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a b s t r a c t

The n-dimensional hypercube network Qn is one of the most popular interconnection
networks since it has simple structure and is easy to implement. The n-dimensional locally
twisted cube LTQn, an important variation of the hypercube, has the same number of nodes
and the same number of connections per node as Qn. One advantage of LTQn is that the
diameter is only about half of the diameter of Qn. Recently, some interesting properties of
LTQn have been investigated in the literature. The presence of edge-disjoint Hamiltonian
cycles provides an advantage when implementing algorithms that require a ring structure
by allowing message traffic to be spread evenly across the interconnection network. The
existence of two edge-disjoint Hamiltonian cycles in locally twisted cubes has remained
unknown. In this paper, we prove that the locally twisted cube LTQn with n ⩾ 4 contains
two edge-disjoint Hamiltonian cycles. Based on the proof of existence, we further provide
an O(n2n)-linear time algorithm to construct two edge-disjoint Hamiltonian cycles in an
n-dimensional locally twisted cube LTQn with n ⩾ 4, where LTQn contains 2n nodes and
n2n−1 edges.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Parallel computing is important for speeding up computation. The design of an interconnection network is the first
thing to be considered. Many topologies have been proposed in the literature [3,5,6,9], and the desirable properties
of an interconnection network include symmetry, relatively small degree, small diameter, embedding capabilities,
scalability, robustness, and efficient routing. Among the proposed interconnection networks, the hypercube is a popular
interconnection networkwithmany attractive properties such as regularity, symmetry, small diameter, strong connectivity,
recursive construction, partition ability, and relatively low link complexity [24]. The architecture of an interconnection
network is usually modelled by a graph in which the nodes represent the processing elements and the edges represent
the communication links. In this paper, we will use graph and network interchangeably.

The n-dimensional locally twisted cube, denoted by LTQn, was first proposed by Yang et al. [27,28] and is a better
hypercube variant which is conceptually closer to the comparable hypercube Qn than existing variants. The n-dimensional
locally twisted cube LTQn is similar to the n-dimensional hypercubeQn in the sense that the nodes can be one-to-one labelled
with 0–1 binary strings of length n, so that the labels of any two adjacent nodes differ in at most two successive bits. One
advantage is that the diameter of an n-dimensional locally twisted cube is only about half the diameter of an n-dimensional
hypercube [28]. Some interesting properties of the locally twisted cube LTQn have been investigated. In the following, we
give a brief survey on the properties of locally twisted cubes. Yang et al. [28] proved that LTQn has a connectivity of n. They
also showed that locally twisted cubes are 4-pancyclic, i.e. they contain a cycle of length from 4 to 2n for n ⩾ 3, and that
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a locally twisted cube is superior to a hypercube in terms of ring embedding capability [27]. Ma and Xu [21] improved the
result in [28] by showing that for any two different nodes u and v in LTQn, with n ⩾ 3, there exists a uv-path of length ℓwith
d(u, v) + 2 ⩽ ℓ ⩽ 2n

− 1 except for the shortest uv-path, where d(u, v) is the length of the shortest path between u and
v. Ma and Xu [22] also proved that the n-dimensional locally twisted cube LTQn is edge-pancyclic, i.e. for any edge (u, v) in
LTQn and integer ℓ, 4 ⩽ ℓ ⩽ 2n, there exists a cycle C of length ℓ in LTQn such that (u, v) is in C . Yang and Yang [26] addressed
the fault diagnosis of locally twisted cubes under the MM∗ comparison model. Hsieh et al. [12] constructed n edge-disjoint
spanning trees in an n-dimensional locally twisted cube, where two spanning trees in a graph are said to be edge-disjoint
if they are rooted at the same vertex without sharing any common vertex. Recently, Lin et al. [20] proved that all spanning
trees constructed in [12] are independent, i.e. any two spanning trees are rooted at the same node, say r , and for any other
node v ≠ r , the two different paths from v to r , one path in each tree, are internally node-disjoint. On the other hand, Hsieh
et al. [14] showed that for any LTQn, n ⩾ 3, with at most 2n − 5 faulty edges in which each node is incident to at least two
fault-free edges, there exists a fault-free Hamiltonian cycle.

AHamiltonian cycle in a graph is a simple cycle that passes through every node of the graph exactly once. TwoHamiltonian
cycles in a graph are said to be edge-disjoint if they do not share any common edge. The edge-disjoint Hamiltonian cycles
can provide advantages for algorithms that make use of a ring structure [25]. The following application for edge-disjoint
Hamiltonian cycles can be found in [25]. Consider the problem of all-to-all broadcasting in which each node sends an
identical message to all other nodes in the network. There is a simple solution for the problem using an n-node ring
that requires n − 1 steps, i.e., at each step, every node receives a new message from its ring predecessor and passes
the previous message to its ring successor. If the network admits edge-disjoint rings, then messages can be divided and
the parts broadcast along different rings without any edge contention. If the network can be decomposed into edge-
disjoint Hamiltonian cycles, then themessage traffic will be evenly distributed across all communication links. Edge-disjoint
Hamiltonian cycles also form the basis of an efficient all-to-all broadcasting algorithm for networks that employ wormhole
or cut-through routing [18]. Further, edge-disjoint Hamiltonian cycles also provide the edge-fault tolerant hamiltonicity of
an interconnected network; that is, when a Hamiltonian cycle of an interconnected network contains one faulty edge, then
the other edge-disjoint Hamiltonian cycle can be used to replace it for transmission. In this paper, we will construct two
edge-disjoint Hamiltonian cycles of locally twisted cubes.

Previous related works are summarized below. The edge-disjoint Hamiltonian cycles in k-ary n-cubes and hypercubes
have been constructed in [1]. Barden et al. [2] constructed the maximum number of edge-disjoint spanning trees in a hy-
percube. Petrovic and Thomassen [23] characterized the number of edge-disjoint Hamiltonian cycles in hyper-tournaments.
Hsieh et al. [12] constructed n edge-disjoint spanning trees in an n-dimensional locally twisted cube. In [14], Hsieh et al. in-
vestigated the edge-fault tolerant hamiltonicity of an n-dimensional locally twisted cube. Hsieh et al. [10] showed that the
arrangement graph contains a Hamiltonian cycle even if it is faulty, i.e. edge faults and vertex faults. Hsieh and Chang [11]
showed that Möbius cubes with faulty nodes and faulty edges are 4-pancyclic. Hsieh and Lee [13] determined the condi-
tional edge-fault hamiltonicity of hypercube-like networks, including crossed cubes, twisted cubes, locally twisted cubes,
and generalized twisted cubes. They also showed that these hypercube-like networks are all conditional (2n−5)-edge-fault
pancyclic, where n is the number of dimensions of these networks [15]. Recently, Hsieh and Cian [16] determined the con-
ditional edge-fault hamiltonicity of augmented cubes. The n-dimensional twisted cube is derived from the n-dimensional
hypercube by twisting some edges similarly to locally twisted cubes. An n-dimensional twisted cube is (n−3)-Hamiltonian
connected [17] and (n − 2)-pancyclic [19], whereas the hypercube is not. In [8], Fu showed that an n-dimensional twisted
cube can tolerate up to 2n − 5 edge faults, while retaining a fault-free Hamiltonian cycle. Fan et al. [7] showed that the
twisted cube is edge-pancyclic and provided an O(l log l + n2

+ nl) time algorithm to find a cycle of length l containing a
given edge of the twisted cube. In [7], Fan et al. also asked if an n-dimensional twisted cube is edge-pancyclic with n − 3
faults for n ⩾ 3. Yang [29] answered the question and showed that an n-dimensional twisted cube is not edge-pancyclic
with only one faulty edge for n ⩾ 3, and that it is node-pancyclic with (⌊n/2⌋ − 1)-faulty edges for n ⩾ 3.

The existence of a Hamiltonian cycle in locally twisted cubes has been verified in [27]. However, there has been no work
reported so far on edge-disjoint hamiltonicity properties in locally twisted cubes. In this paper, we show that there exist
two edge-disjoint Hamiltonian cycles in an n-dimensional locally twisted cube LTQn, for any integer n ⩾ 4. Based on the
proof of existence, we present an O(n2n) time algorithm to construct two edge-disjoint Hamiltonian cycles in LTQn, where
LTQn contains 2n nodes and n2n−1 edges.

The rest of this paper is organized as follows. In Section 2, the structure of locally twisted cubes is introduced and some
notations are given. Section 3 shows the existence of two edge-disjoint Hamiltonian cycles in locally twisted cubes. In
Section 4, we provide a recursive algorithm to construct two edge-disjoint Hamiltonian cycles in an n-dimensional locally
twisted cube. Finally, some concluding remarks and future work are given in Section 5.

2. Preliminaries

We usually use a graph to represent the topology of an interconnection network. A graph G = (V , E) is a pair of the node
set V and the edge set E, where V is a finite set and E is a subset of {(u, v)|(u, v) is an unordered pair of V }. We will use V (G)
and E(G) to denote the node set and the edge set of G, respectively. If (u, v) is an edge in a graph G, we say that u is adjacent
to v and u, v are incident to edge (u, v). A neighbor of a node v in a graph G is any node that is adjacent to v. We write NG(v)
for the set of neighbors of v in G. The subscript ‘G’ of NG(v) can be removed from the notation if it has no ambiguity.
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a b

Fig. 1. (a) The 3-dimensional locally twisted cube LTQ3 , and (b) the 4-dimensional locally twisted cube LTQ4 containing sub-locally twisted cubes LTQ 0
3 and

LTQ 1
3 , where the leading bits of nodes are underlined.

Let G = (V , E) be a graph with node set V and edge set E. A path P of length ℓ in G, denoted by v0 → v1 → · · · →

vℓ−1 → vℓ, is a sequence (v0, v1, . . . , vℓ−1, vℓ) of nodes such that (vi, vi+1) ∈ E for 0 ⩽ i ⩽ ℓ − 1. The first node v0 and
the last node vℓ visited by P are called the path-start and path-end of P , denoted by start(P) and end(P), respectively, and
they are called the end nodes of P . Path vℓ → vℓ−1 → · · · → v1 → v0 is called the reversed path, denoted by Prev, of path
P . That is, path Prev visits the nodes of path P from end(P) to start(P) sequentially. In addition, P is a cycle if |V (P)| ⩾ 3
and end(P) is adjacent to start(P). A path P = v0 → v1 → · · · → vℓ−1 → vℓ may contain another subpath Q , denoted
as v0 → v1 → · · · → vi → Q → vj → · · · → vℓ−1 → vℓ, where Q = vi → vi+1 → · · · → vj, start(Q ) = vi, and
end(Q ) = vj for 0 ⩽ i ⩽ j ⩽ ℓ. A path (or cycle) in G is called a Hamiltonian path (or Hamiltonian cycle) if it contains every
node of G exactly once. Two paths (or cycles) P1 and P2 connecting a node u to a node v are said to be edge-disjoint if and only
if E(P1) ∩ E(P2) = ∅. Two paths (or cycles) Q1 and Q2 of graph G are called node-disjoint if and only if V (Q1) ∩ V (Q2) = ∅.
Two node-disjoint paths Q1 and Q2 can be concatenated into a path, denoted by Q1 ⇒ Q2, if end(Q1) is adjacent to start(Q2).

Now, we introduce locally twisted cubes. A node of the n-dimensional locally twisted cube LTQn is represented by a 0–1
binary string of length n. A binary string b of length n is denoted by bn−1bn−2 · · · b1b0, where bn−1 is the most significant bit.
We then give the recursive definition of the n-dimensional locally twisted cube LTQn, for any integer n ⩾ 2, as follows.
Definition 2.1 ([27,28]). Let n ⩾ 2. The n-dimensional locally twisted cube, denoted by LTQn, is defined recursively as
follows.
(1) LTQ2 is a graph consisting of four nodes labelled with 00, 01, 10, and 11, respectively, connected by four edges (00, 01),
(00, 10), (01, 11), and (10, 11).
(2) For n ⩾ 3, LTQn is built from two disjoint copies LTQn−1 according to the following steps. Let LTQ 0

n−1 denote the graph
obtained by prefixing the label of each node of one copy of LTQn−1 with 0, let LTQ 1

n−1 denote the graph obtained by prefixing
the label of each node of the other copy of LTQn−1 with 1, and connect each node b = 0bn−2bn−3 · · · b1b0 of LTQ 0

n−1 with the
node 1(bn−2 ⊕ b0)bn−3 · · · b1b0 of LTQ 1

n−1 by an edge, where ‘⊕’ represents the modulo 2 addition.

By the above definition, LTQn is an n-regular graph with 2n nodes and n · 2n−1 edges. The n-dimensional locally twisted
cube LTQn is closed to an n-dimensional hypercube Qn except that the labels of any two adjacent nodes in LTQn differ in
at most two successive bits. In addition, LTQn can be decomposed into two sub-locally twisted cubes LTQ 0

n−1 and LTQ 1
n−1,

where for each i ∈ {0, 1}, LTQ i
n−1 consists of those nodes b = bn−1bn−2 · · · b1b0 with leading bit bn−1 = i. For each i ∈ {0, 1},

LTQ i
n−1 is isomorphic to LTQn−1. For example, Fig. 1(a) shows LTQ3 and Fig. 1(b) depicts LTQ4 containing two sub-locally

twisted cubes LTQ 0
3 and LTQ 1

3 .
Let b be a binary string bn−1bn−2 · · · b1b0 of length n. We write bk for the new binary string obtained by repeating the b

string k times. Note that if k = 0 we say that bk is an empty string. For instance, (10)2 = 1010 and 03
= 000.

3. The existence of two edge-disjoint Hamiltonian cycles

In this section, we will show that there exist two edge-disjoint Hamiltonian cycles in the n-dimensional locally twisted
cube LTQn with n ⩾ 4. Obviously, LTQ3 contains no two edge-disjoint Hamiltonian cycles since each node in it is only
incident to three edges. We prove the existence of two edge-disjoint Hamiltonian cycles in LTQn, n ⩾ 4, by induction
on n, the dimension of the locally twisted cube. For n ⩾ 4, we will show by induction that there are two edge-disjoint
Hamiltonian paths P and Q in LTQn such that start(P) = 0(0)n−4010, end(P) = 1(0)n−4010, start(Q ) = 0(0)n−4110, and
end(Q ) = 1(0)n−4110. By Definition 2.1, start(P) ∈ N(end(P)), start(Q ) ∈ N(end(Q )), and the edge (start(P), end(P)) is
different from the edge (start(Q ), end(Q )). Thus, P and Q form two edge-disjoint Hamiltonian cycles of LTQn for n ⩾ 4. In
the following, we will show how to construct two such edge-disjoint Hamiltonian cycles. We first show that LTQ4 contains
two edge-disjoint Hamiltonian paths as follows.
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Fig. 2. Two edge-disjoint Hamiltonian paths in LTQ4 , where solid arrow lines indicate a Hamiltonian path P and dotted arrow lines indicate the other
edge-disjoint Hamiltonian path Q .

Fig. 3. The construction of two edge-disjoint Hamiltonian paths in LTQk+1 with k ⩾ 4, where dotted arrow lines indicate the paths, solid arrow lines indicate
concatenated edges, and the leading bits of nodes are underlined.

Lemma 3.1. There are two edge-disjoint Hamiltonian paths P and Q in LTQ4 such that start(P) = 0010, end(P) = 1010,
start(Q ) = 0110, and end(Q ) = 1110.

Proof. We prove this lemma by constructing two such paths P and Q . Let
P = 0010 → 0110 → 0111 → 0101 → 0100 → 0000 → 0001 → 0011 → 1111 → 1110 → 1100 → 1101 → 1011 →

1001 → 1000 → 1010, and let
Q = 0110 → 0100 → 1100 → 1000 → 0000 → 0010 → 0011 → 0101 → 1001 → 1111 → 1101 → 0001 → 0111 →

1011 → 1010 → 1110.
Fig. 2 depicts the construction of P and Q . Clearly, P and Q form two edge-disjoint Hamiltonian paths in LTQ4. �

Using Lemma 3.1, we prove the following lemma by induction.

Lemma 3.2. For any integer n ⩾ 4, there are two edge-disjoint Hamiltonian paths P and Q in LTQn such that start(P) =

0(0)n−4010, end(P) = 1(0)n−4010, start(Q ) = 0(0)n−4110, and end(Q ) = 1(0)n−4110.

Proof. Weprove this lemma by induction on n, the dimension of the locally twisted cube. It follows from Lemma 3.1 that the
lemmaholdswhen n = 4. Assume that the lemma is true for the case of n = k ⩾ 4. Consider LTQk+1.We first partition LTQk+1
into two sub-locally twisted cubes LTQ 0

k and LTQ 1
k . By the induction hypothesis, there are two edge-disjoint Hamiltonian

paths P i and Q i in LTQ i
k, for i ∈ {0, 1}, such that start(P i) = i0(0)k−4010, end(P i) = i1(0)k−4010, start(Q i) = i0(0)k−4110,

and end(Q i) = i1(0)k−4110. By Definition 2.1, we have that end(P0) ∈ N(end(P1)) and end(Q 0) ∈ N(end(Q 1)).
Let P = P0

⇒ P1
rev and let Q = Q 0

⇒ Q 1
rev, where P1

rev and Q 1
rev are the reversed paths of P1 and Q 1, respectively.

Then, P and Q are two edge-disjoint Hamiltonian paths in LTQk+1 such that start(P) = 0(0)k−3010, end(P) = 1(0)k−3010,
start(Q ) = 0(0)k−3110, and end(Q ) = 1(0)k−3110. Fig. 3 depicts the construction of two such edge-disjoint Hamiltonian
paths in LTQk+1. Thus, the lemma holds true when n = k + 1. By induction, the lemma holds true. �

By Definition 2.1, the nodes start(P) = 0(0)n−4010 and end(P) = 1(0)n−4010 are adjacent, the nodes start(Q ) =

0(0)n−4110 and end(Q ) = 1(0)n−4110 are adjacent, and the two edges (start(P), end(P)) and (start(Q ), end(Q )) are distinct.
Thus the following two theorems hold true.
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Theorem 3.3. There exist two edge-disjoint Hamiltonian paths in LTQn for any integer n ⩾ 4.

Theorem 3.4. There exist two edge-disjoint Hamiltonian cycles in LTQn for any integer n ⩾ 4.

4. The algorithm

Based on the proofs of Lemmas 3.1 and 3.2, we design a recursive algorithm to construct two edge-disjoint Hamiltonian
paths of an n-dimensional locally twisted cube. The algorithm typically follows a divide-and-conquer approach [4] and is
sketched as follows. It is given by an n-dimensional locally twisted cube LTQn with n ⩾ 4. If n = 4, then the algorithm
constructs two edge-disjoint Hamiltonian paths according to the proof of Lemma 3.1. Suppose that n > 4. It first decom-
poses LTQn into two sub-locally twisted cubes LTQ 0

n−1 and LTQ 1
n−1, where for each i ∈ {0, 1}, LTQ i

n−1 consists of those nodes
b = bn−1bn−2 · · · b1b0 with leading bit bn−1 = i. Then, the algorithm computes two edge-disjoint Hamiltonian paths of
LTQ 0

n−1 and LTQ 1
n−1 recursively. Finally, it concatenates these four cycles into two edge-disjoint Hamiltonian paths of LTQn

according to the the proof of Lemma 3.2, and outputs these two concatenated paths. The algorithm is formally presented as
follows.

Algorithm Constructing-2EDHP
Input: LTQn, an n-dimensional locally twisted cube with n ⩾ 4.
Output: Two edge-disjoint Hamiltonian paths P and Q in LTQn such that start(P) = 0(0)n−4010, end(P) = 1(0)n−4010,
start(Q ) = 0(0)n−4110, and end(Q ) = 1(0)n−4110.
Method:

1. if n = 4, then
begin

2. let P = 0010 → 0110 → 0111 → 0101 → 0100 → 0000 → 0001 → 0011 → 1111 → 1110 → 1100 → 1101
→ 1011 → 1001 → 1000 → 1010;

3. let Q = 0110 → 0100 → 1100 → 1000 → 0000 → 0010 → 0011 → 0101 → 1001 → 1111 → 1101 → 0001
→ 0111 → 1011 → 1010 → 1110;

4. output ‘‘P and Q " as two edge-disjoint Hamiltonian paths of LTQn;
end

5. divide LTQn into two sub-locally twisted cubes LTQ 0
n−1 and LTQ 1

n−1 such that LTQ i
n−1, i ∈ {0, 1}, consists of those nodes

b = bn−1bn−2 · · · b1b0 with leading bit bn−1 = i;
6. call Algorithm Constructing-2EDHP given LTQ 0

n−1 to compute two edge-disjoint Hamiltonian paths P0 and Q 0 of LTQ 0
n−1,

where start(P0) = 00(0)n−5010, end(P0) = 01(0)n−5010, start(Q 0) = 00(0)n−5110, end(Q 0) = 01(0)n−5110;
7. call Algorithm Constructing-2EDHP given LTQ 1

n−1 to compute two edge-disjoint Hamiltonian paths P1 and Q 1 of LTQ 1
n−1,

where start(P1) = 10(0)n−5010, end(P1) = 11(0)n−5010, start(Q 1) = 10(0)n−5110, end(Q 1) = 11(0)n−5110;
8. compute P = P0

⇒ P1
rev and Q = Q 0

⇒ Q 1
rev, where P1

rev and Q 1
rev are the reversed paths of P1 and Q 1, respectively;

9. output ‘‘P and Q " as two edge-disjoint Hamiltonian paths of LTQn.

For example, Fig. 4 shows two edge-disjoint Hamiltonian paths of LTQ5, consisting of two sub-locally twisted cubes LTQ 0
4

and LTQ 1
4 , constructed byAlgorithmConstructing-2EDHP. The correctness of AlgorithmConstructing-2EDHP follows from

Lemmas 3.1 and 3.2. Now, we analyze its time complexity. Letm be the number of the nodes in LTQn. Then,m = 2n. Let T (m)
be the running time of Algorithm Constructing-2EDHP given LTQn. It is easy to verify from lines 2 and 3 that T (m) = O(1)
if n = 4. Suppose that n > 4. By visiting every node of LTQn once, dividing LTQn into LTQ 0

n−1 and LTQ 1
n−1 can be done in O(m)

time, where each node in LTQ i
n−1, i ∈ {0, 1}, is labelled with leading bit i. Thus, line 5 of the algorithm runs in O(m) time.

Then, our division of the problem yields two subproblems, each of which is 1/2 the size of the original. It takes time T (m/2)
to solve one subproblem, and so it takes time 2 ·T (m/2) to solve the two subproblems. In addition, concatenating four paths
into two paths (line 8) can be easily done in O(m) time. Thus, we get the following recurrence equation:

T (m) =


O(1), if n = 4;
2 · T (m/2) + O(m), if n > 4.

The solution of the above recurrence is T (m) = O(m logm) = O(n2n). Thus, the running time of Algorithm Constructing-
2EDHP given LTQn is O(n2n). Since an n-dimensional locally twisted cube LTQn contains 2n nodes and n2n−1 edges, the
algorithm is a linear time algorithm.

Let P and Q be the edge-disjoint Hamiltonian paths output by Algorithm Constructing-2EDHP given LTQn. By
Definition 2.1, start(P) ∈ N(end(P)) and start(Q ) ∈ N(end(Q )). In addition, the edge connecting start(P) with end(P) is
different from the edge connecting start(Q ) with end(Q ). Thus, P and Q are two edge-disjoint Hamiltonian cycles of LTQn.
We finally conclude the following theorem.

Theorem 4.1. Algorithm Constructing-2EDHP can correctly construct two edge-disjoint Hamiltonian cycles (paths) of an n-
dimensional locally twisted cube LTQn, with n ⩾ 4, in O(n2n)-linear time.
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Fig. 4. Two edge-disjoint Hamiltonian paths of LTQ5 constructed by Algorithm Constructing-2EDHP, where solid arrow lines indicate a Hamiltonian path
P , dotted arrow lines indicate the other edge-disjoint Hamiltonian path Q , and the leading bits of nodes are underlined.

5. Concluding remarks

The existence of two edge-disjoint Hamiltonian cycles on locally twisted cubes was unknown prior to our work.
Obviously, there exist no two edge-disjoint Hamiltonian cycles in a 3-dimensional locally twisted cube since it is a 3-regular
graph. In this paper, we first show that an n-dimensional locally twisted cube LTQn, with n ⩾ 4, contains two edge-disjoint
Hamiltonian cycles (paths). Then, we provide an O(n2n)-linear time algorithm to construct two edge-disjoint Hamiltonian
cycles (paths) of LTQn. However,many edges are not used in our construction of two edge-disjoint Hamiltonian cycles (paths)
in LTQn for n > 4. Thus, our result may not be optimal about the number of edge-disjoint Hamiltonian cycles in LTQn when
n ⩾ 6. The maximum number of edge-disjoint Hamiltonian cycles in LTQn, with n ⩾ 4, is bounded by ⌊n/2⌋. It would be
interesting to see whether there is maximum number of edge-disjoint Hamiltonian cycles in LTQn for n ⩾ 6. We would like
to post this as an open problem for interested readers.
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