the Brain Connectivity Toolbox
(www.brain-connectivity-toolbox.net, Rubinov and Sporns, 2010)
and the MatlabBGL Toolbox (www.cs.purdue.edu/homes/dgleich
by David Gleich) has allowed neuroscientists to efficiently
implement the graph algorithms to explore the organization of
brain networks.

A brain connectome, be it anatomical or functional, with N

cortical regions can be represented in the form of a matrix C, with N

columns and N rows, where each entry in the matrix C(n,p) or Cnp

encodes the connection strength between two brain areas n and p

(with n, p = 1, . . ., N). Connections can be binary, simply denoting
whether a link is present or absent. However, in brain networks,
the connection is usually weighted: in structural networks, it is
generally scaled by the number, density, or coherence of white
matter fibre tracts; in functional networks it may corresponds to
magnitudes of correlational or causal interactions between the two
brain areas. Studying weighted graphs, however, imposes an
increased degree of complexity and most graph theoretical studies
of resting-state functional networks have used binary graphs
instead. To transform the connectivity matrix C into a binary
adjacency matrix A, one needs to define a threshold, th, where
Anp = 1 if Cnp > th, or Anp = 0 otherwise. The definition of this
threshold has direct impacts on the density of connections (or
sparsity) of the network, which may have non-negligible effects on
the graph properties of the network (Bassett et al., 2012; van Wijk
et al., 2010). Therefore, to compare graph measures between
networks of different subjects, it is usual to define equi-sparse
graphs (instead of equi-threshold graphs), to ensure the same
number of edges in all graphs (Bassett et al., 2012; Lynall et al.,
2010) (see Fig. 11).

Another crucial step on the definition of brain graphs is the size
of the network, which is taken as the number of nodes. Since the
brain can be parcellated at different scales (such as neurons, voxels
or cortical regions) different graph properties may arise, and
therefore the properties of brain networks must be taken in the
light of the parcellation and the thresholding technique employed.
Even so, two review studies on human brain graphs (Bassett and
Bullmore, 2009; He and Evans, 2010) reported that some complex
network properties are consistent over a range of spatial and time
scales, and across modalities of neuroimaging data. Conserved
principles include small worldness, high efficiency/low wiring
cost, modularity and hubs. These properties were consistently
found in brain networks obtained with both structural MRI
(Bassett et al., 2008; Chen et al., 2008; He et al., 2007), diffusion
MRI (Hagmann et al., 2008; Iturria-Medina et al., 2008), fMRI
(Ferrarini et al., 2009; van den Heuvel et al., 2008; Wang et al.,
2009a), EEG (Micheloyannis et al., 2009; Rubinov et al., 2009), and
MEG (Stam et al., 2009; Valencia et al., 2008).

The small-world architecture is particularly important in
functional networks because it supports both segregated modular
specialization and distributed functional integration (Sporns and
Honey, 2006). In addition, it maximizes the efficiency of
Fig. 11. Thresholding weighted matrices into binary graphs. A resting-state functional c

between BOLD signals, can be transformed into a binary graph with different connectio

certain threshold, 0 otherwise). Importantly, distinct connection densities lead to disti
information transfer at a relatively low wiring cost. Notably, it
seems to be a common self-organizing principle of complex natural
systems, such as biological, chemical and even social networks (i.e.
the famous ‘‘six degrees of separation’’ postulated between living
people, derived from the original experiments by Milgram,
Milgram, 1967). The importance of a small-world topology for
an optimal cognitive performance is corroborated by reports of
disrupted small-world properties in resting-state functional net-
works of people with schizophrenia (Bassett et al., 2012; Liu et al.,
2008; Lynall et al., 2010), Alzheimer’s disease (Supekar et al., 2008)
and attention-deficit/hyperactivity disorder (Wang et al., 2009b).

Another important graph measure is the modularity, which
identifies modules of linked nodes that work together to achieve
distinctive functions (Newman, 2006; Leicht and Newman, 2008).
Connections are usually denser within modules than between
them. Detecting and characterizing modules of the brain can allow
us to identify groups of anatomically and/or functionally
associated components that may subserve specific behavioural
functions. For example, the modularity of resting-state fMRI
functional networks has been found to change with normal ageing
(Meunier et al., 2009). Note however that these changes may not be
directly related to neuronal activity but to heart function and
vessel compliance changes, naturally occurring in normal ageing.
In a model of resting-state dynamics, Deco et al. (2009) used a
modularity algorithm to divide one hemisphere of the macaque
anatomical network into 2 communities (see more details later).
Exploring the dynamics of the two modules independently, they
found that each module exhibited a specific temporal pattern of
synchronization, and notably, the synchronization level between
the two modules was anti-correlated, which could be explained by
stochastic resonance in a system with multistability. These results
reinforce the idea that the topological organization of structural
brain networks constrain and mould brain dynamics at multiple
levels.

3.5. Models of brain network development and organization

In the rapidly growing field of brain network science, some
models have been proposed to explain the evolutionary organiza-
tion principles of brain networks and their implications in brain
function. For example, studies of anatomical and functional brain
networks have shown that the connection probability between
two brain regions decreases with the physical distance between
them (Chklovskii and Koulakov, 2004; Salvador et al., 2005a).
Based on this observation, generative models can be built by
defining the probability of a functional connection (edge) between
two cortical regions (nodes) separated by some Euclidean distance
in anatomical space (Kaiser and Hilgetag, 2004a,b; Vertes et al.,
2012). Such models may be optimized to reflect graph-theoretical
aspects of brain networks, such as high efficiency or high clustering
coefficient, leading to generative models of networks with small-
world organization, like the brain. The economic network model
from Bullmore and Sporns (2012) addresses how the brain
onnectivity (FC) matrix, where entries indicate the degree of temporal correlation

n densities, depending on the threshold (1 if the correlation coefficient is above a

nct graph properties.

http://www.brain-connectivity-toolbox.net/
http://www.cs.purdue.edu/homes/dgleich
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optimizes an economic trade-off between the cost (i.e. minimizing
connection density) and the efficiency of network function (i.e.
minimizing the characteristic path length). Another theoretical
model (Vertes et al., 2012) proposes that the topology of human
brain functional networks emerges from two competing factors:
lower probability of long-range connections and higher connection
probability between regions sharing similar input. Although such
models allow investigating certain organizational features of
resting-state functional connectivity, they do not actually model
the neural activity (i.e. dynamics) of interacting brain areas nor
investigate the neurophysiological and/or biophysical mechanisms
coupling brain areas together. As such, the network dynamics
underlying brain activity during rest may not be fully explored
using these models.

4. Large-scale models of resting-state dynamics

The dynamics emerging spontaneously from the interplay
between brain areas when these are embedded in the neuroana-
tomical network, has been attracting a growing body of research in
computational neuroscience (Deco et al., 2011, 2013b; Jirsa et al.,
2010; Nakagawa et al., 2013; Ritter et al., 2013). By means of
whole-brain network models, constrained by realistic structural
connectivity, one can explore how large-scale interactions give rise
to the spontaneous emergence of resting-state fluctuations.
Importantly, these models can be used to test predictions and
evaluate the impact of lesions in the brain. The recently launched
Virtual Brain (www.thevirtualbrain.org) is a neuroinformatics
platform with a user-friendly brain simulator which allows users
to perform customized simulations, analyze the results and
compare them with macroscopic neuroimaging signals (Ritter
et al., 2013).

To investigate the spontaneous dynamics of interacting brain
areas at the whole-brain scale, it is useful to go beyond the
microscopic activity of individual neurons and consider instead the
mesoscopic behaviour of large ensembles of neurons, or neuronal
populations (Deco et al., 2008). Although simulations of detailed
models at the cellular (and even sub-cellular) level are becoming
computationally feasible (Izhikevich and Edelman, 2008; Mark-
ram, 2006), reduced neural-mass models, despite their low spatial
resolution, allow a comprehensive study of the large-scale
interactive dynamics with relatively low parametric complexity.
This approach is motivated by neuroimaging observations showing
that neurons within a densely connected neural ensemble tend to
share the same physiological properties, exhibit dense reciprocal
interconnectivity and show strong dynamical correlations. Neural-
mass models can be extended to neural-field models, where the
expected state of a neuronal population becomes a function of both
time and position on the brain’s spatially continuous cortical sheet.
To date, however, all the models of whole-brain resting-state
dynamics have represented brain areas as isolated points in space
(or point-masses).

Following different reduction lines, a number of studies have
contributed for the understanding of resting-state dynamics using
neural-mass models coupled according to the brain’s anatomical
architecture (Cabral et al., 2011; Deco et al., 2009; Deco and Jirsa,
2012; Ghosh et al., 2008c; Honey et al., 2007, 2009). All these
models rely on the assumption that resting-state activity arises
solely from synaptic interactions between brain areas and
disregard the role of physiological signals (such as blood flow,
vessel structure and cerebrospinal fluid) which vary strongly
across the human brain and even display very slow (<0.1 Hz)
fluctuations (Chang et al., 2013; Kim and Ogawa, 2012; Moser
et al., 1999; Strik et al., 2002). In the approach followed by these
models, the BOLD signal is obtained from the simulated neural
activity using a simple model (i.e. the Windkessel-Balloon model
applied uniformly to all brain areas (see Section 4.7). In the
following, we review existing models of resting-state activity.

4.1. Conductance-based biophysical model

The first work to investigate the cooperative behaviour of
neural systems coupled through a realistic anatomical wiring
scheme was achieved by Honey and colleagues (2007). They used a
biophysical neural-mass model introduced by Breakspear et al.
(2003) together with the anatomical connectivity of the macaque
cortex (Kotter, 2004). Later, the same model was extended to
incorporate human neuroanatomical connectivity and results were
compared with resting-state fMRI functional connectivity from
healthy humans (Honey et al., 2009). Finally, the same group used
this model to study the dynamical impact of lesions in the brain
(Alstott et al., 2009; Honey and Sporns, 2008).

The neural-mass dynamics in these works was derived from a
conductance-based model of neuronal dynamics (Morris and
Lecar, 1981) extended for neural population activity (Larter et al.,
1999). The coupling between neural masses (or cortical regions)
was introduced via weak long-range excitatory-to-excitatory
connections, mimicking glutamate-induced synaptic currents
(Breakspear, 2004; Breakspear et al., 2003).

The main dynamical variable in that model is the mean
membrane potential of pyramidal cells V, which is governed by the
conductance of sodium (gNa), potassium (gk) and calcium (gCa) ions
through voltage-gated channels, plus the passive conductance of
‘leaky’ ions (gL). The total current flow across pyramidal cell
membranes is given by:

C
dV

dt
¼ �gCamCaðV � VCaÞ � gNamNaðV � VCNaÞ � gK WðV � VKÞ

� gLðV � VLÞ

where gion is the maximum conductance of each population of ions,
mion is the fraction of open ion channels (W for potassium ion
channels), and Vion is the Nernst potential for that ion species. All
equations and parameters are non-dimensional and normalized to
neural capacitance C = 1. Each voltage-gated channel opens when
the membrane potential overcomes a given threshold, Tion. For a
large population of ion channels, Tion assumes a Gaussian
distribution (with variance dion) and hence, the fraction of open
ion channels is given by the following (sigmoid-shaped) function:

mion ¼ 0:5 1 þ tanh
V � Tion

dion

� �� �
:

The fraction of open potassium channels W is defined
differently because these channels ‘relax’ from one state to
another at an exponential rate. Therefore, W is governed by

dW

dt
¼ fðmK � WÞ

t

where f is a temperature scaling factor and is t the ‘relaxation’
time constant.

To introduce synaptic interactions between neurons within the
same neural ensemble, the average firing-rates of excitatory ðQV Þ
and inhibitory neurons ðQZÞ is calculated and introduced as a
feedback term subsequent to cell firing to represent neurotrans-
mitter release. At the cell soma, the membrane potential triggers
an action potential if it exceeds a threshold. Averaging this over the
ensemble of neurons and assuming once again a Gaussian
distribution, the cell firing rates can be obtained by the following
equations:

http://www.thevirtualbrain.org/
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QV ¼ 0:5 � QV max 1 þ tanh
V � VT

dV

� �� �
;

QZ ¼ 0:5 � QZ max 1 þ tanh
Z � ZT

dZ

� �� �
;

where Qmax is the maximum rate of firing of the excitatory or
inhibitory neurons. The firing of each population feeds back onto
the ensemble and raises or lowers the membrane potential
accordingly.

Excitatory-to-inhibitory and inhibitory-to-excitatory connec-
tions are modelled as additional inputs to the flow of ions across
the membrane channel, weighted by functional synaptic factors, aei

and aie respectively. In addition, excitatory-to-excitatory connec-
tions are modelled with greater physiological detail: the mean
firing rate QV is assumed to lead to a proportional release of
glutamate neurotransmitter across the synapse, which diffuses
onto two classes of ligand-gated ion channels. On one side, AMPA
receptors open additional sodium channels, increasing the net
conductance of sodium flow. On the other, NMDA receptors open
an additional population of voltage-gated calcium channels,
increasing the maximum conductance of voltage-gated calcium
channels. Incorporating these specifications, the membrane
potential of excitatory (V) and inhibitory (Z) is given by:

dV

dt
¼ �ðgCa þ rNMDAaeeQV ÞmCaðV � VCaÞ � ðgNamNa þ aeeQV ÞðV

� VNaÞ � gK WðV � VKÞ � gLðV � VLÞ þ aieZQZ þ aneId;

dZ

dt
¼ bðaiiId þ aniVQV Þ;

where Id corresponds to ‘nonspecific’ subcortical excitation with
amplitude I modulated by a random noise component of amplitude
d added to both populations with weights ane and ani. aee scales the
local excitatory-to-excitatory synaptic strength and rNMDA denotes
the number of NMDA receptors relative to that of AMPA receptors.

These equations depict the behaviour of one population of
densely interconnected excitatory and inhibitory neurons. To
model interaction of N coupled neural-masses it is necessary to
introduce long-range excitatory projections between pyramidal
cells. These long-range projections are modelled to target the same
populations of NMDA and AMPA receptors targeted by the short-
range excitatory projections. Representing each node with an
index n = 1,. . ., N, the following equation describes the mean
membrane potential of pyramidal cells at position xn:

dVðxnÞ
dt

¼ �ðgCa þ ð1 � cÞrNMDAaeeQV ðxnÞ

þ crNMDAaeeQV ðxÞÞmCaðVðxnÞ � VCaÞ � ðgNamNa þ ð1

� cÞaeeQV ðxnÞ þ caeeQV ðxÞÞðVðxn � VNaÞ � gK WðVðxnÞ

� VKÞ � gLðVðxnÞ � VLÞ þ aieZQZðxnÞ þ aneId;

where the notation h i represents spatial averaging over neural-
masses. Parameters were set to values that replicate realistic
conductances. Using a regular connectivity these values had
previously been reported to show complex, spontaneous activity,
including intermittency, phase synchrony, and marginal stability
(Breakspear et al., 2003; Breakspear, 2004).

Spontaneous brain activity was simulated using realistic
anatomical connectivity, first from the macaque brain (Honey
et al., 2007) and later from the human brain (Honey et al., 2009).
The inter-node coupling was set to a value at which synchronous
dynamics is weakly stable, allowing spontaneous switching
between synchronous epochs and desynchronous bursts. Since
neither noise nor delays are introduced in the model, activity in the
system arises purely from nonlinear instabilities due to the
complex structural connectivity and the chaotic dynamics at the
neural-mass level. Under this parameterization the neural inter-
actions in the model occur at multiple time-scales and reflect
spontaneously arising ‘self-organizing’ patterns. Using the Bal-
loon–Windekessel model (Friston et al., 2003), the simulated
activity of each pool was transformed into a BOLD signal. Results
show a spatial organization of BOLD signal fluctuations, which
favourably compares to empirical resting-state functional connec-
tivity from 5 healthy subjects (Honey et al., 2009). These results
were the first to indicate that the spatio-temporal characteristics of
resting-state activity are constrained by the large-scale anatomical
structure of the human cerebral cortex.

4.2. The FitzHugh–Nagumo model

The neuroanatomical architecture of the brain shapes not only
the connectivity between regions, but also the distance over which
these connections occur, defining in this way a space–time
structure of couplings and delays, which is essentially constant
over relatively short time scales. Ghosh and colleagues explored
the time-delayed interaction between neural-masses in this
space–time structure, with delays proportional to the distance
between regions (Ghosh et al., 2008a,c). The ongoing dynamics was
simulated using FitzHugh–Nagumo units (Fitzhugh, 1961;
Nagumo et al., 1962) coupled according to anatomical connectivity
of one hemisphere of the macaque brain (Kotter, 2004).

The implementation of the model consisted in defining two
state variables, un and vn, representing the membrane potential
and the recovery potential correspondingly, for each node n. A
parameter c scales all connection strengths without altering the
connection matrix Cn p nor affecting the associated time delays
Dtn p. The following differential equations describe the dynamics of
the state variables, with corresponding additive noise nu and nv:

u̇nðtÞ ¼ gðun; vnÞ � c
XN

n¼1

Cn pu pðt � Dtn pÞ þ nuðtÞ

v̇nðtÞ ¼ hðu p; vnÞ � nvðtÞ

The functions g and h are based on FitzHugh–Nagumo systems
(Fitzhugh, 1961; Nagumo et al., 1962) and are defined as follows:

gðun; vnÞ ¼ t vn þ gun �
u3

n

3

� �
;

hðun; vnÞ ¼ � 1

t

� �
½un � a þ bvn�

In absence of connectivity, the network nodes display damped
oscillatory dynamics. Nodes were then coupled with realistic brain
connectivity and delays and the stability of the resulting dynamics
wasinvestigatedasafunctionoffinitesignaltransmissionspeedsand
increasing coupling strengths. For a restricted interval of velocities
(5–20 m/s) and for a sufficiently strong coupling, the system exhibits
increased instability. At the border of instability, and in the presence
of noise, neural-masses display the emergence of oscillatory
dynamics (at 10 Hz) with fluctuating amplitude (see Fig. 12).

The structural connectivity is found to shape the dynamic
repertoire of the entire system, giving rise to slow fluctuations in
the power of the 10 Hz oscillations. To test for the emergence of
ultra-slow oscillations, the BOLD signal was computed (see Section
4.7), giving rise to rest-like fluctuations that were correlated across
distant areas. Furthermore, simulated BOLD signals were found to



Fig. 12. Time series of coupled FitzHugh–Nagumo units with realistic macaque

connectivity at the border of instability with noise. Labels indicate the names of

brain areas: PFCORB, orbital prefrontal cortex; PFCVL, ventrolateral prefrontal

cortex; PCM, medial parietal cortex; PCS, superior parietal cortex; CCA, anterior

cingulated cortex; PFCDL, dorsolateral prefrontal cortex.

Adapted from Ghosh et al. (2008c).
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exhibit correlations within the DMN as transmission velocities
ranged between 5 and 10 m/s, which fall in the interval of expected
realistic speeds in myelinated axons.

In addition to the results presented in their study, the authors
have tested multiple oscillator types which are commonly used in
neural-mass modelling including Hopf oscillators, Wilson–Cowan
systems, FitzHugh–Nagumo systems, and finally mixed popula-
tions of coupled FitzHugh–Nagumo neurons (Assisi et al., 2005), all
providing similar results, reinforcing the key role of the space–time
structure of the neuroanatomical network in shaping the dynamics
of the brain at rest.

4.3. The Wilson–Cowan model

Another important modelling study of large-scale resting-state
dynamics was developed by Deco and colleagues (2009) using the
same space–time structure as (Ghosh et al., 2008a), i.e. the
macaque’s anatomical connectivity (CoCoMac; Kotter, 2004) with
time delays derived from a human template. At the node level, the
dynamics of a neural population was modelled using Wilson–
Cowan units (Wilson and Cowan, 1972, 1973). Wilson and Cowan
analyzed the collective properties of large ensembles of excitatory
and inhibitory neurons using methods from statistical mechanics,
based on the mean-field approach. They proposed that typical
dynamics in a cortical region could be obtained by considering a
population of excitatory neurons coupled with a population of
inhibitory neurons (Fig. 13A).

It consists of a set of differential equations that describe the
time evolution of the mean level of activity of a neural population,
using a nonlinear sigmoid function to represent the interactions
Fig. 13. Schematic illustration of Wilson–Cowan units. (A) The model of a Wilson–

Cowan unit consists in two pools, one pool of excitatory neurons (with recurrent

excitation) and another of inhibitory neurons that are coupled to each other. (B)

Wilson–Cowan units are coupled together through connections between excitatory

pools.

Adapted from (Deco et al., 2009).
between the populations. The activity of a pool of excitatory
(pyramidal) neurons without external input, E(t), is given by the
following equation:

t
@EðtÞ
@t
¼ �EðtÞ þ fðEðtÞÞ;

where t is the membrane time constant, �E(t) means that the
activity decays in time if no stimulation is received, and the last
term takes into account the recurrent excitatory stimulation from
all the neurons in the same pool. The response function
transforming the current into discharge rates is given by:

fðxÞ ¼ c

1 � exp�aðx�bÞ :

Considering now the two populations of the Wilson–Cowan
module are coupled together (Fig. 13A), one with only excitatory
neurons, EðtÞ, and another with only inhibitory neurons, IðtÞ, the
dynamics of such module is given by the following 2 differential
equations:

t
@EðtÞ
@t
¼ �EðtÞ þ fðIb þ wþxðtÞ � IðtÞÞ þ dðtÞ;

t0
@IðtÞ
@t
¼ �IðtÞ þ fðwIEðtÞÞ þ dðtÞ;

where Ib is a diffuse spontaneous background input, and d is
additive independent Gaussian noise with mean value zero. The
noise level is given by the variance d2. To model the network
dynamics at the macroscopic level, N ¼ 38 Wilson–Cowan
modules, each representing a cortical region, were coupled
according to the macaque’s neuroanatomical connectivity, using
the connectivity matrix Cn p and the delays Dn p. The global
dynamics is given by

t
@EnðtÞ

@t
¼ �EnðtÞ þ f Ib þ

XN

p¼1

aC pnE pðt � D pnÞ � InðtÞ
  !

þ dnðtÞ;

and

t
@InðtÞ
@t
¼ �InðtÞ þ fðwIEnðtÞÞ þ dnðtÞ:

a regulates the global coupling strength and recurrent couplings
were set to Cnn ¼ wþ=a.

Taking into account the bifurcation diagram of a single Wilson–
Cowan module as a function of the parameters Ib and wþ, these 2
parameters were selected such that the node dynamics is at the
border of a Hopf bifurcation, but still in a non-oscillatory low-activity
state. The idea is that, when modules are coupled (a > 0), they go
spontaneously to an oscillatory state in the gamma-frequency band
(40 Hz).Notably, forarangeofcouplings, time delays,and noise, each
module,whencoupled,behavessimilarlytosingleisolatedandnoise-
free Wilson–Cowan in the oscillatory regime.

As described earlier, using a modularity algorithm (Newman,
2006), the structural network of the macaque brain was divided
into 2 modules, with more probability of links within the modules
than between them. For a certain range of parameters (couplings,
delays and noise), the two modules tend to synchronize
alternatively, while the network is never globally synchronized.
This dynamical regime, where 2 modules compete to synchronize,
is called a Chimaera state in theoretical physics. This leads to slow
anti-correlated fluctuations in the synchrony degree of the two
different modules. For an optimal level of noise, the synchroniza-
tion level of the two clusters was found to fluctuate slowly (0.1 Hz)
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in the same time-scale of the BOLD signal fluctuations observed
experimentally during rest. This work (Deco et al., 2009) suggests a
theoretical scenario for the origin of anti-correlated BOLD signal
fluctuations observed in the brain at rest (Fox et al., 2005).
However, posterior studies have shown that the anti-correlations
in BOLD signal reported by Fox et al. (2005) may be introduced via
certain pre-processing approaches, in particular the regression
against the global signal, far from the biophysical synchronization
mechanisms proposed in this work (Murphy et al., 2009;
Weissenbacher et al., 2009).

4.4. The Kuramoto model

Following the results from Deco and colleagues (2009), where
neural populations were intrinsically oscillating in the gamma-
frequency band, an increased degree of reduction was applied to the
model to deeper investigate the role of local oscillations in resting-
state functional connectivity (Cabral et al., 2011). The interaction of
oscillatory cortical regions in the brain’s large-scale anatomical
network was simulated using a well-known model describing
coupled oscillators’ systems, called the Kuramoto model (Acebron
et al., 2005; Kuramoto, 1984). The Kuramoto model has been used to
simulate synchronization behaviour in a wide variety of fields,
including biological systems and, more recently, neural dynamics
(Breakspear et al., 2010). The reduction of a neural-mass dynamics to
a phase oscillator is made in an abstract way, supported by a number
of experimental and theoretical studies showing that neural activity
at the population level usually exhibits oscillations with a moderate
level of synchrony, due to a balance in the firing rates of excitatory
and inhibitory neurons, mainly in the gamma frequency range (30–
80 Hz) (Bartos et al., 2007; Borgers and Kopell, 2003; Brunel, 2000;
Brunel and Wang, 2003).

According to the Kuramoto model, the behaviour of coupled
oscillators in nature can be modelled as a sine function of the phase
difference between the two oscillators. Without delays, coupled
oscillators tend naturally towards synchronization, as long as the
coupling is sufficiently strong to engage phase interactions.
However, in the presence of delays, the dynamics becomes more
complex (Yeung and Strogatz, 1999) and the particular case of
heterogeneous delays, like in the brain, has only recently begun to
be addressed theoretically (Lee et al., 2009).

Denoting by unðtÞ the phase of node n at time t, it then obeys the
following dynamical equation:

dun

dt
¼ vn þ k

XN

p¼1

Cn p sinðu pðt � tn pÞ � unðtÞÞ; n ¼ 1; . . . ; N:

where Cn p is the structural coupling strength from node p to
node n, and k is the global coupling strength which scales all
connection strengths. The delay tn p between node p and node n is
calculated using tn p ¼ Ln p=v, where Lnp is the distance between
nodes and v is the conduction velocity. f n ¼ vn=2p is the intrinsic
frequency of node n.

At the network level, the synchrony of a group of nodes N can be
evaluated by the order parameters R(t) and F(t), jointly defined by

RðtÞeiFðtÞ ¼ 1

N

XN

n¼1

eiunðtÞ;

where R(t) measures phase uniformity and varies between 0 for
a fully desynchronized state and 1 for a fully synchronized state,
and F(t) represents the phase of the global ensemble.

For a biologically plausible range of time delays (between 8 and
15 ms) and sufficiently strong coupling, the system is in a regime
where subsets of nodes tend to synchronize although the network
is not globally synchronized. This unstable synchronization of
subsets of brain areas (or functional networks), leads to slow
fluctuations in the synchrony degree R(t). The intensity of these
fluctuations is given by the standard deviation of R, sR, which
indicates the degree of metastability of the system (Shanahan,
2010). In the model, this metastable synchronization originates
slow fluctuations in neural activity that are captured by the BOLD
signal (see Section 4.7). Notably, the simulated BOLD signal
correlates between brain areas and the correlation patterns are in
good agreement with the empirically measured BOLD correlation
structure (see Fig. 14).

This modelling work shows that resting-state activity can
originate from oscillatory network interactions, where different
subnetworks, defined by the space–time structure of the
anatomical network, tend to synchronize temporarily while the
global system is never fully synchronized. In this theoretical
scenario, resting-state functional networks are subnetworks that
temporarily synchronize when the global brain network operates
in the border between incoherence and synchrony. These
functionally relevant subnetworks are intrinsically defined by
the neuroanatomical network.

4.5. Node model in asynchronous state

It is now widely accepted that the dynamics of the brain at rest
is strongly shaped by the underlying anatomical network.
However, the effects of structural disconnection in resting-state
fMRI functional connectivity remain unclear. Cabral et al. (2012a)
approached this issue using, at the node level, a simplified model
consisting in a linearized version of the Fokker–Planck equation.
Differently from the Kuramoto model described previously, this
model builds on the assumption that local neural networks are in a
stable asynchronous state where no oscillations develop. In this
case, the node model describes only the firing-rate deviations
around the steady state. At rest, these deviations are induced by
internally generated noisy fluctuations (finite size networks have
been shown to intrinsically induce noise in the dynamics, Mattia
and Del Giudice, 2002). In the presence of noise, the model
produces ongoing fluctuations by the excitatory reverberation of
local activity on the large-scale structural network. Consequently,
the structural connectivity makes the rate fluctuations not
independent, explaining in principle the finding of the large-scale
neuroanatomical structure in brain fluctuations.

According to the Fokker–Planck equation (Risken, 1989), the
activity of a large population of spiking neurons can be described by
the probability distribution of the neuron’s internal variables (i.e. the
membrane potential in the simplest case). An associated equation
gives the neural population firing-rate. Under the hypothesis that
the neural populations are in a stable asynchronous state, the steady
solution of the Fokker–Planck equation is stable and the probability
distribution can be decomposed leading to a linear dynamical
equation for each of the coefficients of the series’ expansion plus an
equation for the rate fluctuations.

This model proposes that the resting-state BOLD signal
fluctuations are generated by slow, noise-induced firing-rate
deviations around the steady state and not by interactions of fast
oscillatory signals (such as alpha or gamma-band oscillations as in
Cabral et al. (2011), Deco et al. (2009) and Ghosh et al. (2008a)). As
such, in this model, the fast oscillatory perturbations are neglected
and only the slow frequencies captured by Balloon–Windkessel
model (<0.4 Hz) are considered. Therefore, the dynamics can be
approximately described by the exponentially decaying perturba-
tions responsible for the low-frequency part of neuronal activity.
Consequently, for each brain area n, the firing rate deviations rnðtÞ
obey the following first order stochastic differential equation:

t0
drn

dt
¼ �rnðtÞ þ k

c1

XN

p¼1

Cn pr pðt � tn pÞ þ shnðtÞ; n ¼ 1; . . . ; N:



Fig. 14. Comparison between structural connectivity and empirical and simulated functional connectivity. (A) Representation on the cortical surface of the structural

connectivity (top), empirical functional connectivity (middle) and simulated functional connectivity (bottom), for 2 seeds, the right precuneus (above) and left cuneus

(below). (B) Bar plot showing the structural and empirical/simulated functional connectivity for the left posterior cingulate.

Adapted from Cabral et al. (2011).
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where k is the global excitatory coupling level between nodes
(k > 0). Cn p and tn p are the structural coupling strength and the
conduction delay from region p to region n, specified by the white
matter connectivity. s is the noise level and the terms hnðtÞ are
uncorrelated white Gaussian noises with zero mean and unit
variance (hhnðtÞi ¼ 0 and hhnðtÞh pðt0Þi ¼ dn pdðt � t0Þ, where dn p is
the Kronecker symbol and dðtÞ denotes the Dirac delta function). As
equations are linear, s only scales the level of the rate deviations.
Since long-distance connections are excitatory, the reverberated
activity over the network can destabilize the damped local
dynamics, and therefore the asynchronous states. Given t0, which
is given by the internal state of local networks (t0 = 20 ms here),
the dynamics depends only on one parameter: k.

The parameter k was manipulated to control the strength of
excitatory coupling between brain areas, in order to study the
global effects of structural connectivity. Simulations with the
model generate slow BOLD signal fluctuations, whose correlations
(i.e. the functional connectivity matrix) reveal the underlying
anatomical connectivity (Fig. 15). For a certain coupling strength,
simulations reproduced with good agreement healthy resting-
state functional connectivity.

4.6. Attractor network of spiking neurons

Recently, a new model of resting-state activity with an
increased degree of realism was introduced (Deco and Jirsa,
2012). In this model, each area (or node) in the global brain
network is modelled as a local spiking network consisting of
mutually interconnected populations of excitatory pyramidal
neurons and GABAergic inhibitory neurons. In other words, it is
a network of networks, specified by a large set of coupled equations
describing each neuron and synapse.

The local networks consist of integrate-and-fire spiking
neurons with excitatory (AMPA and NMDA) and inhibitory
(GABA-A) synaptic receptor types (Brunel and Wang, 2001).
Neurons in each local network were divided into two populations:
one of NE excitatory pyramidal and one of NI inhibitory neurons.
The neurons’ spiking activity was described by the classical
Integrate-and-Fire model, which specifies the membrane potential
V(t) as a function of the input currents coming from connected
neurons and of external inputs. While the membrane potential of
each neuron in the network is below a given threshold Vthr, V(t) is
given by the following equation:

Cm
dVðtÞ

dt
¼ �gmðVðtÞ � VLÞ � IM � gAMPA;extðVðtÞ

� VEÞ
XNext

j¼1

SAMPA;ext
j ðtÞ � gAMPA;recðVðtÞ

� VEÞ
XNE

j¼1

w jS
AMPA;rec
j ðtÞ � gNMDAðVðtÞ � VEÞ=ð1

þ le�bVðtÞÞ
XNE

j¼1

w jS
NMDA
j ðtÞ � gGABAðVðtÞ

� VIÞ
XNI

j¼1

w jS
GABA
j ðtÞ



Fig. 15. Simulated functional connectivity matrices obtained with the model with increasing coupling strength k.

Adapted from Cabral et al. (2012a).
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When the membrane potential crosses the threshold Vthr, the
neuron generates a spike. The spike is transmitted to other neurons
and the membrane potential is instantaneously reset to Vreset and
maintained there for a refractory time tref, during which the
neuron is unable to spike. gm is the membrane leak conductance,
Cm is the capacity of the membrane and VL is the resting potential.
The membrane time constant is defined by tm ¼ Cm=gm. The
synaptic input current is given by the last four terms of the
equation, corresponding to glutamatergic AMPA (IAMPA,ext) external
excitatory currents, AMPA (IAMPA,rec) and NMDA (INMDA) recurrent
excitatory currents, and GABAergic recurrent inhibitory currents
(IGABA) with the their respective synaptic conductances gAMPA,ext,
gAMPA,rec, gNMDA and gGABA. VE and VI are the excitatory and
inhibitory reversal potentials. The weight of recurrent self-
excitation wj was given by w+ = 1.55 within excitatory populations,
and w = 1 within inhibitory populations. The connections between
excitatory and inhibitory neurons were weighted w = 1.

The gating variables SI
jðtÞ represent the fraction of open ion

channels on the membrane of neurons. For I = AMPA or GABA
receptor types, the gating variables are given by:

@SI
jðtÞ
@t

¼ �
sI

jðtÞ
tI
þ
X

k

dðt � tk
j Þ:

For NMDA synapses, the gating variables are specified as:

@SNMDA
j ðtÞ
@t

¼ �
SNMDA

j ðtÞ
tNMDA;decay

þ axNMDA
j ðtÞð1 � sNMDA

j ðtÞÞ

@xNMDA
j ðtÞ
@t

¼ �
xNMDA

j ðtÞ
tNMDA;rise

þ
X

k

dðt � tk
j Þ:

The sums over the index k represent all the spikes emitted by the
presynaptic neuron j at times tk

j . tAMPA and tGABA are the decay times
for AMPA and GABA synapses, and tNMDA;rise and tNMDA;decay are the
rise and decay times for the NMDA synapses. In addition, all neurons
in the system receive an external background input representing the
noisy fluctuations that are typically observed in vivo arising from
finite-size effects of the spiking dynamics of the individual neurons.
These fluctuations are represented by uncorrelated Poisson spike
trains with a time-varying rate np

extðtÞ governed by:

tn
@n p

extðtÞ
@t

¼ �ðnp
extðtÞ � n0Þ þ sn

ffiffiffiffiffiffiffiffi
2tn

p
n pðtÞ;

where sn is the standard deviation of np
extðtÞ and n pðtÞ is

normalized Gaussian white noise. Negative values of np
extðtÞ that

could arise due to the noise term are rectified to zero. All the values
used in the simulations are reported in Deco and Jirsa (2012). The
firing activity of the whole system was simulated and the BOLD-
fMRI signal was estimated using the Balloon–Windkessel model
(Friston et al., 2003). The simulated functional connectivity was
computed as the correlation matrix of the simulated BOLD signals
between all brain areas. Fig. 16 (right) shows the Pearson
correlation between both the empirical and the simulated
functional connectivity matrices as a function of the global
inter-area coupling weight.

The large set of coupled equations describing each neuron and
synapse in the global network specify a dynamical system. The
stationary fixed points (or stable patterns of firing activity) of such
system are called ‘‘attractors’’. To estimate the number of
attractors of the system at low computational costs, a mean-field
approximation was used (Brunel and Wang, 2001; Deco et al.,
2013c). For each parameter set, the mean-field equations were
iterated with 1000 different initial conditions chosen randomly for
each node. The number of attractors was established as the
number of final average firing rates that are different from all
previously final average firing rates found for at least one pool. In
Fig. 16 (left), the number of attractors was calculated for a range of
global coupling strengths W, providing the so-called ‘‘attractor
landscape’’. For very small values of W, only one attractor is stable.
That attractor corresponds to the trivial spontaneous state of the
system where all neurons in all brain areas display low firing
activity. Also for very large values of W only one stable attractor is
found, but in this case it corresponds to the ‘‘epileptiform’’ case
where all excitatory neurons are highly activated in all brain areas.
Notably, for intermediate coupling W, multistability emerges and
many attractors coexist, corresponding to distinct foci of high
firing activity in particular brain areas. The entropy of the system
to characterize the expected variability of cortical activity due to
noise-driven transitions between multistable attractors. When
there is only one single attractor, the system invariably settles
within it and the entropy is 0. If, however, the number of attractors
is larger than 1, the entropy is given by:

H ¼ �
X

i

pðiÞ logð pðiÞÞ;

where p(i) is the probability that the system settles in attractor i. As
shown in Fig. 16 (left), the entropy is increased for the range of
coupling weights W where multistability emerges. The model was
found to optimally predict empirical data (Fig. 16, right) for a
coupling weight where the brain network operates at the brink of
the bifurcation that separates the stable low activity equilibrium
state from the multistable state region where many attractors
coexist (Fig. 16, left). The results from this work demonstrate that
resting-state networks in fMRI can result from structured noise
fluctuations around the trivial low firing equilibrium state induced



Fig. 16. Comparing the model’s performance with the attractor landscape. (Left) Mean-field analyses of the attractor landscape of the cortical spiking network as a function of

the global inter-areal coupling weight. The dashed line plots the number of stable attractors, whereas the continued line shows the entropy of the attractors. (Right) Fit of

simulated data with empirical functional connectivity, as a function of the global coupling weight. The best fit is achieved at the edge of the bifurcation (vertical line).

Adapted from Deco and Jirsa (2012).
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at the edge of a bifurcation by the presence of latent ‘‘ghost’’
multistable attractors corresponding to distinct foci of high firing
activity in particular brain areas. Importantly, this work proposes a
new scenario where the multistable attractor landscape, which is
inherently present in the neuroanatomical connectivity, defines a
functionally meaningful dynamic repertoire of the brain network.
These functionally relevant attractor networks can be rapidly
activated during a task through the attractor’s stabilization since,
during rest, the brain operates at the edge of the bifurcation.

The dynamic mean field model (Deco et al., 2013c) approx-
imates the ensemble dynamics of the detailed spiking large-scale
network reducing its complexity. The model was further simplified
into a set of motion equations for statistical moments, providing a
direct analytical link between anatomical structure and functional
connectivity. With this reduction, the authors show that, in this
model, the resting-state activity emerges as structured linear
fluctuations around a stable low firing activity state close to
destabilization.

4.7. Transforming neuronal activity into BOLD signal

To compare the simulated neural activity with data from resting-
state fMRI functional connectivity, it is necessary to estimate the
BOLD signal changes associated with the simulated neural activity.
The neurovascular transduction is defined by the haemodynamic
response function which describes the way blood flow adjusts to
deliver oxygen to active neuronal tissues. The Balloon–Windkessel
haemodynamic model (Friston et al., 2003) is widely used to model
the neurovascular coupling and has been used in all existing models
of whole-brain resting-state activity (Cabral et al., 2012a,b; Deco
et al., 2009; Deco and Jirsa, 2012; Ghosh et al., 2008a; Honey et al.,
2009). Although the same biophysical parameters have been used
for all areas, the shape and time to peak of this function may vary
substantially between brain areas and even across subjects (Aguirre
et al., 1998; Cunnington et al., 2002; D’Esposito et al., 1999;
Handwerker et al., 2004). These variations may be further increased
with age, medication and pathologies. As such, assuming consisten-
cy across subjects or brain regions (and even to model disease) is a
considerable simplification.

In the Balloon–Windkessel model, the BOLD signal is taken to
be a static nonlinear function taking into account the normalized
voxel content of deoxyhemoglobin, the normalized venous
volume, the net oxygen extraction fraction by the capillary bed
during rest and the resting blood volume fraction.

The neural activity at node n, rnðtÞ, causes an increase in a vaso-
dilatory signal sn that is subject to auto-regulatory feedback. Inflow
f n responds in proportion to this signal with concomitant changes

in blood volume vn and deoxyhemoglobin content gn. The
equations relating these biophysical variables with the BOLD
signal gn are:

@snðtÞ
@t

¼ rn � knsn � gnð f n � 1Þ

@ f nðtÞ
@t

¼ sn

tn@vnðtÞ
@t

¼ f n � vn
1=a

tn@qnðtÞ
@t

¼ f nð1 � ð1 � rnÞ
1= f n Þ

rn

� vn
1=aqn

vn

where rn is the resting oxygen extraction fraction. The BOLD signal
is taken as a static nonlinear function of volume and deoxyhe-
moglobin that comprises a volume-weighted sum of extra- and
intravascular signals:

yn ¼ V0ð7rnð1 � qnÞ þ 2 1 � qn

vn

� �
þ ð2rn � 0:2Þð1 � vnÞÞ

where V0 ¼ 0:02 is the resting blood volume fraction. The
biophysical parameters were taken as in Friston et al. (2003). The
Balloon–Windkessel model filters out the higher frequencies of
neural activity and maximizes the amplitude of lower frequency
oscillations (<0.5 Hz with a peak at 0.2 Hz using the biophysical



Fig. 17. Characteristics of the BOLD signal estimated with the Balloon–Windkessel

model. (A) Comparison between the simulated BOLD signal (solid line) and the

corresponding low-pass filtered neural activity with a cut-off frequency of 0.35 Hz

(dotted line). (B) Amplitude of the linear filter in the Balloon–Windkessel model as a

function of frequency. (C) Cross-correlation between the two signals; the peak

around 1.6 s (correlation coefficient = 0.88) corresponds to the lag of the

haemodynamic response.

Adapted from Cabral et al. (2011).
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parameters from Friston et al. (2003), see Fig. 17B). In addition, the
Balloon–Windkessel model also contains functions that transform
neural activity into the BOLD signal in a non-linear way. As such, it is
unclear whether the spontaneous BOLD signal fluctuations obtained
in the resting-state models come directly from the low-frequency
part of neural activity or result from non-linearities of the BOLD
model. To test for this, Cabral et al. (2011), compared the output from
the Balloon–Windkessel model with the low-pass filtered neural
activity using a cut-off frequency of 0.35 Hz, which showed the best
agreement with the simulated BOLD signal (0.9 correlation with a
lag of 1.6 s) (see Fig. 17A–C). The time-lag between the low-pass
Fig. 18. Dynamical impact of a node removal near the temporo-parietal junction. Plots on

(red or blue, if the coupling has been weakened or strengthened, respectively). The ap

Adapted from Alstott et al. (2009).
filtered neural activity and the output of the Balloon–Windkessel
model corresponds to the time to peak of the haemodynamic
response function, which is defined by the time-constants of the
model (Friston et al., 2003). These results indicate that the resting-
state BOLD functional connectivity obtained in the models is mainly
related to the very slow part of simulated neural activity and less
related to non-linearities of the Balloon–Windkessel model.
Please note that, although the network of vessels has not been
considered in these models, the full arterio-venous passage takes
about 3.5 s, which is in the same range of the time to peak of the
haemodynamic response function (in SPM the canonical time-to-
peak is 5 s).

4.8. Modelling the impact of structural lesions

The complex wiring architecture of the neuroanatomical
connectome has shown to play a fundamental role in the global
characteristics of the brain at rest. As a consequence, damage to the
structural connectome resulting either from stroke, traumatic
brain injury or some neurological disease, may have impact on
brain activity not only near the lesion site, but also at the
macroscopic scale. As the prediction of lesion-induced changes is
beyond reach on the experimental side, large-scale brain models
are a unique tool to investigate the impact of such structural
lesions (Alstott et al., 2009; Cabral et al., 2012a,b; Honey and
Sporns, 2008).

A structural lesion can be modelled with the removal of a node
(brain area) or a link (structural connection) in the structural
network. Using the biophysical model from Honey et al. (2007),
Honey and Sporns (2008) and Alstott et al. (2009) simulated the
impact of brain lesions by removing nodes from the connectomes
of the macaque (Honey and Sporns, 2008) and the human brain
(Alstott et al., 2009). Findings indicate that lesions produce altered
functional connectivity among distant regions of cortex, often
affecting both cortical hemispheres (Fig. 18). These patterns are
highly dependent on the location of the lesion in the network and
its impact depends on the properties of the node (for example, its
clustering coefficient).

Motivated by studies reporting altered resting-state activity
in people with schizophrenia, a disease for long associated with
connectivity deficits (Friston and Frith, 1995), Cabral and
colleagues investigated the outcome of a structural disconnec-
tion in the properties of resting-state functional networks. Using
 lateral and dorsal views of the brain of significantly different functional connections

proximate lesion centre is marked with a green ‘‘+’’.



Fig. 19. Properties of real and simulated functional networks in health and schizophrenia. (Black +) Graph theoretical measures of simulated functional networks for 2 ranges

of coupling strengths: one representing healthy controls (KH = 0.85 � 0.01 STD) and another representing the schizophrenia patients (KS = 0.81 � 0.02 STD). Blue and red error

bars indicate the values reported in Lynall et al. (2010) for healthy controls (blue) and patients with schizophrenia (red).

Adapted from Cabral et al. (2012a).
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two different models at the node level (one where cortical areas
are in a stable asynchronous state (Cabral et al., 2012a), and
another where brain areas exhibit self-sustained oscillations
(Cabral et al., 2012b)), both models focused essentially on the
impact of a brain-wide decrease of the coupling strength in the
properties of simulated resting-state functional networks.
Importantly, the coupling strength in both models scales the
excitatory-to-excitatory coupling between brain areas, which is
ensured by brain mechanisms involved in long-range signal
transmission in the brain. These mechanisms include both axonal
connectivity (dependent on the number, density and coherence
of axon fibres) and synaptic mechanisms (e.g. neurotransmission
and plasticity).

To test the performance of the model, the functional
connectivity matrices were compared with experimental results
from healthy controls and patients with schizophrenia (Lynall
et al., 2010). To do the comparison, simulated functional networks
were characterized using graph theory following the same
methodology from Lynall et al. (2010). Simulated healthy
functional networks were found to have graph properties in the
range of the ones reported experimentally. When the structural
connectivity was decreased, either globally or locally, the resulting
simulated functional connectivity exhibited a network reorgani-
zation characterized by an increase in hierarchy, efficiency and
robustness, a decrease in small-worldness and clustering and a
narrower degree distribution, in the same way as recently reported
for schizophrenia patients (Fig. 19). Theoretical results indicate
that most disconnection-related neuropathologies (either at the
global or local level) should induce the same qualitative changes in
resting-state brain activity.

5. Discussion

Resting-state activity has been investigated for almost 20 years
now, but the exact origin of this activity remains unclear. To the
extent that this activity is functionally relevant, the study of
resting-state activity may provide a new light to understand brain
function. In this review work, we brought together experimental
findings from different neuroimaging techniques which provide
pictures of resting-state activity from different perspectives (but
also with different limitations). Overall, these studies point to the
existence of a complex network dynamics emerging spontaneously
during rest, with specific spatial, temporal and spectral character-
istics. To explore this dynamics in detail, we started by describing
how brain networks are defined, what are the differences between
them, and which properties better characterize them. Subsequent-
ly, we have gathered together all the computational works that
developed whole-brain models to investigate how the resting-
state activity (with its particular spatio-temporal dynamics)
emerges from the structural substrate of the neuroanatomical
network. These models propose different theoretical scenarios to
explain brain activity during rest, making different assumptions
for the dynamics occurring at the time-scale of neural activity. As
such, selecting the model that maximally fits the empirical BOLD
functionally connectivity matrix is not sufficient to determine the
best candidate. Instead, models need to be reviewed in the light of
recent resting-state electrophysiological studies in order to select
the scenario that best explains all the phenomena observed in
resting-state activity at different temporal (and spectral) scales.

5.1. Experimental evidence of resting-state activity

The most robust and prominent finding in the resting-state
literature is the existence of slow and spatially organized BOLD
signal fluctuations. Deeper analysis of these fluctuations have
revealed specific spatio-temporal patterns, or RSNs, that activate
and deactivate spontaneously on a slow time-scale (<0.1 Hz). All of
these patterns (except one) correspond to functional networks
typically activated during goal-directed behaviour. The only
exception is the DMN, which never activates during task, but
consistently activates during rest in healthy adults. These findings
seem to indicate a complex network dynamics emerging from
intrinsic brain processes, but the mechanisms at the origin of this
dynamics and its functional relevance remain unclear. The
importance of these resting-state patterns for an optimal brain
function is reinforced by the fact that they appear disrupted in
normal ageing and disease. However, the contribution of (non-
stationary) physiological noise and/or behavioural artefacts to
these results cannot be totally ruled out.

Several studies have aimed at exploring the electrophysiologi-
cal counterpart of resting-state activity, in order to explore the
mechanisms of resting-state functional connectivity. On one side,
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intracranial recordings reveal that local increases in the BOLD
signal during rest are associated with local increases in the power
of gamma-band oscillations. On the other side, simultaneous
recordings of EEG and fMRI indicate that the BOLD signal is
negatively correlated with the power of alpha- and beta-band idle
rhythms. Given that the energy requirements of gamma-band
oscillations (40–100 Hz) are higher than alpha- and beta-band
oscillations (8–13 Hz and 13–30 Hz) and since the BOLD signal
reflects the metabolic demand of a given brain area, the two
scenarios are not necessarily contradictory and could reflect
different aspects of the same phenomenon. In addition, MEG
studies have identified the same RSNs as in fMRI studies using the
slow amplitude envelope fluctuations of alpha- and beta-band
oscillations, which points to a relationship (not necessarily
positive) between the BOLD signal and the power of these
oscillations. However, it is important to mention that these studies
are only preliminary and must be further validated. Indeed, RSNs
have only recently begun to be explored using electrophysiology
and the literature is scarce when compared to the vastness of
resting-state fMRI studies. However, they are crucial for under-
standing the mechanisms behind resting-state activity and,
therefore, must not be neglected.

5.2. Models of resting-state activity

Coming up with a biophysical explanation that encompasses all
the phenomena observed during the resting-state is not straight-
forward and the problem remains unsolved until today. Potential
theoretical scenarios have been proposed and subsequently tested
using bottom-up computational models. The general theoretical
picture is that the resting-state activity emerges spontaneously
from the interaction between brain areas in the neuroanatomical
network. However, the spontaneous behaviour of brain areas has
been modelled making different assumptions and following
different reduction lines. Despite the differences, most models
generate slow BOLD signal fluctuations with a correlation structure
that fairly approximates the empirical functional connectivity
map.

5.2.1. The anatomical connectivity

One main component of resting-state models is the anatomical
connectivity matrix, which expresses the large-scale wiring
diagram of the brain. A common feature of the different models
is that the functional connectivity is strongly shaped by the
anatomical connectivity at the optimal working point. As
such, anatomical matrices obtained using different techniques,
Table 1
Comparison between existing models of resting-state activity.

Node model Network dynamics 

Honey et al. (2007)

Honey et al. (2009)

Conductance-based

biophysical model

Chaotic activity with

sporadic synchrony

Ghosh et al. (2008a)

Ghosh et al. (2008c)

FitzHugh–Nagumo Unit Network reverberation o

damped oscillations (10 

Deco et al. (2009) Wilson–Cowan unit in

oscillatory regime (40 Hz)

Alternated synchronizat

of two different module

Cabral et al. (2011)

Cabral et al. (2012b)

Kuramoto phase oscillator in

the gamma-frequency band

(60 Hz, 40 Hz)

Metastable synchronizat

of structural modules

Deco and Jirsa (2012) Attractor network of spiking

neurons

Noise induced wanderin

around the stable

asynchronous state in th

presence of ghost attract

Cabral et al. (2012a) Rate fluctuations around the

stable asynchronous state

Network reverberation o

damped fluctuations
algorithms or parcellation schemes lead to different results. For
example, the macaque neuroanatomical matrix refers only to one
hemisphere and links have only 3 scales of weighting (Deco et al.,
2009; Ghosh et al., 2008a; Honey et al., 2007). On the other hand,
the anatomical matrix from Hagmann et al. (2008) used in (Cabral
et al., 2011; Deco and Jirsa, 2012; Honey et al., 2009) does not
include subcortical routes that are known to play an important role
in shaping the spontaneous activity of the brain (Freyer et al., 2011;
Robinson et al., 2001). Therefore, a rigorous comparison between
models would require testing all with the same anatomical
connectivity, and comparing the results with the same functional
connectivity.

5.2.2. The dynamical regime of brain areas

The main difference between models is the type of dynamics
assumed at the node level, i.e. the intrinsic behaviour of a brain
area when it is in the spontaneous state. In general, three major
stationary regimes have been proposed for an isolated brain area
(seen as a neural ensemble): a fixed-point attractor, a limit-cycle
attractor or a chaotic attractor (see Table 1 for a comparison
between models). In the first case, all neurons in a brain area are
assumed to fire irregularly, and the system is in a stable
asynchronous state. In this case, oscillations – if they exist –
manifest only transiently as resonances in the network response
(Mattia and Del Giudice, 2002). This type of dynamics was
considered in the resting-state models of Ghosh et al. (2008c), Deco
and Jirsa (2012) and Cabral et al. (2012a). On the other hand, if the
neurons in a brain area are assumed to fire synchronously with
rhythmic periodicity due to recurrent excitation and inhibition,
then neural populations display self-sustained oscillations (Bor-
gers and Kopell, 2003; Brunel, 2000; Brunel and Wang, 2003) and
the dynamics is described by a limit-cycle attractor. In the resting-
state models of Deco et al. (2009) and Cabral et al. (2011) the brain
areas were considered to be in this regime. Finally, if we consider
that, due to nonlinear interactions between neurons, the local
network exhibits intrinsic instabilities where non-periodic inter-
mittent oscillations occur then they instantiate a chaotic dynamics
as in Honey et al. (2009). Importantly, all these regimes are
plausible and supported by experimental evidence. However, they
imply different scenarios for the emergence of slow BOLD signal
fluctuations (Fig. 20).

5.2.3. Time delays and noise

In addition to the dynamical regime at the node level, other
factors such as time delays or noise may – or not – play a role
resting-state activity. Time delays between brain areas are usually
Origin of correlated BOLD

fluctuations

Role of

delays

Role of

noise

Connectome

Intermittent self-organizing

patterns

No No Macaque N = 47

Human N = 66

f

Hz)

Slow modes dominate in

variance for sufficient coupling

Yes Yes Macaque N = 38

ion

s

Slow fluctuations in the

synchrony degree of structural

modules

Yes Yes Macaque N = 38

ion Slow fluctuations in the

synchrony degree of structural

modules

Yes No Human N = 66,

N = 90

g

e

ors

Noise excursions into ghost

attractors at the border of

multistability

No Yes Human N = 66

f Slow modes dominate in

variance for sufficient coupling

No Yes Human N = 66,

N = 90



Fig. 20. Three possible dynamical regimes of a neural population in the spontaneous

state.

Adapted from Aihara (2008).
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on the order of 10–100 ms and arise principally from finite axonal
transmission speed and from synaptic/dendritic processes. Al-
though neglecting time delays significantly reduces the cost of
numerical computations, it may not be permissible if the neural
populations have an oscillatory dynamics and the time delays are
in the same order of magnitude as the oscillation period (Cabral
et al., 2011; Deco et al., 2009; Ghosh et al., 2008a). However, if a
model considers that resting-state activity arises purely from slow
(noise-induced) fluctuations around the stable asynchronous state,
then time delays do not alter the slow dynamics and may be
neglected (Cabral et al., 2012a; Deco and Jirsa, 2012). Still, in this
case it is important to note that delays may reduce the stability of
the network states (Jirsa, 2009; Jirsa and Ding, 2004) and therefore
affect the dynamics at faster time-scales.

Regarding the question of whether noise plays or not an
essential role in resting-state dynamics, it depends again on the
assumptions made in the model. Noise in the nervous system
originates from various sources (e.g. finite size effects, spontane-
ous synaptic vesicle release, temperature-dependent Brownian
motion of molecules, stochastic opening of ion channels, etc.)
(Faisal et al., 2008). It is generally accepted that noise contributes
to the variability observed experimentally in neural responses.
However, it is still unclear whether noise plays a strategic role in
the nervous system, influencing the dynamical characteristics of a
system and not just its time course (Frank et al., 1999; Winterer
et al., 1999). For example, a certain level of noise may enhance the
detection and transmission of weak (periodic) signals by thresh-
old-like systems (Benzi et al., 1981; Kosko and Mitaim, 2001). This
process, termed stochastic resonance, is proposed by Deco et al.
(2009) to drive the activation and deactivation of the resting-state
spatiotemporal patterns. At the computational level, noise in the
nervous system may be modelled in different ways. A common
approach is to perturb the population dynamics of each cortical
node using additive uncorrelated Gaussian white noise (Cabral
et al., 2012a; Deco et al., 2009; Ghosh et al., 2008b). In more
detailed spiking models, noise is due to finite size effect originated
by uncorrelated background Poissonian spike trains from a finite
number of spiking neurons (Deco and Jirsa, 2012). In the reduction
of the detailed spiking model to a dynamic mean field model (Deco
et al., 2013c), it is shown that this finite size noise can be reduced to
additive uncorrelated Gaussian white noise.
5.2.4. Potentials and pitfalls of the different models

The detailed conductance-based biophysical model (Honey
et al., 2007, 2009) was the first model to compare the simulations
results with empirical resting-state functional connectivity and is,
so far, the one that obtains the highest correlation (r = 0.7) between
the model and empirical data. Importantly, neural activity and the
BOLD signal were simulated for 998 ROIs and only subsequently
reduced to 66 brain areas, which has not been done in other models
to reduce computation costs. Structured BOLD signal fluctuations
were related to the sporadic emergence of self-organizing
synchronized patterns from the chaotic activity of neural popula-
tions. Notably, neither noise nor time-delays were considered in
this model. Despite the good fit with empirical functional
connectivity, the exact mechanism at the genesis of these self-
organized synchronized patterns was not addressed. In a posterior
work using the same model but with a synthetic cortico-thalamic
connectivity matrix (Freyer et al., 2011), it was shown that the
sporadic synchronized states were associated with spontaneous
increases in the power of 10 Hz oscillations and were due to bi-
stability in the system. However, the relationship between the
BOLD signal fluctuations found in Honey et al. (2009) and the faster
cortical rhythms (as in Freyer et al., 2011) has not been explored.

In a different approach, the FitzHugh–Nagumo units used in the
model of Ghosh et al. (2008a,b) displayed damped oscillations (at
10 Hz) when receiving sufficient input. For a specific coupling
strength, the units operate at the instability border and any input
fluctuations modulate the amplitude of 10 Hz oscillations on a
slow time scale (due to the damping time constant). The slowest
modes of the neural activity were found to dominate in variance,
generating slow BOLD signal fluctuations that correlated across
bran areas. Contrary to the scenario from Honey et al. (2009), this
scenario proposes an important role of noise and time-delays in the
system. In addition, it suggests a relationship between the BOLD
signal and the alpha-band oscillations which are typically observed
in spontaneous EEG data. However, the results have not been
quantitatively compared with empirical data because simulations
were performed with the connectivity from 1 hemisphere of the
macaque brain (for which no fMRI functional connectivity matrix
was available).

Using Wilson–Cowan units at the node level, Deco et al. (2009)
proposed another scenario, in which brain areas display self-
sustained activity in the gamma-frequency band (40 Hz) in the
spontaneous state. Although the coupling strength, the time delays
and noise also play an important role in shaping the resting-state
activity as in Ghosh et al. (2008a,b), the BOLD signal fluctuations
have a totally different source. In this case, BOLD signal increases
are due to the synchronization of neural activity within a given
structural module. As this work focused on reproducing the 2 anti-
correlated RSNs found in Fox et al. (2005), brain areas were divided
in 2 modules and parameters were tuned such that the 2 modules
compete to synchronize (i.e. when one synchronizes the other
desynchronizes), leading to anti-correlated BOLD signal fluctua-
tions. Although these anti-correlations were later shown to
originate from the global signal regression (Murphy et al., 2009;
Weissenbacher et al., 2009), the biophysical synchronization
mechanisms proposed in this work cannot be ruled out.

Perhaps the simplest model of resting-state activity is the one
proposed in Cabral et al. (2011) using a generalized version of the
Kuramoto model adapted to incorporate a realistic brain connec-
tivity matrix and time-delays. In this case, brain areas were
assumed to display self-sustained oscillations in the gamma-
frequency range and the system was in a critical regime between
incoherence and synchrony, where subsets of nodes temporarily
synchronized but the whole network never fully synchronized.
Despite its simplicity, the simulated activity displayed slow BOLD
signal fluctuations with a correlation structure that fairly
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approximated the empirical resting-state functional connectivity.
This model proposes that resting-state activity is driven by slow
fluctuations in the synchrony degree of structural modules.
Although the model was tested with noise, the latter did not play
a fundamental role in the dynamics, because fluctuations at the
critical point occurred due to intrinsic instabilities in the system.

From a different perspective, the scenario proposed in Cabral
et al. (2012a) considers that the resting-state activity arises solely
from the reverberation of noise in the large-scale structural
network on a slow time-scale. In this case, brain areas are in an
asynchronous spontaneous state and the noise fluctuations
(leading to BOLD signal fluctuations) are structured by the
coupling matrix. Although this model provides a good fit of the
empirical BOLD functional connectivity at a low computational
cost, it discards any relationship between the BOLD signal
fluctuations and faster oscillatory signals in the alpha, beta or
gamma band. Although electrophysiological studies of the resting-
state activity point to a different direction, this scenario cannot be
totally ruled out.

Deco and Jirsa (2012) modelled each brain area as an attractor
network of spiking neurons. Simulations with the model showed
an optimal fit with empirical data when the system was in a stable
low-firing state but very close to the bifurcation to a regime where
multiple stable states co-exist. In this context, it was proposed that
the resting-state activity results from an exploratory behaviour
where several ‘‘ghost’’ attractors are intermittently visited during
rest. However, due to the models’ complexity, the mechanistic
origin of resting-state activity was better investigated using the
reduction of this detailed spiking model into a dynamic mean field
model (Deco et al., 2013c). Using this reduction, it was found that
resting-state activity in the model arises from noise propagation
and dynamical slowing down of fluctuations in the anatomical
network. Also in this model, the relationship with the faster
oscillatory dynamics was not explored.

5.3. Outlook and future developments

The most important take-home message is that, despite the
intrinsic differences between models, the optimal fit with the
empirical data is always found for a working point (defined by the
model parameters) where the system operates at the edge of an
instability, i.e. at the critical point of a bifurcation. Transitions at
the critical point of the instability (which may be noise-driven or
generated by intrinsic instabilities of the system) originate
fluctuations in brain activity. In an anatomically constrained
dynamical system like the brain, these fluctuations are spatially
shaped by the underlying network structure, leading to an optimal
reproduction of the functional connectivity maps observed in brain
activity during rest.

So far, existing models of spontaneous activity have focused
essentially on reproducing findings from resting-state fMRI, such
as fitting averaged BOLD functional connectivity matrices obtained
through correlation-based approaches. Although these matrices
provide information about how the BOLD signal is correlated
between all brain areas, they implicitly assume temporal
stationarity, i.e. that relationships are constant throughout the
length of the recording. However, recent studies have shown that
within-network functional connectivity fluctuates over time (Allen
et al., 2012; Chang and Glover, 2010; de Pasquale et al., 2012; Deco
et al., 2013b; Handwerker et al., 2012; Hutchison et al., 2013;
Smith et al., 2012). These time-varying profiles of RSNs may relate
to spontaneously shifting network states and therefore, it is crucial
to consider the non-stationary connectivity dynamics in the future
to further constrain and validate resting-state models (ongoing
work in our lab). Senden et al. (2012) demonstrated that the
neuroanatomical connectivity of the cortex allows for efficient
multi-threading between RSNs using large-scale computational
simulations. In addition, they found a strong correlation between
the mean degree of RSNs and the proportion of time they are active.
These results suggest that, even if it has not been adequately
addressed, existing resting-state models display non-stationary
connectivity dynamics.

Another path to follow in further modelling studies is to explore
the faster oscillatory dimension, revealed with other neuroimaging
modalities, such as EEG, intracranial recordings and MEG (Cabral
et al., 2013). Going beyond the BOLD signal, these methods provide
pictures of resting-state dynamics from new perspectives, which
must be taken into account in future models to deepen our
understanding on resting-state activity.

A common assumption made by the models, is that all brain
areas are identical, and the global network activity is essentially
determined by global parameters such as the global coupling
weight, the global transmission speed or the global noise level.
However, each brain area is different and the local parameters can
be tuned to fit different aspects of their behaviour (i.e. power
spectrum, variability of BOLD responses, etc.). As such, future
extensions to resting-state models may local balance of the local
dynamics to improve the performance of the models (work in
progress in our lab). Even beyond the model of neural activity, the
shape and time-to-peak of BOLD responses is also known to vary
substantially between brain areas and even across subjects
(Aguirre et al., 1998; Cunnington et al., 2002; D’Esposito et al.,
1999; Handwerker et al., 2004). As such, it may be considered in
future models to fine tune the parameters of BOLD model for each
brain region or even across subjects.
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