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An expression is found for the L2-index of a Dirac operator coupled to a connec-
tion on a Un vector bundle over S 1_R3. Boundary conditions for the connection
are given which ensure the coupled Dirac operator Fredholm. Callias' index theorem
is used to calculate the index when the connection is independent of the coordinate
on S1. An excision theorem due to Gromov, Lawson, and Anghel reduces the index
theorem to this special case. � 2000 Academic Press
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1. INTRODUCTION

Let X be a compact, oriented smooth manifold with boundary �X, and
let Xo=X"�X be the corresponding open manifold. Let g be a complete
Riemannian metric on Xo and let E � Xo be a complex vector bundle with
a hermitian structure and unitary connection A. If X is a spin-manifold, we
can introduce the coupled Dirac operator

DA : C �(Xo, S�E) � C �(Xo, S�E)

and it is natural to attempt to obtain first, conditions on A and g near �X
which ensure that DA is a Fredholm operator on L2, and second, to obtain
a formula for the L2-index. Since with standard conventions DA is self-
adjoint, we must explain how one obtains interesting L2-index problems
from it.

If dim X is even, then the total spin-bundle decomposes as S=S+ �S &

and so DA gives rise to the ``chiral'' Dirac operators

D\
A : C�(Xo, S \�E) � C �(Xo, S � �E)

which have equal and opposite L2-indices. If the geometry near �X is
restricted so that g is a b-metric, then the celebrated index theorem of
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Atiyah, Patodi and Singer [3] gives a formula for the L2-index of D+
A

when this operator is Fredholm. (The notion of b-metric was not used
explicitly in [3]; they worked with the equivalent idea of X o having cylin-
drical ends, a simple condition on g near �X. The APS index theorem is
discussed from the point of view of b-metrics in [11].) The APS theorem
expresses the L2-index of D+

A as a sum of two terms, one an integral of
characteristic classes over X and a boundary contribution involving the
famous '-invariant of �X.

By contrast, when dim X is odd, an interesting index-problem arises for
operators of the form

DA, 8 : DA+1�8 : C�(X o, S�E) � C�(Xo, S�E), (1)

where 8 is a suitable skew-adjoint endomorphism of E. According to work
of Callias, Anghel and Ra# de [2, 4, 13], DA, 8 is Fredholm in L2 under mild
conditions on 8, the most important being that it be invertible on �X.
Then, with no further restrictions on the geometry of g near �X, the index
is given by integrating over �X a certain characteristic class constructed
from 8 | �X and E�S | �X. We shall refer to this as the CAR index
theorem in this paper, even though the result is closely related to pre-exist-
ing index theorems (cf. [13] for a discussion of this point).

The purpose of this note is to state and prove an index formula for D+
A

when X is even-dimensional, but the geometry near the boundary is not
that of a b-metric. We shall restrict ourselves to a very simple special case:
we take (Xo, g) to be isometric to S 1_R3, with a standard flat product
metric. Then X is diffeomorphic to S1_B� 3 where B� 3 is the closed unit ball
in R3. Despite its simplicity, this example already leads to an interesting
index theorem, thereby answering a question posed by Mazzeo and Melrose
in their study of 8-pseudodifferential operators [10], at least in this very
special case. (This 8 stands for ``fibred-cusp'' and has nothing to do with
the 8 in (1). This notational clash is unfortunate but seems unlikely to lead
to serious confusion.)

This index theorem is also important in the study of self-dual calorons
(periodic instantons) of which more will be said in Section 1.2.

1.1. Statement of Results

The following notation will be used throughout this paper: let X=
S1_B� 3, S 2

�=�B� 3, so that �X=S1_S 2
� ; let p: X � B� 3 be the projection.

Let the metric g on Xo be the standard flat product metric on S 1_R3

giving the circle a length 2?�+0 , where +0>0. Let z # R�(2?�+0)Z be a
standard coordinate on the circle, and x1 , x2 , x3 standard coordinates on
R3. Finally, fix an orientation on X by decreeing that the ordered basis
(dz, dx1 , dx2 , dx3) be positive.

204 NYE AND SINGER



Let E � X be a smooth Un -bundle and let A be a smooth unitary
connection in E. A will be identified with the corresponding covariant
derivative operator {, which has components {z , {1 , {2 , {3 in the frame
(�z , �1 , �2 , �3). Each of the two spin-bundles S\ over Xo can be identified
with p*S(3) , where S(3) is the spin-bundle of R3. This is a complex vector
bundle of rank 2 and comes equipped with skew-adjoint Clifford multi-
plication operators e1 , e2 , e3 associated with �1 , �2 , �3 . The two coupled
Dirac operators over Xo can now be written

D\
A =\{z+DA : C�(X o, p*S(3) �E) � C �(X o, p*S(3) �E), (2)

where DA=�3
1 ej{j . The first term in (2) operates on sections of the tensor

product by {z( p*(s)�u)= p*(s)�{zu for any s # C�(R3, S(3)) and
u # C�(Xo, E).

Note that the ``3+1'' decomposition of D\
A in (2) depends only upon the

product structure of X; we introduced bases only for ease of presentation.
We now focus on D+

A ; by abuse of notation, denote by the same symbol
the extension of D+

A to Sobolev spaces

D+
A : W1(X, S +�E) � W0(X, S &�E), (3)

where Wk is the space of sections with k derivatives in L2, the latter space
being defined in terms of the metric g.

In order to fix boundary conditions that make (3) a Fredholm operator
it is convenient to fix a trivialization of E | �X:

Definition 1.1. A framing of E is a choice of trivialization f of E | �X.
The pair (E, f ) is called a framed bundle.

As we shall see in Section 2.1, framed bundles of rank�2 are classified
by an integral topological invariant analogous to the second Chern class,
which we shall denote by c2(E, f )[X].

For later convenience, we identify the trivial bundle that is implicit in
Definition 1.1 with p*E� , where E� denotes the trivial bundle over S 2

� .
Now we can write down boundary conditions for A:

Definition 1.2. Let A be a connection on a framed bundle (E, f ),
smooth up to the boundary of X, let A� be a Un -connection on E� and
let 8� be a skew-adjoint endomorphism of E� .

(i) A is called a caloron configuration framed by (A� , 8�) if

A= p*A�+ p*8� dz

on �X, where f has been used to identify E | �X with p*E� .
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(ii) The pair (A� , 8�) is called admissible if {� 8�=0, where {�

is the covariant derivative operator induced by A� on End(E�).

Our first main result asserts that the Fredholm properties of (3) are
entirely determined by 8� :

Theorem 1.1. Let A be a caloron configuration framed by an admissible pair
(A� , 8�). Then the operator in (3) is Fredholm if and only if 1&exp(2?8��+0)
is invertible.

If (A� , 8�) is admissible, the eigenvalues i+1 , ..., i+n of 8� are constant.
An equivalent formulation of this theorem is thus that (3) is not Fredholm
if and only if there exist j{0 and an integer N such that +j=N+0 .

We now come to a statement of our L2-index theorem:

Theorem 1.2. Suppose that (3) is Fredholm. Then

ind(D+
A )=&c2(E, f )[X]&:

k

c1(E +
(k))[S 2

�], (4)

where for each integer k, E +
( k) is the sub-bundle of E� on which k+0&i8�

is positive-definite.

It is clear that E +
( k) is either 0 or E� for all but a finite number of

integers k. Since E� is trivial, it follows that the sum on the RHS of (4)
is finite.

1.2. Remarks

It is instructive to compare Theorem 1.2 with the APS theorem on the
one hand and the CAR theorem on the other. Our formula (4) is a sum of
two terms, &c2(E, f )[X] being an integral over the interior of X, while the
sum over k is a contribution from the boundary. The first term is analogous
to the 4-dimensional contribution to the index of the APS theorem, while
the boundary contribution is reminiscent of the CAR index formula. Our
proof of Theorem 1.2 ``explains'' why (4) has this shape. Unfortunately, our
proof does not give many clues about possible generalizations of this result,
in particular whether a contribution analogous to the '-invariant is to be
expected in general. We should note also that an L2-index theorem for the
coupled Dirac operator over S 1_S 1_R2 has been obtained by Jardim
[8]. This is another natural example of a 8-geometry, but with fibre
dimension 2 rather than 1.

Connections A of the type we have considered here are of interest in
gauge theory, especially when they are required to satisfy the self-duality
equations [6]; the term caloron was introduced in this context by Nahm
[12]. Some other terminology used in this paper has also been borrowed
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from the mathematical physics literature, but no detailed knowledge of this
area is assumed. The next paragraph is devoted to a quick discussion of the
relevance of Theorem 1.2 to a gauge-theoretic study of self-dual calorons.
The reader who is unfamiliar with gauge theory can skip it, for it is intended
only as motivation.

It is natural to think of calorons as hybrids between monopoles and
ordinary instantons, these corresponding respectively to the limit +0 � �
and +0 � 0. (These limits make the length of S 1 go to 0 or to �, respec-
tively.) From this point of view it might be expected that calorons in
general have two types of ``topological charge'': these are the ``instanton
charge'' c2(E, f )[X] and the ``monopole'' or ``magnetic charges'' which are
essentially the degrees of the eigenbundles of 8� . A physical interpretation
of Theorem 1.2 is thus that the number of zero-modes of the Dirac-operator
in the background A is completely determined by these topological charges.
The determination of these zero-modes is crucial in proving the completeness
of the Nahm description of calorons [12] and this is the original reason for our
interest in this index problem. At the time of writing, the Nahm description
has only been proved in detail for calorons with unit instanton charge and
zero magnetic charge [9]. Details of the full transform will be the subject
of a future publication.

1.3. A Sketch of the Proof

For the proof of Theorem 1.1, we apply general results of earlier authors.
One approach is to check the conditions written down by Anghel, who has
given necessary and sufficient conditions for the Dirac operator over a
complete Riemannian manifold to be Fredholm in L2. The alternative is to
use the characterisation of Fredholm operators in the calculus of 8-pseudo-
differential operators [10]. It is worth remarking that this latter approach
gives necessary and sufficient conditions for any ``natural'' operator on S1_R3

to be Fredholm, not only operators of Dirac type. The two proofs appear
in Section 4.

The proof of Theorem 1.2 involves two main steps. The first is a calcula-
tion of the index in the case that there is a trivialization of E such that A
is independent of z. By Fourier analysis in the S 1-variable, the index can
be identified in this case with a sum of indices of CAR-operators of the form
(1). By topological arguments which we begin in Section 2, this calculation
gives the index for any A over a framed bundle with c2(E, f )[X]=0.

The second step invokes an excision theorem for operators of Dirac type
due to Anghel [1] and Gromov�Lawson [7]. In our case, this result gives
ind(D+

A )&ind(D+
B )=&c2(E, f )[X] if B is any caloron configuration

agreeing with A near �X but living on a new framed bundle (F, f ), with
c2(F, f )[X]=0. Since we calculated ind(D+

B ) in the first step, that completes
the proof of Theorem 1.2. The details appear in Section 5.
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2. ON THE TOPOLOGY OF CALORONS

In this section we define the invariant c2(E, f )[X] of a framed bundle
over X from two points of view, the first homotopy-theoretic, the second
a version of Chern�Weil theory. Proposition 2.1 and formula (10) will be
used in the proof of Theorem 1.2.

2.1. Topological Classification of Framed Bundles

We start with a useful way of thinking of framed bundles and calorons
in terms of the ``rectangle'' R=[0, 2?�+0]_B� 3. There is a natural map
R � X which will be used to identify objects defined over X with correspond-
ing objects over R. By abuse of notation we denote the second projection of
R by p and we shall denote by the same symbol (E, f ) the pull-back to R of
a framed bundle over X; similarly for caloron configurations A. In particular,
when a framed bundle (E, f ) is transferred to R, we obtain a bundle over R,
framed over [0, 2?�+0]_S 2

� , and with a ``clutching map''

,: E | [0]_B� 3&E | [2?�+0]_B� 3.

Since E� is trivial, we can regard it as the restriction to S 2
� of a trivial

bundle E � B� 3, say, and we can extend the framing of f of E to a bundle
isomorphism F: E � p*E over R. In this way , becomes a unitary endo-
morphism c of E which shall refer to as a clutching function for E. Because
of the periodicity, c then lies in the group

C=[unitary automorphisms c of E : c | S 2
�=1].

Now ?0(C)=Z, for any element c extends to a continuous map from the
one-point compactification S3 of B� 3 into Un and ?3(Un)=Z. We define
c2(E, f )[X]=&deg (c). c2(E, f )[X] is the obstruction to extending the
framing f to the interior of E��an extension exists iff c2(E, f )[X]=0.

We now reintroduce calorons, continuing to work over R, with E= p*E.
Because of this identification, we can take the ``3+1'' decomposition

{A ={A(z)
+dz(�z+8(z)) (5)

along [z]_B� 3, where A(z) is a unitary connection on E and 8(z) is a
skew-adjoint endomorphism of E. Thus we have obtained from A a path
(A(z) , 8(z)) in

A=[(A, 8): A is a Un connection on E, 8 is a skew-adjoint

endomorphism of E, (A, 8) | S 2
�=(A� , 8�)].
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For periodicity, the end-points of this path must be related by the clutching
function c:

A(2?�+0)=c*(A (0))=cA(0) c&1&dcc&1 (6)

and

8(2?�+0)=c*(8 (0))=c8(0)c&1. (7)

In other words, A can be identified with a loop in the quotient space A�C.
Conversely, any such loop gives rise to a caloron configuration A framed
by (A� , 8�), subject to further matching conditions needed to ensure the
smoothness of A on X when the two edges [z=0] and [z=2?�+0] are
glued together.

The simplest example of this correspondence is of course the case that
the path in A is constant so that c is identically 1 and c2(E, f )[X]=0.
Then we say that A is the pull-back of a monopole. Here is a sort of
converse:

Proposition 2.1. Let A be a framed caloron in a framed bundle with
c2(E, f )[X]=0. Then there is a deformation B of A (through framed
caloron configurations), such that B is the pull-back of a monopole.

Proof. Since c2(E, f )[X]=0, we can find a unitary automorphism C of
E over R which is equal to 1 on [0]_B� 3 and [0, 2?�+0]_S 2

� , and equal
to c on [2?�+0]_B� 3. Pulling A back by C, we reduce to the case c=1,
so that the caloron configuration is now a loop in A. But this space is
contractible, so the result follows. K

2.2. Chern�Weil Theory for Frame Bundles

Another way to think about the invariant c2(E, f )[X] is in terms of the
integral

|
X

ch(E)=&
1

8?2 |
X

tr FA 7 FA , (8)

where A is some framed caloron configuration. If X has no boundary, this
integral would give minus the second Chern class, but here there are addi-
tional contributions from �X. This integral has been calculated by different
means in [5] and [6]. As in the previous section, we work over R, so that
E is identified with p*E, together with a clutching function c. Using the
familiar trick of writing

tr FA 7 FA =d tr[dA 7 A+ 2
3 A 7 A 7 A]
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the integral (8) becomes an integral over the boundary of the rectangle
[0, 2?�+0]_B� 3:

&
1

8?2 |
X

tr FA 7 FA

=&
1

8?2 |
�([0, 2?�+0]_B� 3)

tr {dA 7 A+
2
3

A 7 A 7 A= . (9)

Now regard A as a path (A(z) , 8(z)) satisfying (6) and (7). Evaluating (9)
on (�[0, 2?�+0])_B� 3 and using the clutching formulas gives

&
1

8?2 |
(�[0, 2?�+0])_B� 2

tr {dA 7 A+
2
3

A 7 A 7 A=
=&

1
24?2 |

B� 3
tr(dcc&1)3+

1
8?2 |

B� 3
d tr[A(0) c&1 dc].

The first term is deg c=&c2(E, f )[X], and the second vanishes because
c=1 on S 2

� . On the other piece of the boundary we obtain

&
1

8?2 |
[0, 2?�+0]_S2

�

tr {dA 7 A+
2
3

A 7 A 7 A=
=&

1
8?2 |

[0, 2?�+0]_S2
�

tr[2FA 7 8 dz&dA 7 8 dz

+A 7 d8 7 dz+�z A 7 A 7 dz].

The final term vanishes because the restriction of A to [0, 2?�+0]_S 2
� is

pulled back from S 2
� so that �zA=0 there (condition (i) of Definition 1.2).

On the other hand, the sum of the middle two terms is exact, so does not
contribute to the integral. The condition that A� is compatible with 8�

implies that A� decomposes as a direct sum of connections, one on each
eigenbundle of E� . Suppose E+ is the eigenbundle of 8� with eigenvalue
i+. Then A�=� a+ where a+ is a connection on E+ , and FA | S 2

�=� f+

where f+ is the curvature of a+ . Since the first Chern class of E+ is given by

c1(E+)[S 2
�]=

i
2? |

S 2
�

tr f+ ,

we have

&
1

8?2 |
[0, 2?�+0]_S2

�

tr 2FA 7 8 dz=&
1

+0

:
+

+c1(E+)[S 2
�].
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Putting the terms together, we arrive at the expression

|
X

ch(E)=&c2(E, f )[X]&
1

+0

:
+

+c1(E+)[S 2
�]. (10)

3. BOUNDARY CONDITIONS VERSUS ASYMPTOTICS

In previous work, calorons have been studied exclusively as connections
over S1_R3, with decay conditions imposed near �; the compact manifold
X was not used. The purpose of this section is to show how the boundary
conditions that are implicit in Definition 1.2 translate into the ``BPS'' decay
conditions for calorons that were written down in [6].

In order to compare the asymptotic region of S 1_R3 with a neighbour-
hood of the boundary of X, choose polar coordinates r, y1 , y2 in R3, and
continue to use z as a coordinate in S1. Thus r is the distance from the
origin in R3 and y1 , y2 are some local angular coordinates on S 2

� . We
suppose y1 and y2 are chosen so that g takes the form

g=dr2+r2(h1 dy2
1+h2 dy2

2)+dz2,

for some positive locally-defined functions h1 , h2 . Local coordinates near
the boundary of X will be x=r&1, y1 , y2 and z, so that x becomes a
boundary defining function: x�0 on X, with equality only at �X. Writing
g in terms of x,

g=
dx2

x4 +h1

dy2
1

x2 +h2

dy2
2

x2 +dz2.

Now denote the components of A, in some gauge (trivialisation) that is
smooth up to the boundary, by

{x=�x+Ax , {yj
=�yj

+Ayj
, {z=�z+8.

Performing a 3+1-decomposition of A=(A(z) , 8(z)) as before, we have,
near the boundary,

&A&2=|Ax |2 |dx| 2
g+|Ay1

|2 |dy1| 2
g+|Ay2

| 2 |dy2 | 2
g

=x2(x2 |Ax |2+h&1
1 |Ay1

| 2+h&1
2 |Ay2

|2).

Since x=r&1, we see that &A&=O(r&1) as r � �, uniformly in the angular
variables ( y1 , y2). This statement is not gauge invariant: a better formula-
tion is that there exist preferred gauges near � in Xo (namely those that
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extend smoothly on �X), such that the connection 1-form satisfies &A&=
O(r&1) in such a gauge. In such gauges we also have &8&=O(1).

Similarly, the assumptions in Definition 1.2 imply that {yj
8 and �zAyj

are O(x) as x � 0, while {x8 and �zAx are O(1). It follows that &{A8&�zA&
=O(r&2) as r � �, a fact that will be used in the next section.

4. PROOF OF THEOREM 1.1

In this section we give two proofs of Theorem 1.1 about the Fredholm
properties of D+

A . The first proof rests on a result of Anghel in [1], the
second on the general theory of 8-pseudodifferential operators. Of course
both methods give the same answer, and indeed the key point is the same
in each case.

4.1. First Proof

Theorem (2.1) of [1] gives conditions for DA =D+
A �D&

A to be
Fredholm: DA is Fredholm if and only if there is a compact set K/Xo and
a constant C>0 such that

&DA �&L2�C &�&L2 , when � # W 1(S�E) and Supp(�)/Xo"K.

If DA is Fredholm then D+
A must be Fredholm too. Now

D*A DA =(D&
A D+

A )� (D&
A D+

A )*

so to obtain estimates on &DA &L2 we consider the operator D&
A D+

A . Using
the notation and conventions of Section 1.1 we have from (2),

D&
A D+

A =&{2
z +[DA , {z]+D2

A .

The third term here is clearly positive, and the boundary conditions allow
us to estimate the other two as follows.

The first term. Extend the framing f to a neighbourhood of �X; this
gives a gauge near � in which the ``3+1'' decomposition (5) can be performed.
As the boundary �X is approached the eigenvalues of 8 converge to the eigen-
values of 8� . Using spherical polar coordinates on R3, let i*j (r, y1 , y2 , z) be
the eigenvalues of 8, and i+j be the eigenvalues of 8� ( j=1, ..., n) such
that *j � +j as r � �. Let * ( r, y1 , y2 , z ) be the smallest element in
[ |*j + k+0 | : j = 1, ..., n # Z] and + be the smallest element of the set
[ |+j+k+0 | : j=1, ..., n, k # Z]. The invertibility condition on 8� in the
statement of the theorem implies that +>0, so there exists a compact set
K1 /Xo such that *>+�2 on X o"K1 .
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Suppose � # W2(S +�E) and Supp �/X o"K1 . Using the isomorphism
S+$p*S(3) , � can be written as a Fourier series

�=:
k

exp(ik+0z) ,k ,

where ,k is a section of S (3) �E. Let

�(k)=exp(ik+0z) ,k .

Then

{z�(k)=(ik+0+8) �(k)

so

(&{z{z�(k), �(k))� 1
4 +2 &�(k)&2, on Xo"K1

as a pointwise estimate. (Since �(k) # W2(S+�E), �(k) is actually continuous
so both sides of the inequality exist.) Since the inequality is independent of
k it holds for general � and we obtain

Supp(�)/Xo"K1 O (&{z{z�, �)L2� 1
4 +2 &�&2

L2 . (11)

The second term. We have

[DA , {z]=:
j

ej[{j , {z]=:
j

@(�j)({A 8&�zA),

where @(!) denotes interior product with !. But &{A8&�zA& � 0 as
r � �, so there exists a compact set K2 /Xo such that

Supp(�)/Xo"K2 O |([DA , {z] �, �)L2 |� 1
8 +2 &�&2

L2 . (12)

Now let K be a compact set containing K1 and K2 . Combining (11) and
(12) we obtain

Supp(�)/Xo"K O (D&
A D+

A �, �)L2� 1
8 +2 &�&2

L2 .

A similar bound is obtained for D+
A D&

A =(D&
A D+

A )*, and so we obtain the
following bound for DA :

� # W2(S�E), Supp(�)/X o"K O &DA �&L2�
1

- 8
+ &�&L2 .

By density, the inequality in fact holds for � # W 1(S�E). This completes
the verification of Anghel's criterion and gives a proof of the ``if '' part of
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Theorem 1.1. The ``only if '' part can also be proved in this framework
but this is omitted. This converse statement also follows at once from the
discussion of the next section.

4.2. Second Proof

Recall the boundary-adapted coordinate system x, y1 , y2 , z introduced
in Section 3, and let the components of {A in these coordinates be

{x=�x+Ax , {yj
=�yj

+Ayj
, {z=�z+Az .

Relative to a suitable choice of basis for the spin-bundles, we have then

D+
A ={z+e1x {y1

+e2x {y2
+e3x2 {x .

Strictly speaking, we are making a choice of normal coordinates here;
otherwise there will be additional zero-order terms coming from connection
coefficients. This is an example of a 8-differential operator in the sense of
[10]; more generally the algebra of 8-differential operators on X consists
of all differential operators which take the form

P(x, y, z; x2�x , x�y , �z), (13)

near �X, where P is smooth in the first three variables and polynomial in
the last three variables. In [10] it is shown that such an operator is
Fredholm in L2 if and only if it is fully elliptic in the following sense. First,
(13) must be elliptic in the usual sense over Xo. Secondly, the associated
indicial family must be invertible on every fibre p&1( y)/�X. Given such a
fibre, the indicial family on p&1( y) is defined by picking a real number !
and a real cotangent vector ' # T y*S 2

� , and defining

P� ( y, ', !)=P(0, y, z; i!, i', �z)

as a differential operator on p&1( y). To say that the indicial family is inver-
tible is to say that P� ( y, ', !) is invertible (in any reasonable space of sections
over p&1( y)), for each choice of ( y, ', !) as above.

Following this recipe for D+
A , we obtain

P� ( y, ', !)={z+i('1e1+'2e2+!e3).

This operator in C�(S1, p*S(3) �E�) is a sum of two terms B+A, where
A=i('1 e1+'2e2+!e3) is self-adjoint, B={z is skew-adjoint and [A, B]
=0. It follows by considering (A+B)* (A+B) that (A+B) u=0 if and
only if Au=0 and Bu=0. Now B has a non-trivial null-space only if one
of the +j is an integral multiple of +0 . Hence under the assumption of
Theorem 1, A+B is injective. Similarly the adjoint (A+B)*=A&B is
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injective, so that the hypothesis of Theorem 1.1 implies that the indicial
family is invertible, and so D+

A is Fredholm in L2. Conversely, if the condi-
tion fails, then B is not invertible, and nor is B+A when 'j=0=!. So in
this case D+

A is not fully elliptic and hence cannot be Fredholm in L2. The
proof of Theorem 1.1 is now complete.

4.3. Remarks about the L2-condition

According to [10, Proposition 9], elements of the null-space of a fully
elliptic 8-differential operator decay very rapidly at the boundary. More
precisely, if D+

A is fully elliptic, if D+
A �=0, and if for some real m, xm� #

L2(X), then � # C�(X) and � vanishes to all orders in x at �X. There is a
similar statement for the cokernel. Now in terms of the boundary-adapted
coordinates (x, yj , z), the volume element determined by the metric g has
the form x&4 d+ where d+=h1h2 dx dy1 dy2 dz. It follows from the above
that the index of (3) is the same as the index of

D+
A : W1(X, E�S +, d+) � W 0(X, E�S &, d+). (14)

This fact makes the next result almost obvious:

Proposition 4.1. Let A, B be two caloron configurations on (E, f ), both
framed by (A� , 8�). Then D+

A is Fredholm if and only if D+
B is so, and

their L2-indices coincide.

Proof. The space of calorons on a given framed bundle, with given boundary
data (A� , 8�) is contractible. It is easy to see that any continuous path joining
A to B gives rise to a norm-continuous path of Dirac operators between
the Sobolev spaces in (14). Since each of these is Fredholm by Theorem
1.1, it follows that the index is constant on this path. K

5. PROOF OF THE INDEX THEOREM

5.1. Proof When c2(E, f )[X]=0

In this case, by Proposition 2.1 and 4.1 it is enough to compute the index
when E= p*(E) and A= p*A+ p*8 dz is the pull-back of a monopole (cf.
Section 2.1). Then the coefficients of D+

A are independent of z and we can
use Fourier analysis in the S 1-variable to reduce the calculation of the
index to that of a collection of operators of the form (1) on R3. These
operators are precisely the subject of the CAR theorem in is simplest
form [4].

Let

Yk=[�=exp(ik+0 z) , : , # W 0(R3, S(3) �E)]
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so that

W0(S +�E)={: �(k) : �(k) # Yk and : &�(k)&2<�= .

Since by assumption the coefficients are independent of z, D+
A maps

Yk & W1 into Yk and its restriction to this subspace is equal to

Dk : W 1(S(3) �E) � W0(S(3) �E)

Dk=DA+ik+0+1�8.

According to the theory developed by Callias�Anghel�Ra# de, Dk is Fredholm
for every k # Z iff D+

A is Fredholm, and [13] shows that

ind Dk =&|
S2

�

A� (S 2
�) 7 ch(E +

(k))

=&c1(D+
(k))[S 2

�],

where E +
(k) is the subbundle of E� on which (k+0&i8�) has positive

eigenvalues. (We have already noted that this sum is finite.) Since Yj & Yk

=0 if j{k, the index of D+
A is the sum of the indices of the Dk , i.e.

ind D+
A =:

k

ind Dk=&:
k

c1(E +
(k))[S 2

�].

That completes the proof of Theorem 1.2 when c2(E, f )[X]=0.

5.2. Proof of the Index Theorem when c2(E, f )[X]{0

Anghel [1], generalizing work of Gromov and Lawson [7], has given
an excision theorem which compares the L2-indices of a pair of Dirac
operators over a complete manifold that agree near infinity. In our case
this result yields the following statement. Let E and F be a pair of bundles
over Xo and let A and B be unitary connections on E and F (respectively).
Suppose that there is a bundle isometry %: E | Xo"K � F | Xo"K which carries
A to B outside some compact set K/Xo. Then

ind D+
A &ind D+

B =|
X o

ch(E)&|
X o

ch(F). (15)

We are going to deduce Theorem 1.2 by taking for B a connection which
agrees with A near �, but which lives on a framed bundle (F, f ) with
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c2(F, f )=0. This will complete the proof in view of the results of the
previous section.

Let then (E, f ) be a framed bundle and A a framed caloron configura-
tion on E. As in Section 2.1, identify E with p*E, together with a clutching
function c # C. Extend the framing smoothly from the boundary to a region
[0, 2?�+0]_U where K/R3 is compact and U=Xo"K. By a deformation
of A over [2?�+0]_U which vanishes at �, we can assume that c=1 on
U. Now define F= p*E and B to agree with A over S1_U, but extended
over S1_K to define a smooth connection on F. (This can be achieved by
a suitable use of cut-off functions.)

Applying (15),

ind D+
A &ind D+

B =|
X o

ch(E)&|
X o

ch(F).

But

|
X o

ch(E)=&c2(E, f )[X]&
1

+0

:
+

+c1(E+)[S 2
�]

from (10), and

|
Xo

ch(F)=&
1

+0

:
+

+c(E+)[S 2
�].

So

ind D+
A =ind D+

B &c2(E, f )[X].

From Section 5.1 we know that ind D+
B =&�k c1(E +

(k))[S 2
�] so we have

proved that

ind D+
A =&c2(E, f )[X]&:

k

c1(E +
(k))[S 2

�].

This completes the proof of Theorem 1.2.
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