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Abstract

We study the modular triples of circuits of a matroid and use them to characterize four types of circuit
signatures, three of which are known (weak orientations, orientations, and ternary signatures) and one of
which is new (lifting signatures). Lifting signatures allow us to specify a linear class of circuits in a matroid,
and thereby the lift of the matroid, by labeling the elements from a group in the manner of Dowling and
Kelly.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

We use the notion of modular triples of circuits (a generalization of theta graphs) to
characterize four types of circuit signatures of matroids, and we apply this result to prove that it
is possible to construct elementary lifts of ternary or binary matroids by labeling their elements
with members of Abelian groups.

Our work was inspired by an attempt to generalize Zaslavsky’s theory of lifts of graphic
matroids [14, Section 3] to all matroids. In this theory, one assigns gains (elements of a group)
to the edges of the graph in order to pick out a linear class of balanced circles (simple closed
paths). One then applies the lift construction of Dowling and Kelly [5, Section 6] to produce a
lift of the graphic matroid that is determined by the balanced circles.

We assign gains to the elements of a matroid. To pick out a linear class of balanced circuits,
we rely on lifting signatures instead of graphs. We characterize this special class of circuit
signatures in terms of modular triples of circuits. We find that binary and ternary matroids have
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lifting signatures, which allows the application of Dowling and Kelly’s lift construction. We
also find that modular triples characterize weak orientations [1], orientations [2], and ternary
signatures [10].

2. Background

2.1. Linear classes and matroid lifts

Let M be a matroid with ground set E . In [5], Dowling and Kelly use a linear class of
circuits to construct an elementary lift of M . We use some terminology from [9] to discuss their
construction.

We say that (C1, C2, C3) is a modular triple of circuits of M if the three circuits are distinct
and, for distinct i , j , and k, Ck ⊆ Ci ∪ C j and (Ci , C j ) is a modular pair. We say that
(H1, H2, H3) is a modular triple of copoints of M if the three copoints are distinct and intersect
in a coline.

Since (C1, C2, C3) is a modular triple of circuits of M if and only if (E \ C1, E \ C2, E \ C3)

is a modular triple of copoints of M∗, we write H∗

i to mean E \ Ci . If L∗ is the coline in M∗ at
which H∗

1 , H∗

2 , and H∗

3 meet, then L∗
= E \ (C1 ∪ C2 ∪ C3).

Lemma 2.1. A matroid M is binary if and only if, for each modular triple (C1, C2, C3) of
circuits, C1 ∩ C2 ∩ C3 = ∅.

Lemma 2.2. Let (C1, C2) be a modular pair of circuits of a matroid M, and let e ∈ C1 ∩ C2.
Then there exists a unique circuit C3 such that C3 ⊆ (C1 ∪ C2) \ {e}. Moreover, (C1, C2, C3) is
a modular triple of circuits of M.

Let B be a subclass of circuits of M . If, for each modular triple of circuits, either 0, 1, or 3 of
these circuits are in B, we say that B is a linear subclass of circuits of M [14, Section 3]. Let B
be such a subclass, and define B∗

= {E \ C : C ∈ B}. Then the set

M0 = {F ∈ F(M∗) : every copoint containing F is in B∗
} (2.1)

is a modular cut of M∗ (see [4, Section 6]). As long as B does not contain all circuits of M ,
((M∗

+M0 e)/{e})∗ is an elementary lift of M . We denote this elementary lift by L(M,B).

2.2. Using gains to lift graphic matroids

A gain graph Φ = (Γ , φ) [13, Section 5] consists of a graph Γ and a gain mapping φ from
the edges of Γ into a group G, the gain group. We require that φ(e−1) = φ(e)−1, where e−1

means e with its orientation reversed. Associated with Φ is a class B(Φ) of balanced circles.
Let B be a circle of Γ . To decide whether or not B is balanced, choose an edge e1 of B and a
direction (clockwise or counterclockwise) to traverse B. Let e1, e2, . . . , ek be the edges of B in
the order in which they are traversed, and let them be oriented in this direction. The gain of B is
φ(B) = φ(e1)φ(e2) · · · φ(ek). Then B ∈ B(Φ) if φ(B) = 1.

The set of balanced circles of a gain graph is a linear subclass of circuits of the graphic matroid
G(Γ ) [13, Proposition 5.1]. Accordingly, L(G(Γ ),B(Φ)) is an elementary lift of G(Γ ) (unless
all circles are balanced). We usually denote this lift by L(Φ) [14, Section 3].
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2.3. Circuit signatures

A signed set is a set X together with an ordered bipartition (X+, X−) of X . Sometimes
we write a1 · · · apb1 · · · bn to mean ({a1, . . . , ap}, {b1, . . . , bn}). The signed set has support
X . We denote both the signed set and its support by X . We write −X = (X−, X+), and
X \ T = (X+

\ T, X−
\ T ).

If X is a signed subset of E , then for each e ∈ E , define

X (e) =


+1 if e ∈ X+,

−1 if e ∈ X−,

0 if e 6∈ X+
∪ X−.

Let M be a matroid on E , and let C be a collection of signed subsets of E . We say that C is a
circuit signature of M if:
(1) every signed set in C has a circuit of M as support, and
(2) for every circuit C of M , there are precisely two members of C with support C , and these

two signed sets are negatives of each other.

Let C be a circuit signature of M , and let e ∈ E . The reorientation of C on A is the circuit
signature

A
C = {

A
X : X ∈ C}, where

A
X is the signed set derived from X by reversing

the signs of the elements of A. We define C \ e = {X ∈ C : e 6∈ X}, the deletion of C
by e. Also, we define the contraction of C by e, denoted by C/e, to be the set of elements of
{X \ {e} : X ∈ C and X \ {e} 6= ∅} that have setwise minimal support. Every collection obtained
from C by a succession of deletions and contractions is called a minor of C. We call (C1, C2, C3)

a modular triple of signed circuits of C if, as supports, (C1, C2, C3) is a modular triple of circuits
of M . A modular pair of signed circuits is defined similarly.

2.4. Orientations of matroids

Bland and Las Vergnas introduced oriented matroids in [2]. Let C be a circuit signature of M .
Then C determines (i.e. is the set of signed circuits of) an oriented matroid if the following circuit
elimination property holds: for all X , Y ∈ C such that X 6= −Y , and all e ∈ X+

∩ Y −, there
is a Z ∈ C such that Z+

⊆ (X+
∪ Y +) \ {e} and Z−

⊆ (X−
∪ Y −) \ {e}. We say that C is an

orientation of M and that M is orientable.

2.5. Weak orientations of matroids

Weakly oriented matroids were introduced by Bland and Jensen in [1]. They are matroids
together with a special type of circuit signature, called a weak orientation.

Theorem 2.3. Let C be a circuit signature of a matroid M. Then C is a weak orientation of M if
and only if for every X1, X2 ∈ C with e ∈ X+

1 ∩ X−

2 and X1 6= −X2,

(i) if f ∈ (X+

1 \ X−

2 ) ∪ (X−

1 \ X+

2 ), then there exists X3 ∈ C with f ∈ X3 ⊆ (X1 ∪ X2) \ {e};
and

(ii) there are e1 ∈ X1 \ X2, e2 ∈ X2 \ X1, and X4 ∈ C satisfying X4 ⊆ (X1 ∪ X2) \ {e} so that
X4(e1)X4(e2) = X1(e1)X2(e2).

Theorem 2.4 ([7, Theorem 1, p. 173]). A circuit signature C of a matroid is a weak orientation
of M if and only if C has no minor isomorphic to a reorientation of the signature {12, 13, 23} of
U1,3.
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2.6. Ternary signatures of matroids

The construction of ternary signatures stems from Tutte’s theory of chain groups (see [11,
Chapter 8] and [12, Section 9.4]). Let M be a ternary matroid, and let N be the rowspace of a

GF(3)-representation matrix of M∗. Then M ∼= M(N ) where M(N ) is the chain-group matroid
of N . The elementary vectors of N can be used to obtain a circuit signature of M : an element s
in a signed circuit is positive or negative, depending on whether the value in the s-coordinate of
the elementary vector is +1 or −1, respectively. This circuit signature is called ternary signature
of M [10].

Example 2.5. Consider the representation[
1 0 1 1
0 1 1 −1

]
of U2,4 over GF(3). The elementary vectors of the row space of this representation are(

1 1 −1 0
)
,

(
1 −1 0 −1

)
,

(
1 0 1 1

)
,

(
0 1 1 −1

)
,

and their negatives. This gives the ternary signature {123, 124, 134, 234} of U2,4.

Fortunately, ternary signatures do not depend on the representation matrix of M∗.

Theorem 2.6. A ternary matroid has a unique ternary signature, up to reorientation.

Proof. This result follows from the fact that ternary matroids are uniquely GF(3)-
representable [6, Theorem 3.2]. �

Ternary signatures can be characterized by a signed circuit elimination axiom [10, Theorem
3.1].

Theorem 2.7. Let M be a matroid and C a signature of its circuits. Then the following properties
are equivalent:

(1) C is a ternary signature.
(2) For any X1, X2 ∈ C with (X+

1 ∩ X−

2 )∪ (X−

1 ∩ X+

2 ) 6= ∅ and for any f ∈ (X+

1 \ X−

2 )∪ (X−

1 \

X+

2 ), there exist X3 ∈ C such that f ∈ X3 ⊆ (X1 ∪ X2) \ ((X+

1 ∩ X−

2 ) ∪ (X−

1 ∩ X+

2 )), and
there exist e1 ∈ X1 ∩ X3 and e2 ∈ X2 ∩ X3 such that X1(e1)X2(e2) = X3(e1)X3(e2).

(3) C has no minor isomorphic to a reorientation of the circuit signature {12, 13, 23} of U1,3, or
to a reorientation of the circuit signature {123, 124, 134, 234} of U2,4.

3. How to characterize weak orientations, orientations, and ternary signatures by modular
triples

Weak orientations, orientations, and ternary signatures are characterized in the literature in
a variety of ways. We provide a new characterization of these circuit signatures, as well as of
lifting signatures (see Section 4.1), in terms of modular triples of circuits.

Let C be a circuit signature of a matroid M . We now define the Well-Distribution Property
(WDP): for each modular triple of signed circuits, (C1, C2, C3), there exist sets I1, I2, I3, and I4
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Fig. 2.1. On the left is a portion of the lattice of flats of M∗ in which (H∗
1 , H∗

2 , and H∗
3 ) constitute a modular triple of

copoints. On the right, we see (C1, C2, C3), the corresponding modular triple of circuits of M .

with I1 ∪· I2 = I3 ∪· I4 = I so that, up to reorientation,

C1 = (I ∪ I13, I12),

C2 = ±(I1 ∪ I12, I2 ∪ I23), and
C3 = ±(I3 ∪ I23, I4 ∪ I13).

(The sets I , I13, I12, and I23 are defined in Fig. 2.1.)

Theorem 3.1. Let C be a circuit signature of a matroid M.

(1) C is a weak orientation of M if and only if the Well-Distribution Property (WDP) holds.
(2) C is an orientation of M if and only if the Well-Distribution Property holds with I3 ⊆ I2.
(3) C is a ternary signature of M if and only if the Well-Distribution Property holds with

I1 = I3 = I .
(4) Let A be an Abelian group with exp(A) > 2.

(a) Assume M is binary. Then C is a lifting signature for gains in A if and only if the Well-
Distribution Property holds with I1 = I3 = I .

(b) Assume M is not binary. Then C is a lifting signature for gains in A if and only if
exp(A) = 3 and the Well-Distribution Property holds with I1 = I3 = I .

We use two different techniques to prove Theorem 3.1(1)–(3). To prove the sufficiency of part
(2), we use Las Vergnas’ result that signed circuit elimination for orientations is equivalent to
modular signed circuit elimination [8, Theorem 2.1]. To prove the sufficiency of parts (1) and
(3), we use forbidden minor arguments, which require Lemma 3.2.

Let Property P be the WDP together with one (or none) of the additional requirements
involving the sets I1, I2, and I3 that appear in Theorem 3.1(2)–(4).

Lemma 3.2. Let C be a circuit signature of a matroid M that satisfies Property P. Then any
minor of C also satisfies Property P.

Proof. We show that if C satisfies Property P, then C \s and C/s also satisfy Property P. We prove
the contrapositive of this statement by induction on |E(M)|. Assume that |E(M)| > 1.

If C \ s does not satisfy Property P, then neither does C, because the signature of a signed
set in C \ s and in C are the same. Let (C1, C2, C3) be a modular triple of signed circuits in
C/s that does not satisfy Property P. Ignoring signatures momentarily, we claim that M has a
modular triple of circuits, (D1, D2, D3), such that Ci ⊆ Di . The signature of Di is an extension
of the signature of Ci , so (D1, D2, D3) cannot satisfy Property P, because this would imply that
(C1, C2, C3) satisfies Property P.
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To prove our claim, we observe that M has circuits D1, D2, and D3 such that Ci = Di \ {s},
and (D1, D2), (D1, D3), and (D2, D3) are modular pairs of circuits [8, Lemma 2.3]. We know
that Di = Ci or Di = Ci ∪{s}. Also, D1, D2, and D3 are distinct circuits because C1, C2, and C3
are distinct. To prove that (D1, D2, D3) is a modular triple of circuits of M , we need only prove
that Di ⊆ (D j ∪ Dk) for distinct i , j , and k. The only way that Di ⊆ (D j ∪ Dk) can fail is when
Di = Ci ∪ {s}, D j = C j , and Dk = Ck . Suppose this happens. Let E be the ground set of M .
Define H∗

i = (E \ {s}) \ Ci . Then (H∗

1 , H∗

2 , H∗

3 ) is a modular triple of copoints of M∗
\ s. Also,

(H∗

i , H∗

j ∪ {s}, H∗

k ∪ {s}) is a modular triple of copoints of M∗. Since M∗ is a single-element
extension of M∗

\ s, H∗

j and H∗

k are in the associated modular cut of M∗
\ s, but H∗

i is not in the
modular cut. According to the definition of a modular cut, this is impossible because (H∗

j , H∗

k )

is a modular pair and so H∗

i must be in the modular cut as well. This contradiction proves that
Di ⊆ (D j ∪ Dk). �

Lemma 3.3. Let C be a circuit signature of M, and let A ⊆ E.

(1) [1, Proposition 1.7] If C is a weak orientation of M, then
A
C is also a weak orientation of

M.
(2) [2, Section 2] If C is an orientation of M, then

A
C is also an orientation of M.

(3) [10, Section 2] If C is a ternary signature of M, then
A
C is also a ternary signature of M.

Lemma 3.4. Let C be a weak orientation of M, and let (C1, C2, C3) be a modular triple of
signed circuits. Let i , j , and k be distinct elements of {1, 2, 3}. If {x1, x2} ⊆ (Ci ∩ C j ) \ Ck and
x1 ∈ (C+

i ∩ C+

j ) ∪ (C−

i ∩ C−

j ), then x2 ∈ (C+

i ∩ C+

j ) ∪ (C−
∩ C−

j ).

Proof. Assume x1 ∈ C+

i ∩C+

j and x2 ∈ C+

i ∩C−

j . If the conclusion is false, then Theorem 2.3(i)
guarantees the existence of X3 ∈ C where x1 ∈ X3 ⊆ (Ci ∪ C j ) \ {x2}. By Lemma 2.2, Ck is the
unique circuit in (Ci ∪ C j ) \ {x2}. Thus X3 = ±Ck , which contradicts x1 6∈ Ck . �

Proof of Theorem 3.1(1). Assume C is a weak orientation of M , and let (C1, C2, C3) be a
modular triple of signed circuits. By Lemma 3.3(1), we may assume that C1 = (I ∪ I13, I12).

We show that either I12 ⊆ C+

2 or I12 ⊆ C−

2 . If not, there exist y1 and y2 in I12 such
that y1 ∈ C+

2 ∩ C−

1 and y2 ∈ C−

2 ∩ C−

1 . This contradicts Lemma 3.4. We may assume that
I12 ⊆ C+

2 . By reorientation in I23, we may also assume that I23 ⊆ C−

2 . We have found that
C2 = (I1 ∪ I12, I2 ∪ I23), where I1 ∪· I2 = I .

Similarly, I13 ⊆ C+

3 or I13 ⊆ C−

3 , and I23 ⊆ C+

3 or I23 ⊆ C−

3 . Suppose that the
elements of I13 ∪ I23 all have the same sign in C3. We may assume that I13 ∪ I23 ⊆ C−

3 .
Choose x ∈ I13. When we apply Theorem 2.3(ii) to x , C1, and C3, we find that e1 ∈ I12 and
e2 ∈ I23, so C1(e1)C3(e2) = +1. However, by Lemma 2.2, X4 = ±C2, and in both cases
X4(e1)X4(e2) = −1, a contradiction. Thus, C3 = (I3 ∪ I23, I4 ∪ I13), where I3 ∪· I4 = I .

Now assume that C satisfies the WDP. By Lemma 3.2, any minor of C must also satisfy
the WDP. Thus an induced U1,3 circuit signature must be isomorphic to a reorientation of
{12, 13, 23}. Using Theorem 2.4, we conclude that C is a weak orientation of M . �

Proof of Theorem 3.1(2). Assume that C is an orientation of M , and let (C1, C2, C3) be a
modular triple of signed circuits. By Theorem 3.1(1) and Lemma 3.3(2), we may assume that
C1 = (I ∪ I13, I12), C2 = (I1 ∪ I12, I2 ∪ I23), and C3 = (I3 ∪ I23, I4 ∪ I13), where
I1 ∪· I2 = I3 ∪· I4 = I .
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Choose y ∈ I12. By applying signed circuit elimination to y, C1, and C2, we find that C has a
signed circuit C ⊆ (C1 ∪ C2) \ {y} with C+

⊆ I ∪ I13 ∪ I12 \ {y} and C−
⊆ I2 ∪ I12 \ {y} ∪ I23.

By Lemma 2.2, C = ±C3. Thus (I3 ∪ I23) ⊆ (I2 ∪ I23), which implies that I3 ⊆ I2.
Now assume that C satisfies the WDP with I3 ⊆ I2. Let (C1, C2) be a modular pair of signed

circuits such that C1 6= ±C2, and let e ∈ C+

1 ∩ C−

2 . By Lemma 2.2, there exists a unique circuit
C3 such that C3 ⊆ (C1 ∪ C2) \ {e}. Moreover, (C1, C2, C3) is a modular triple, and e ∈ I12.

We must prove that for τ = + or τ = −, (τC3)
+

⊆ (C+

1 ∪ C+

2 ) \ {e} and (τC3)
−

⊆

(C−

1 ∪C−

2 )\{e}. Up to reorientation, we know that C1 = (I ∪ I13, I12), C2 = ±(I1∪ I12, I2∪ I23),
and C3 = ±(I3 ∪ I23, I4 ∪ I13), where I1 ∪· I2 = I3 ∪· I4 = I and I3 ⊆ I2. By construction, e has
opposite signs in C1 and C2. Thus C2 = (I1 ∪ I12, I2 ∪ I23). Since we assumed that I3 ⊆ I2, the
result follows. �

Proof of Theorem 3.1(3). Assume that C is a ternary signature, and let (C1, C2, C3) be a
modular triple of signed circuits. By Theorem 3.1(1) and Lemma 3.3(3), we may assume that
C1 = (I ∪ I13, I12), C2 = (I1 ∪ I12, I2 ∪ I23), and C3 = (I3 ∪ I23, I4 ∪ I13), where
I1 ∪· I2 = I3 ∪· I4 = I .

Choose x ∈ I13, and let C1, C2, and x play the respective roles of X1, X2, and f in
Theorem 2.7(2). Thus there exists X3 ∈ C such that X3 ⊆ (C1 ∪ C2) \ (I2 ∪ I12). But C3
and −C3 are the only signed circuits contained in (C1 ∪ C2) \ I12, so X3 = ±C3. However,
I ⊆ C3, so I2 = ∅. An identical argument shows that I4 = ∅.

To prove sufficiency, assume that C satisfies the WDP with I1 = I3 = I . By Theorems 3.1(1)
and 2.4, C has no minor isomorphic to a reorientation of {12, 13, 23}.

According to Lemma 3.2, any minor that is a signature of U2,4 must also satisfy the WDP
with I1 = I3 = I . We claim that such a minor is a reorientation of {123, 124, 134, 234}. There is
no way to reorient this signature so that exactly two circuits have positive signatures; thus C has
no minor isomorphic to a reorientation of the signatures in Theorem 2.7(3). It follows that C is a
ternary signature of M .

We conclude with a proof of our claim. Since any three circuits of U2,4 form a modular
triple, we know that the signatures of {1, 2, 3}, {1, 2, 4}, and {1, 3, 4} are some reorientation
of 123, 124, and 134. We also know that the signatures of {1, 2, 3}, {1, 2, 4}, and {2, 3, 4} are
some reorientation of 123, 124, and 234. Putting these two facts together, we see that the circuit
signature of U2,4 must be some reorientation of {123, 124, 134, 234}. �

4. Lifting signatures

4.1. Definitions

Now we generalize the results of Section 2.2, where we saw that gains enabled the
construction of graphic-matroid lifts. The main idea is to replace information obtained from
graphs with information obtained from matroid circuit signatures.

Let Φ = (Γ , φ) be a gain graph with gain group G. We can think of Γ as being a directed
graph because φ oriented the edges in order to assign gains. There is a standard way of associating
this directed graph with an orientation C of the graphic matroid G(Γ ) (see [3, Section 1.1]).
Arbitrarily, we assign an orientation to each circle of Γ ; an element of a signed circuit is positive
if its direction agrees with the orientation assigned that circle, and it is negative otherwise.

Suppose the circle B in Fig. 4.1 is in Γ . According to Section 2.2, B is balanced if and only
if φ(e1)φ(e2)φ(e3)

−1φ(e4)φ(e5)
−1

= 1. Balance can also be defined using the circuit signature
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Fig. 4.1. This is a circle of Φ. The arrows on the edges indicate the orientations prescribed by φ.

C which we described above. In our example, ({e1, e2, e4}, {e3, e5}) ∈ C. Assuming that the gain
group is Abelian, B is balanced if and only if∏

e∈B+

φ(e)
∏

e∈B−

φ(e)−1
= 1.

We require that the gain group be Abelian; otherwise, this product may not be well defined.
Our example illustrates how circuit signatures determine whether or not a matroid circuit is

balanced. Let M be a matroid on E , let C be a circuit signature of M , and let A be an Abelian
group. A gain mapping φ is a function from E into A. We call A the gain group. Let C be a
circuit of M , so C is the support of two signed circuits in C. Suppose one of these signed circuits
is ({a1, . . . , ap}, {b1, . . . , bn}). We define the gain of C to be

φ(C) =

∏
a∈C+

φ(a)
∏

b∈C−

φ(b)−1.

We say that C is balanced if φ(C) = 1. Let B(φ, C) denote the class of balanced circuits. If C is
clear from the context, we write B(φ). If B(φ) is a linear class of circuits, we can apply Dowling
and Kelly’s lift construction to obtain L(M,B(φ)).

It is certainly not the case that B(φ, C) is linear for all choices of φ and C. To generalize
the graphic case, where B(φ) is always linear for all gain mappings, we must be selective when
choosing a circuit signature. A matroid M can be lifted by gains in A if M has a circuit signature
C such that B(φ, C) is linear for all φ : E → A. In this case, we call C a lifting signature for
gains in A. Which matroids have lifting signatures? Since linear classes of circuits are central to
the definition of a lifting signature, and since they are defined in terms of modular triples, it is
natural that modular triples be used to characterize lifting signatures.

4.2. Using gains to lift binary and ternary matroids

Our goal is to classify the matroids that can be lifted by gains. Given a gain mapping φ, define
a new gain mapping φA by

φA(e) =

{
φ(e) if e 6∈ A
φ(e)−1 if e ∈ A.

Lemma 4.1. Let C be a circuit signature of M, let A ⊆ E, and let A be an Abelian group.

(1) For each gain mapping φ, B(φA,
A
C) = B(φ, C).

(2) C is a lifting signature for gains in A if and only if
A
C is a lifting signature for gains in A.



L. Koban / European Journal of Combinatorics 29 (2008) 159–170 167

Proof. Let φ be a gain mapping, and let C be a circuit of M . Throughout this proof, φ(C) is
calculated using C and φA(C) is calculated using

A
C.

Assume that C is the support of the signed circuit ({p1, . . . , pr , a1, . . . , as}, {n1, . . . , nt ,

b1, . . . , bq}) of C, where A ∩ C = {a1, . . . , as, b1, . . . , bq}. Then C is the support of the signed
circuit ({p1, . . . , pr , b1, . . . , bq}, {n1, . . . , nt , a1, . . . , as}) of

A
C. Accordingly,

φA(C) =

r∏
i=1

φA(pi )

q∏
i=1

φA(bi )

t∏
i=1

φA(ni )
−1

s∏
i=1

φA(ai )
−1

=

r∏
i=1

φ(pi )

s∏
i=1

φ(ai )

t∏
i=1

φ(ni )
−1

q∏
i=1

φ(bi )
−1

= φ(C).

It follows immediately that B(φA,
A
C) = B(φ, C).

Assume that C is not a lifting signature for gains in A. So there exist a gain mapping φ and a
modular triple of circuits, (C1, C2, C3), such that φ(C1) = φ(C2) = 1 and φ(C3) 6= 1. From part
(1), it follows that φA(C1) = φA(C2) = 1 and φA(C3) 6= 1. Thus

A
C is not a lifting signature

for gains in A. If
A
C is not a lifting signature for gains in A, then

A
(

A
C) = C is not a lifting

signature for gains in A. �

Lemma 4.2. Let A be an Abelian group with exp(A) > 2, let C be a lifting signature of M for
gains in A, and let (C1, C2, C3) be a modular triple of signed circuits. Let i , j , and k be distinct
elements of {1, 2, 3}.

(1) Assume {x1, x2} ⊆ (Ci ∩ C j ) \ Ck . If x1 ∈ (C+

i ∩ C+

j ) ∪ (C−

i ∩ C−

j ), then x2 ∈

(C+

i ∩ C+

j ) ∪ (C−

i ∩ C−

j ).
(2) Assume x, y, and z are each in exactly two of Ci , C j , and Ck . If x ∈ C+

i ∩C−

k , y ∈ C+

j ∩C−

i ,
z ∈ C−

j , and z ∈ Ck , then z ∈ C+

k .
(3) Assume y ∈ (Ci ∩ C j ) \ Ck and w ∈ Ci ∩ C j ∩ Ck . If y ∈ C−

i ∩ C+

j and w ∈ C+

i , then
w ∈ C+

j .

Proof. Throughout this proof, let g ∈ A have order greater than 2.
For part (1), we may assume that x1 ∈ (C+

i ∩ C+

j ). Otherwise, we could proceed with the
proof using the modular triple (−Ci , −C j , Ck). Suppose the conclusion is false. By relabeling,
if necessary, we can assume that x2 ∈ (C+

i ∩ C−

j ). Define a gain mapping φ by

φ(e) =

{
g if e ∈ {x1, x2},

1 otherwise.

Then φ(C j ) = g · g−1
= 1 and φ(Ck) = 1, but φ(Ci ) = g · g = g2

6= 1, which contradicts the
assumption that C is a lifting signature for gains in A.

For part (2), suppose z ∈ C−

k . Define a gain mapping φ by

φ(e) =

{
g if e ∈ {x, y, z},
1 otherwise.

Then φ(Ci ) = φ(C j ) = g · g−1
= 1, but φ(Ck) = g−1

· g−1
= (g−1)2

6= 1, a contradiction.
For part (3), suppose w ∈ C−

j . Define a gain mapping φ by

φ(e) =

{
g if e ∈ {w, y},

1 otherwise.
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Then φ(Ci ) = φ(C j ) = g · g−1
= 1. It is not known whether w is positive or negative in Ck , so

φ(Ck) = g or φ(Ck) = g−1. In either case, φ(Ck) 6= 1, a contradiction. �

Proof of Theorem 3.1(4). Assume C is a lifting signature for gains in A, and let (C1, C2, C3) be
a modular triple of signed circuits. By Lemma 4.1(2), we may assume that C1 = (I ∪ I13, I12).

We will show that either I12 ⊆ C+

2 or I12 ⊆ C−

2 . If not, there exist y1 and y2, both elements
of I12, such that y1 ∈ C−

1 ∩ C−

2 and y2 ∈ C−

1 ∩ C+

2 . This contradicts Lemma 4.2(1). We may
assume that I12 ⊆ C+

2 and that I23 ⊆ C−

2 . Applying Lemma 4.2(3), the elements of I have
the same sign in C2 as the elements of I12. Thus C2 = (I ∪ I12, I23). Similarly, I13 ⊆ C+

3 or
I13 ⊆ C−

3 . Furthermore, by Lemma 4.2(2,3), we find that the elements of I ∪ I23 and those of I13
have opposite signs in C3. Thus C3 = (I ∪ I23, I13). We have proved the necessity of part (4a).

To prove the necessity of part (4b), we must show that exp(A) = 3. Suppose exp(A) 6= 3, so
that there exists g ∈ A such that g3

6= 1. Since M is not binary, we apply Lemma 2.1 to find a
modular triple of signed circuits, (C1, C2, C3), with nonempty intersection. We must show that
C is not a lifting signature. By the above argument, we may assume that C1 = (I ∪ I13, I12),
C2 = ±(I ∪ I12, I23), and C3 = ±(I ∪ I23, I13). Choose w ∈ I , x ∈ I13, and z ∈ I23, and define
a gain mapping φ by

φ(e) =


g if e = x,

g−1 if e = w or z,
1 otherwise.

Then φ(C1) = φ(C2) = 1, but φ(C3) is (g−1)3 or g3, neither of which is 1. Thus C is not a
lifting signature for gains in A. This contradicts our hypothesis, so exp(A) = 3.

Let (C1, C2, C3) be a modular triple of signed circuits. We must prove that C is a lifting
signature. We may assume that C1 = (I ∪ I13, I12), C2 = (I ∪ I12, I23), and C3 = (I ∪ I23, I13).

Let φ be a gain mapping. We must show that if φ(C1) = φ(C2) = 1, then φ(C3) = 1. If
φ(C1) = φ(C2) = 1, then∏

w∈I

φ(w)
∏

x∈I13

φ(x)
∏

y∈I12

φ(y)−1
=

∏
w∈I

φ(w)
∏

y∈I12

φ(y)
∏

z∈I23

φ(z)−1
= 1.

Thus

φ(C3) =

∏
w∈I

φ(w)
∏

z∈I23

φ(z)
∏

x∈I13

φ(x)−1

=

(∏
w∈I

φ(w)

)(∏
w∈I

φ(w)
∏

y∈I12

φ(y)

)(∏
w∈I

φ(w)
∏

y∈I12

φ(y)−1

)
=

∏
w∈I

(φ(w))3.

If M is binary, then I = ∅ (see Lemma 2.1). If M is not binary, then exp(A) = 3. In both cases,
φ(C3) = 1. �

Theorem 4.3. Let C be a circuit signature of a matroid M, and let A be an Abelian group with
exp(A) > 2. Then C is a lifting signature for gains in A if and only if C is a ternary signature
and, when M is not binary, exp(A) = 3.

Theorem 4.4 classifies the matroids that can be lifted by gains from a group of exponents
greater than 2. Theorem 4.5 is a classification for gain groups of exponent 2.
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Theorem 4.4. Let M be a matroid, and let A be an Abelian group such that exp(A) > 2. Then
M can be lifted by gains in A if and only if M is ternary and, when M is not binary, exp(A) = 3.
Moreover, the lifting signature is the ternary signature associated with M, which is unique up to
reorientation.

Proof. M can be lifted by gains in A if and only if M has a lifting signature for gains in A; call it
C. From Theorem 4.3, we see that C is also a ternary signature. But M has a ternary signature if
and only if M is ternary. Moreover, Theorem 2.6 guarantees that a ternary matroid has precisely
one ternary signature, up to reorientation. �

Theorem 4.5. Let A be an Abelian group with exp(A) = 2, and let C be a circuit signature of a
matroid M. Then C is a lifting signature for gains in A if and only if M is binary.

Proof. If M is not binary, then there exists a modular triple of signed circuits, (C1, C2, C3), with
nonempty intersection. Let w ∈ I and y ∈ I12, and let g ∈ A be any element other than 1. We
define a gain mapping φ by

φ(e) =

{
g if e ∈ {w, y},

1 otherwise.

Then φ(C1) = φ(C2) = 1, but φ(C3) = g 6= 1. Thus C is not a lifting signature for gains in A.
Now assume that M is binary. Let (C1, C2, C3) be a modular triple of signed circuits (so

I = ∅), and let φ be a gain mapping. Since exp(A) = 2, φ(e) = φ(e)−1 for all e ∈ E , we
may assume that C is the all-positive signature. For distinct i , j , and k, we must show that if
φ(Ci ) = φ(C j ) = 1, then φ(Ck) = 1 as well. Assume φ(C1) = φ(C2) = 1. Thus∏

x∈I13

φ(x)
∏

y∈I12

φ(y) =

∏
y∈I12

φ(y)
∏

z∈I23

φ(z) = 1.

Then

φ(C3) =

∏
x∈I13

φ(x)
∏

x∈I23

φ(z) =

∏
y∈I12

(φ(y))2
= 1. �

5. Applications

Here we provide quick proofs of four known facts about circuit signatures. The reference to
lifting signatures in part (1) is new.

Corollary 5.1. Let C be a circuit signature of a matroid M, and let A be an Abelian group with
exp(A) > 2, and with exp(A) = 3 if M is not binary.

(1) Assume M is binary. The following are equivalent: C is a lifting signature for gains in A, C
is an orientation, C is a weak orientation, and C is a ternary signature.

(2) A binary matroid is orientable if and only if it is regular.
(3) Assume M is regular and C is an orientation. Then, up to reorientation, C is unique.
(4) If M is not binary and C is a ternary signature, then C is a weak orientation but is not an

orientation.
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Proof. (1) By Lemma 2.1, if (C1, C2, C3) is a modular triple of circuits of M , then C1∩C2∩C3 =

∅. The proof follows immediately from Theorem 3.1.
(2) Let C be an orientation of a binary matroid M . By part (1), this is equivalent to C being a

ternary signature. Hence M is ternary and binary, and therefore M is regular.
(3) M is both binary and ternary. Since it is binary, part (1) says that C is also a ternary

signature. But by Theorem 2.6, C is unique up to reorientation.
(4) Since M is not binary, there is a modular triple of circuits, (C1, C2, C3), such that

I 6= ∅. Since C is ternary, Theorem 3.1 indicates that, up to reorientation and negation,
C1 = (I ∪ I13, I12), C2 = (I ∪ I12, I23), and C3 = (I ∪ I23, I13). If C is also an orientation,
then, up to reorientation and negation, C1 = (I ∪ I13, I12), C2 = (I1 ∪ I12, I2 ∪ I23), and
C3 = (I3 ∪ I23, I4 ∪ I13) for some I1 ∪· I2 = I3 ∪· I4 = I with I3 ⊆ I2. Thus I1 = I3 = I and
I2 = I4 = ∅, which contradicts I3 ⊆ I2. The result follows because ternary signatures are weak
orientations. �
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