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Abstract

We study the following problem: given a tree G and a finite set of trees ', find a subset O of the edges of G such that G — O does
not contain a subtree isomorphic to a tree from ., and O has minimum cardinality. We give sharp boundaries on the tractability of
this problem: the problem is polynomial when all the trees in 2 have diameter at most 5, while it is NP-hard when all the trees in
A have diameter at most 6. We also show that the problem is polynomial when every tree in J# has at most one vertex with degree
more than 2, while it is NP-hard when the trees in J# can have two such vertices.

The polynomial-time algorithms use a variation of a known technique for solving graph problems. While the standard technique
is based on defining an equivalence relation on graphs, we define a quasiorder. This new variation might be useful for giving more
efficient algorithm for other graph problems.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many graph problems can be formulated as a maximum subgraph problem with respect to some graph property P:
given a graph G, find a subgraph of G that satisfies P and has maximum number of edges. Such problem can also be
formulated as a deletion problem: given a graph G, find a subset O of the edges of G such that G — O satisfies P and
O has minimum cardinality among all such sets.

A graph property P is hereditary if for every graph satisfying P, all its vertex-induced subgraphs also satisfy P. Any
hereditary graph property P can be characterized by the obstruction set #p of all minimal graphs that do not satisfy P:
a graph satisfies P if and only if it does not contain any graph from #p as an induced subgraph.

Many maximum subgraph problems are NP-hard (for example, Maximum Clique and Longest Path). However, when
restricting the input graph, some problems become polynomial. In particular, it has been shown that for every hereditary
property P with a finite obstruction set, the corresponding maximum subgraph problem can be solved in linear time
on series—parallel graphs [16]. This result has been extended to the family of graphs with bounded treewidth and to a
larger family of properties [1,2,4-6,10,14].

A major problem with the above algorithms is that the constants hidden in the time complexity can be extremely large
for some graph properties. In order to evaluate the effect of the property P on the time complexity, we shall consider
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the property P as part of the input. We will deal with hereditary properties, so define the edges deletion problem as
follows: given a graph G and an obstruction set 7, find an edge set O with minimum size such that G — O does not
contain an induced subgraph isomorphic to any graph H from 5. The edges deletion problem is NP-hard. We will
be interested in special cases of the problem that can be solved in polynomial time in the input size. We note that the
approach of making P part of the input resembles the research on fixed parameter tractability (cf. [7]).

In this work we concentrate on the edge deletion problem when all the input graphs are trees. We call this problem
the tree-edges deletion problem (TEDP). Using the approach of Takamizawa et al. [16], the TEDP can be solved in
229" time, where n is the number of vertices in the graph G and k is the total number of vertices in the graphs in 5.
Shamir and Tsur [15] gave a 20¢*/1020);_time algorithm for TEDP.

In this paper we give sharp boundaries on the tractability of TEDP. Let [-TEDP denote the TEDP restricted to
instances in which all the trees in . have diameter at most [. We show that 5-TEDP can be solved in polynomial time
while 6-TEDP is NP-hard. Furthermore, let TEDP; denote the TEDP restricted to instances in which each tree in J#
has at most / vertices with degree more than two. We show that TEDP; can be solved in polynomial time, while TEDP,
is NP-hard.

When dealing with approximation, one can consider the maximization version of TEDP, in which the objective
function is the number of edges remaining in G — O. This problem is called the maximum subforest problem (MSP).
MSP and TEDP are equivalent when seeking an optimal solution. However, their approximability is different: while
MSP has a polynomial-time approximation scheme [15], we show that TEDP is hard to approximate within factor
clog k for some constant c. This result holds also for 6-TEDP and TEDP.

Our approach for solving 5-TEDP and TEDP; is based on the approach used in previous work: a dynamic program-
ming algorithm computes partial solutions for subtrees of the input graph G. A key ingredient of the algorithm is the
definition of an equivalence relation according to the obstruction set # . For each subtree G’ of G processed by the
algorithm, the algorithm finds partial solutions of G’ from each equivalence class. Consequently, the time complexity
of the algorithm depends on the number of equivalence classes. In our approach, we define a quasiorder instead of an
equivalence class, and the time complexity of our algorithm depends on the “width” of the quasiorder. While the equiv-
alence relation approach yields an exponential time algorithm to 5-TEDP (as the equivalent relation has exponential
number of equivalence classes), our approach gives a polynomial-time algorithm.

We note that we do not have a direct application for the TDEP. However, a special case of TEDP can be used as a
heuristic for solving the problem of finding the maximum interval subgraph of a bipartite graph, which has an application
in computational biology [17,18]. This special case of TEDP is when J# is fixed and consists of the minimum tree which
is not an interval graph (this tree consists of a center vertex from which three paths of length 2 start). Our techniques
can be used to obtain a linear time algorithm for this special case of TEDP, which is more efficient than previous linear
time algorithms for the problem.

Finally, note that the edge deletion problem is a generalization of the subgraph isomorphism problem: given two
graphs G and H, decide whether there is a subgraph of G that is isomorphic to H. The subgraph isomorphism problem
is clearly NP-hard. It remains NP-hard even if G is a tree and H is a forest, or if G is a general graph and H is a tree
[8]. The subgraph isomorphism problem is solvable in polynomial time if G and H are trees [12], or if G and H have
treewidth at most p for some fixed p and H is p-connected [11].

The rest of the paper is organized as follows: Section 2 contains definitions. In Section 3 we give a general framework
for algorithms for TEDP. In Section 4 we define a simple problem, called the set deletion problem, and give an algorithm
that solves this problem. We use this algorithm in Section 5 in order to give polynomial-time algorithms to 5-TEDP
and TEDP;. We show hardness results for 6-TEDP and TEDP, (and other restrictions of TEDP) in Section 6. Finally,
Section 7 contains concluding remarks and open problems.

2. Preliminaries

For a graph G, E(G) denotes the set of edges of G, and ¢(G) = | E(G)|. For a graph G and a set of edges S € E(G),
G — S is the graph obtained from G by deleting the edges from S. For a set of vertices S, G — S is the graph obtained
from G by deleting the vertices in S and the edges that are incident with these vertices.

A rooted tree (forest) is a triplet G = (V, E, r), where (V, E) is a tree (forest), and r is some vertex in V which is
called the root. We write G” to denote the rooted tree G with root r. Also, for an unrooted tree G, we denote by G” the
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D101(G1, Gy, G3)

Fig. 1. Example for the definition of ®;.

rooted tree formed by choosing the vertex r to be its root. We denote by G, the rooted subtree of G” whose vertices are
all the descendants of v, and its root is v. For a rooted forest G and a vertex v in G, we use ¢ (v) to denote the number
of children of v in G, and ¢ to denote the number of children of the root of G.

Let K1 be a tree that is composed by taking [ vertices and a distinguished vertex called the center, and connecting
the center to all other vertices. We also use K ; to denote any rooted tree that is isomorphic to the tree K ; defined
above (this will be true also for the following definitions). A tree K1 ; will be called a star of size [ + 1. We denote
by K 1.1 the rooted tree obtained by taking K ; and selecting its center to be the root. We denote by Py the rooted tree
formed by taking a path with / vertices and choosing one of the two path endpoints as the root.

We say that two rooted forests G” and H* are isomorphic if there is an isomorphism between G and H which maps
rto s. We write H*C xG” if there is a rooted subforest J” of G” which is isomorphic to H* (note that the subtree J”
must have the same root as G"). For a tree (rooted or unrooted) G and an unrooted tree H, we write H C G if H is
isomorphic to a subtree of G. For a tree G and a set of trees # we write #' C3G if H C G for some H € . Note
that the relations C and Cp are transitive.

An [-ary rooted forest operator is a mapping f which acts on [ rooted forests and yields a rooted forest. Given
Gi1, ..., Gy, the forest f(Gy, ..., Gy) is built by taking the forests G, ..., G;, and then performing some of the
following operations:

1. Merging the roots of some of the input forests.
2. Adding new vertices.
3. Adding new edges, where each endpoint of a new edge is either the root of an input forest or a new vertex.

Finally, the root of f(G1y, ..., Gy) is either the root of some input forest or a new vertex. We now give an example
for definition of rooted forest operator. For every string s = s - - - s5; over the alphabet {0, 1}, define the operator By as
follows: given [ rooted forests G, ..., G;, ®s(G1, . . ., Gy) is the rooted forest obtained by taking G1, ..., G;, adding
a new vertex v, connecting the root of G; to v for every i such that s; = 1, and making v the root. See Fig. 1 for an
example.

For an operator f, let a(f) denote the number of forests on which f operates. An operator fis a suboperator of an
operator f’if a(f) =a(f’) and forevery G, ..., Gacs), f(G1, ..., Ga(y)) is asubgraph of f'(G1, ..., Gu(y)). For
an operator f, sub( f) is the set of all suboperators of f. A set of operators @ is called closed if sub(f) C @ for every
f € @. A set of operators @ is called complete if every rooted forest can be built from the single-vertex rooted tree by
a series of applications of the operators in @. The set {®; : s € {0, 1}*} is closed and complete.

Let @ be a closed and complete set of rooted forest operators. A composition tree w.r.t. @ of a rooted forest G is a
rooted tree H, where each internal vertex v of H is labeled by an operator f € @ such that a(f) is equal to the number
of children of v. Each vertex in the tree is associated with a rooted forest: a leaf is associated with the forest f’l and
an internal vertex is associated with the rooted forest formed by applying the vertex’ operator on the forests associated
with the children of the vertex. The forest associated with the root of the composition tree is isomorphic to G. An
example of a composition tree is shown in Fig. 2.
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Fig. 2. A rooted forest (left) and its composition tree (right). For each internal vertex of the composition tree, the forest associated with the vertex is
shown besides the vertex.

If G" and H*® are two rooted forests, then we define G” + H* to be the unrooted forest formed by taking G and H*®
and joining their roots by an edge.

Let G be a tree and P be a graph property. We define the characteristic function P(G) to have value 1 if G has
property P, and O otherwise. A set of edges S such that P(G — §) = 1 is called a deletion set of (G, P) (or a deletion set
of G if P is clear from the context). S is called an optimal deletion set of (G, P) if it is a deletion set of minimum size.

3. A framework for solving TEDP

In this section we describe a general method for solving TEDPs based on decomposition. We will use this method in
Section 5 to give polynomial-time algorithms to several restrictions of TEDP. The general idea behind our framework
is similar to the one used by Bern et al. [3] and others (e.g., [2,5]), although some aspects are different, as will be
explained later.

We now describe the basic idea of our algorithm. For convenience we describe an algorithm for solving the MSP.
Suppose that we have a fixed property P. Let G be the input tree to the MSP, and consider some composition tree of G.
Let G’ be a rooted tree that corresponds to some vertex in the composition tree. We want to create a set of candidate
subforests of G, such that the optimal solution for G will contain one of these candidates as an induced subgraph. In
other words, we want to find all “pieces” within G’ that may take place in an optimal solution. To do this, we need a
way to choose the set. The key to the efficiency of the approach is eliminating as many candidate subforests (“pieces”)
as possible. The candidate elimination is done by performing pairwise comparisons between candidates and removing
candidates according to the results of the comparisons. As an example, consider the tree G’ in Fig. 3, and the property
P of not containing a path of length 5. Suppose that we start with a set % containing all the subforests of G’. Clearly,
% has the property that there is an optimal solution for the MSP on G and P that contains one of the forests of & as
an induced subgraph. Now, consider the two subforests G’ — {a} and G’ — {b}. If there is an optimal solution G* to
the MSP such that the subforest of G* induced by the vertices of G’ is G’ — {b}, then G5 = G* U {b} — {a} is also an
optimal solution. Note that the subforest of G induced by the vertices of G’ is G’ — {a}.Hence, if we remove G — {b}
from the set &, we still have the property that there is an optimal solution for G that contains one of the forests of € as
an induced subgraph. We can therefore say that G — {b} is “no better than” G — {b}. We can continue this process and
compare all pairs of candidates. If one candidate is no better than the other, we can remove the former candidate from
the set. Note that it is possible to have two candidates such that each one is no better than the other. In this case one
candidate is removed arbitrarily.

We now formalize the idea above: we will use quasiorders (recall that a quasiorder is a reflexive and transitive binary
relation) to compare candidates for a set. Note that in the discussion above, “no better than” is a quasiorder. We shall
define the properties that the quasiorder should have in order to correctly compare candidates. Let < be some quasiorder
on rooted forests. We say that < is preserved by @ if for every f € ®, and every G, ..., Gacp), G, ... G/a(f) such

that G; <G/ fori =1, ..., a(f), there is an operator f" € sub(f) such that f(G1, ..., Gacr)) < f(G), ..., G’a(f)).
The quasiorder < is strongly preserved by @ if f(G1,...,Gar) < f' (G}, ..., G;(f)) for every f € @ and every
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Fig. 3. Example for the definition of a complete forests set. Let P be the property of not containing a path of length 5. The set 4 ={G’ —{a}, G’ —{a, b}}
is a complete forests set of G’ w.r.t. <».

Arbitrarily choose a vertex r in G.
Compute a composition tree for G".
Scan the vertices of the composition tree in postorder.
For every vertex v do
Let G’ be the tree that corresponds to v.
Build a full forests set ¢5(G") of G'.
Build a complete forests set C(G”) of G’ from 6¢(G").
Check for each forest in @(G") if it has property P, and output a forest
from %(G") that has property P and has maximum number of edges.

00~ O UL W N

Fig. 4. Algorithm MaxSubforest(G).

Gi,...,Gup), GYo ... (f) for which G; <G/ fori =1,...,a(f). We say that < preserves P if G <G’ implies
P(G)< P(G'). We say that < preserves P with size if < preserves P, and additionally, G <G’ and P(G) = | implies
that e(G) <e(G'). A (P, ®)-order is a quasiorder that preserves P with size, and is preserved by @.

For example, let @ = {@; : s € {0, 1}*} and let P be the property of not containing a path of length 4. For a rooted
forest G, let h(G) denote the height of the forest G, namely, the length of a longest path that starts at the root of G. We
define a quasiorder < by G < 1G’ it h(G)>h(G'). Ttis easy to verify that < is preserved by @. Moreover, < does
not preserve P, since P2 <4 EBo(Ps) but P(Pz) > P(@O(Pﬁ)) The quasiorder <, defined by

G<,G < PG)=0V(P(G)=1AKhG)=h(G") Ae(G)<e(G))

isa (P, ®@)-order.

Let < be a quasiorder. For a rooted tree G, a set ¢ of subforests of G is called a full forests set of G (w.r.t. <) if
for every subforest G of G there is some G, € % such that G| < G,. A full forests set  that does not contain two
comparable forests is called a complete forests set. See Fig. 3 for an example. A set % of sets of edges of a rooted tree
G is called a complete (full) set of G if {G — O : O € €} is a complete (full) forests set of G.

Suppose that < is a (P, @)-order and we have a procedure to compute <. The MSP with respect to P can be solved
by algorithm MaxSubforest that is given in Fig. 4. Building a complete forests set (G’) of G’ from %7 (G’) (line 6) is
done by taking 4(G’) = %;(G’), and then, for every pair of forests G1, G2 € ¥(G’) such that G| <G>, removing G
from % (G"). The complete forests set %7 (G') can be built in several ways. A straightforward way to build %7 (G’) is to
take all the subforests of G'. Clearly, this approach is inefficient. A more efficient way to build %7 (G’) is given in the
following lemma.

Lemma 3.1. Let G' = f(Gy, ..., G)) where f € ®.If 6(G)), ..., 6(G;) are complete forests sets of G1, ..., G|
then

C={f'(Hi,....,H): f esub(f), H € 6(G1),..., H €%(G))}
is a full forests set of G'.
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Proof. We need to show that for every subforest H of G’, there is a subforest H' € € such that H < H'. Let H be some
subforest of G’. We have that H = f'(Hy, ..., H;), where f’ € sub(f) and H; is a subforest of G; fori =1, ..., 1.
By definition, there are H{ € 4(G1), ..., H/ € €(G)) such that H; <H/ fori =1, ...,[. Since < is preserved by @,
it follows that H < f”(H{, ..., H)) for some f” € sub(f’). From the fact that sub(f’) < sub(f) we conclude that
fI(H],...,H)e%. O

The correctness of algorithm MaxSubforest follows from the definition of a complete forests sets: Let H* be an
optimal solution for the MSP on the input G and P. From the fact that €(G") is a complete forests set of G”, it follows
that there is a subforest H € €(G") such that H* < H, and since < preserves P with size, it follows that H is an optimal
solution. The algorithm returns a forest H' from ¢ (G") that has property P and has maximum number of edges, and
in particular, e(H) <e(H'). Therefore, H' is an optimal solution.

Let | <[ denote the size of the largest complete forests set of some rooted tree w.r.t. <. Clearly, the time complexity
of algorithm MaxSubforest depends on | <|. Naturally, given P and @, our goal will be to a (P, ®)-order < such that
| <|1is as small as possible. Note that if we build complete sets using the approach of Lemma 3.1, the time complexity
for building one complete set is Q(| <|¢), where d is the maximum degree of the composition tree. In Section 5 we will
use special properties of 5S-TEDP in order to give a different way for building complete sets, whose time complexity
does not have exponential dependency on d.

The difference between the approach we described in this section and the approach of Bern et al. [3], is that in the latter,
an equivalence relation is used instead of a quasiorder, and the time complexity depends on the number of equivalence
classes of the relation. For some properties, the number of equivalence classes in the appropriate equivalence relation
is large, while the value of | <| for the appropriate quasiorder is small.

For the rest of this section assume that P is hereditary and that all the graphs in the obstruction set of P are trees. We
use the operators set @ = {@®; : s € {0, 1}*}. Our goal is to define a (P, ®)-order <. This (P, ®)-order will be used
in our algorithms in Section 5. We will first define a quasiorder < p and show that < p is preserved by ®. Then, we
will use < p to define a quasiorder < /P, and we will show that g’P isa (P, ®)-order.

Define the quasiorder < p by

G<pG < P(G)KXP(G) and P(G+ J)<P(G' +J) foreveryrooted tree J.

To simplify the notation, we define G to be a special rooted tree such that G + Gy = G for every rooted forest G (note
that for a “true” rooted tree H, G + H # G). We can now write the definition of < p as follows:

G<pG < PG+ J)<P(G +J) foreveryrooted tree J.
Clearly, < p preserves P. The following lemma shows another property of < p which we need in order to build the
(P, @)-order <'p.

Lemma 3.2. < p is strongly preserved by ®.

Proof. Let s € {0, 1}* be a string of length /, and let Gy, ..., G;, G|, ..., G} be rooted forests such that G; < pG]
fori =1,...,1. Let J be some rooted forest. If the first letter of s is 1, then since ®,(Gy, ..., G)) +J = Gy +
®s(J,Ga, ..., G and ®y(G, G2, ..., G) + J =G| + &(J, Ga, ..., Gy, it follows that

P@®(G1,....G)+ ) =P(Gi1+®s(J,Ga,...,G))<P(G] + & (J, G2, ..., G))
=P(®S(G/17G27 ?Gl) + J)

We now consider the case when the first letter of s is 0. If P(G1) = 0, from the fact that P is hereditary we obtain
that P(&®;(Gy,...,G)) +J) =0, so

P(@®(G1,....G) + )< P(@(G|,Ga,....G) + ).
Suppose now that P(G1) = 1. As < p preserves P, we have that P(G}) = 1. Thus,
P(®;(G1,Ga,....G)+ J)=P(@(Ga,...,G))+J)=P(@(G),....,G)+ ),

where ¢ is the suffix of length [ — 1 of s.
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For all the cases above we have shown that
P(®(Gy,...,G) + S P@®(GY, G, ..., G+ J).
Repeating the same argument gives that

P(@®5(G1,...,G) + )< P@®(G,...,G)+ J). 0

The operators set @ has the following property: for a rooted G’ that corresponds to some vertex in a composition
tree of a tree G, the root of G’ has at most one neighbor in G which is not in G’. Consider the example in Fig. 3. Let
e be the edge between the root of G’ and its parent in G. By the above property, we have that if there is an optimal
solution G* such that the subforest of G* induced by the vertices of G’ is G’ — {a, b}, then G* U {a} — {e} is also an
optimal solution. Hence, only G’ — {a} will be a candidate in this case. We use this fact to define the (P, ®)-order. For
two rooted forests G and G/,

G<pG < P(G)=0,
G<AG < G<pG and e(G)<e(G),
G<3G < P(G)=1 and e(G)<e(G)

and

G<LhG <= G<LG o G<3G or GG
Lemma 3.3. <', isa (P, ®)-order.

Proof. We first show that <, is transitive. Suppose that G <, G’ <, G”. We consider three cases:

Case 1: GK }DG’ . In this case we have that G < }DG”. In the following two cases we assume that G;{}DG’, namely
P(G)=1.

Case?2: G g%,G/. From the fact that < p preserves P and since P(G) = 1, we have that P(G') = 1, so G/;(}DG”. If
G’ g%,G” then G pG' < pG” and e(G) <e(G') <e(G"). Therefore, G < pG” and e(G) <e(G"), and it follows that
G <3 G'. Otherwise, if G'<3,G”, e(G)<e(G') <e(G") and P(G") = 1, and it follows that G <3, G”.

Case 3: G Q%G’. Again, we have that G’y{},G”. Suppose that G’g%,G”. From the fact that < p preserves P we
have that P(G”) = 1. Furthermore, ¢(G) < e(G") <e(G"). Thus, G < %,G”. We now consider the case when G’ < %G”.
In this case, P(G”) =1 and e(G) < e(G’) <e(G"). Hence, G <§JG”. This completes the proof that <’ is transitive.

It is easy to verify that <’, preserves P. Moreover, if G </,G’ and P(G) = 1, then either G <%,G’ or G <§,G’. In
both cases, e(G) <e(G'). Therefore, <’, preserves P with size.

Finally, to show that <, is preserved by @, let G1, ..., G, G, ..., G} be rooted forests such that G; <’, G/ for
i=1,...,1,and let ®; be some operator from @ with |s| = . We need to show that there is a string s” of length [ such
that @ is a suboperator of @; (i.e., for every i </, the ith letter of s’ is less than or equal to the ith letter of s) and
®s(G1,...,G)<p®y(G), ..., G)). Let a denote the first letter of s, and let 7 denote the suffix of s of length / — 1.

Let G = @,(G1, ..., G)), G =@®;(G",Ga,...,G)), and G = ®0: (G, G2, ..., G;). We will show that either
G <’,G' or G<', GO Repeated use of the same arguments gives that G </, @y (G}, ..., G)) for some string s’

If Gi <L G/ then P(G) = P(G1) = 0,50 GELG'. If G; <3G/ then G| < pG' and by Lemma 3.2 we have that
G < pG’. Furthermore, ¢(G1) <e(G)) so e(G) <e(G'). Therefore, G <%,G’.

We now consider the case when G <§)G’1. We will show that G < pGO. Let J be some rooted tree J such that
P(GY 4+ J) = 0. G° + J contains a subforest isomorphic to a tree from the obstruction set of P, and this subforest is
contained in one of the connected components of G° + J. This component cannot be a component of G as P(G)) =1,
so the subforest must be a subgraph of ®&,(Ga, ..., G;) + J. Therefore, P(GO + J) = 0. Since this is true for all J,
it follows that G < pG°. Moreover, e(G)<e(G1) + 1 + e(®(Ga, ..., G)) <e(G)) + e(@®(Ga, ..., G))) = e(GO).
Hence, G Q%GO. O

To implement algorithm MaxSubforest we need an efficient way to decide for two rooted forests G; and Ga,
whether G| < ’P G». To decide whether G| < /P G», we need to decide whether G| < pG». The definition of < p requires
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computing P(G1 + J) and P(G, + J) for an infinite number of rooted trees J. However, we will show that it suffices
to consider a finite number (that depends on P) of rooted trees, and therefore computing whether G g;,Gz can be
done efficiently.

Let #p be the obstruction set of the property P. Let Fp o be a set that contains for every H € #p and every edge e in
H which is not incident of a leaf, the two rooted trees obtained by removing e from H and choosing the two endpoints
of e as the roots. Let Fp be a set that contains of all distinct (i.e., non-isomorphic) rooted trees in Fp o. Additionally,
Fp contains K 1,0 (a rooted tree with one vertex) and the rooted tree Gy, which we will also denote by K 1,—1-

The following lemma allows us to compute whether G| < p G efficiently.

Lemma 3.4. For two rooted forests G1 and G2, G1 < pGo ifand only if P(G1 4+ J)< P(Gy + J) forevery J € Fp.

Proof. The lemma follows from the fact that for a rooted tree J ¢ Fp, P(G + J) = 1 if and only if J'CgJ for some
J' € Fp. Therefore, the values P(G| + J) and P(G, + J) can be ignored when checking whether G| < pG».

Formally, suppose that P(G1 4+ J) < P(G, + J) for every J € Fp. We need to show that for every rooted tree J,
P(G1+ J)< P(Gy+ J). In other words, we need to show that #p C3G, + J implies #p C3G 1 + J for every rooted
tree J. Let J be some rooted tree for which #p C3G, + J. There is a subgraph H of G, + J which is isomorphic to a
tree from #p. Let Jy be the rooted subtree of J which is induced by the vertices of H (if H does not contain vertices
from J then Jg = Gy). We have that H € G, + Jy and therefore #p C3G, + Jg. If the root of G, is the only vertex
from H in G, then Jy + f’l is isomorphic to a tree in #p, and we obtain that #p C3G| + Jy. Otherwise, Jy € Fp.
From the fact that Jy € Fp and #p C5G, + Jy it follows that #p C35G | + Jy. Therefore #p 3G + J.

The second direction of the lemma follows directly from the definition of < p. [

We finish this section by showing a property of the quasiorder <',. This property will be used later in Section 5.

Lemma 3.5. Let € be a complete forests set of a rooted tree G w.r.t. <'p. Then, every G' € € is a maximum subforest
of G with property P.

Proof. Let G* be a maximum subforest of G with property P.

We first show that every G’ in % has property P. Suppose conversely that P(G’) = 0 for some G’ € €. If |4| > 1
then G' <, G” for every G” € 4 — {G'}. Otherwise, since <', preserves P, it follows that G*;(/PG’ . In both cases we
obtain a contradiction the fact that % is a complete set. Therefore, every G’ in % has property P.

All the forests in ¢ have the same size, otherwise,if G1, G» € €, ande(G2) < e(G1)then G| < /PGQ, a contradiction.
Moreover, we have that G* g/PG’ for some G’ € %. From the fact that g/,, preserves P with size it follows that
e(G') = e(G*). Therefore, every forest in % is a maximum subforest of G with property P. [

4. The set deletion problem

In this section we define a problem on weighted sets which will be used in Section 5 in the algorithms for 5-TEDP
and TEDP. A weighted set is a set S of elements with a weight function w: § — N. We will use {ay, ..., a,} to denote
a weighted set with n elements, where the weights of the element are ay, ..., a,. A mapping f: P — S between two
weighted set is called a weight increasing mapping if f is injective and w( f(p)) > w(p) for every p € P. For two
weighted sets P and S, we say that S is larger than P, denoted P<S, if there is a weight increasing mapping from P
to S. For example, {2, 3, 4}<{3, 3, 3, 5, 5}. Clearly, the relation < is a partial order. If 2 is a set of sets, then we write
PS8 if PXS for some P € 2.

Let S be a weighted set, and £ be a set of weighted sets. Let f and g be two mappings that map the elements of S to
subsets of 2. An element x € S is called a bad element of (S, f, g) if either f(x)<Sor g(x)xS —{x}. Aset O C S'is
called a deletion set of (S, f, g) if there are no bad elements of (S — O, f, g). Let OPT(S, f, g) denote the minimum
size of a deletion set of (S, f, g).

As an example of the definitions above, let S = {ay, ..., ag} be a weighted set, where the weights of ay, ..., a¢ are
8,7,6,5,4, 3, respectively. Let Z = {{4, 4}, {4,4,4}}, f(x)={{4,4,4}} forall x € S, g(as) ={{4,4}},and g(x) =0
for all x # as. In this example, OPT(S, f, g) =3 as {a1, a2, as} is a deletion set of (S, f, g), and there are no deletion
sets of size less than 3.
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A deletion set O of (S, f, g) is called a maximum deletion set of (S, f, g) if O’<O for every deletion set O’ of
(S, f, g) such that |O| = |O’|. We will later show that for every [ > OPT(S, f, g), a maximum deletion set of (S, f, g)
of size [ exists. For a weighted set P, define [P]; be the set obtained from P by deleting an element in P with the
maximum weight among the elements with weight less than or equal to /, if there are such elements. For a set of
weighted sets 2, let [Z]; = {[P]; : P € 2} and for a mapping f between a weighted set S to sets of weighted sets, [ f];
is the mapping defined by [ f];(x) =[f (x)]; forevery x € S. Letoa(S, f, g) =min({l : OPT(S, [ f]1;, [g];) > 0} U {oc0}).

We now prove that for every [ > OPT(S, f, g), there is a maximum deletion set of (S, f, g) of size /. Our proof is
constructive, and moreover, it gives a polynomial-time algorithm for finding maximum deletion sets. This also implies
that a(S, f, g) can be computed in polynomial time.

We need the following property of the relation <.

Lemma 4.1. If T, T' C Sand T<XT  then S — T=S — T'.

Proof. We first claim that there is a weight increasing mapping f : T — T’ such that f(x) =x foreveryx € TNT'.
To probe this claim, let g: T — T’ be some weight increasing mapping. Let x; be some element of T — T’, and define
asequence xp, x2, ..., where x; = g(x;_1) for i > 1, and the sequence is terminated at an element x; for which x; ¢ T'.
Since x| ¢ T', we have that x; # x; for every i. Moreover, from the fact g is injective, we obtain that the elements
X1, X2, ... are distinct, and therefore the sequence terminates. We now define a mapping f : T — T’ as follows: for
x1 € T —T',letxy,...,x; be the sequence as defined above, and define f(x) =x;. Forx € T N T’ define f(x) =x.
It is easy to verify that f'is weight increasing function.

Now, define f":§ — T’ — § — T as follows: f/(x) = x forevery x € § — (T UT’), and f'(x) = f(x) for every
x € T — T'. Ttis easy to verify that f is weight increasing function and therefore S — T3=§ — T'. O

Letsy, ..., s, be the elements of S, where w(s1) > w(sz) > - - - > w(s,). Consider a simple case when the constraints
of fand g are the same for all the elements of S, i.e. f(s1) = f(s2)=---= f(sy) and g(s1) = g(s2) =--- = g(s,,). In
this case, Lemma 4.1 indicates that for every [ > OPT(S, f, g), the set {s1, ..., s;} (namely, the [ heaviest elements of

S) is a maximum deletion set of (S, f, g) of size /. The case of general fand g is not so simple. Consider the example
given above, namely S ={ay, ..., ag} where the weights of the elements of S are 8, 7, 6, 5, 4, 3, Z ={{4, 4}, {4, 4, 4}},
f(x)={{4,4,4}} forall x € S, g(as) = {{4, 4}}, and g(x) = @ for all x # as. We have OPT(S, f, g) = 3, but the set
{a1, a>, a3} containing the three heaviest elements of S is not a deletion set of (S, f, g).

Even though the set of [ heaviest elements may not be a deletion set, it is still desirable to take heaviest elements of
S into a deletion set O since these elements will make S — O small w.r.t. the relation < and thus § — O will be larger
than only few of the sets in 2. Moreover, the heaviest elements will make O larger than other deletion sets of the same
size as O. Thus, to build a maximum deletion set of (S, f, g) of size [, we take the k heaviest elements of S for some
k <I. To these elements, we add [ — k elements of S that are needed to make the set a deletion set. As we do not know
the value of k, we will try all possible values.

We now formally define the sets that we build. For every i <n, let A; be the set of n — i heaviest elements of S (that
is, A; = {s1,...,5,—i}). Define By = @ and

Bi=Bi_1U{xeS—(A; UB;_1) : xisabadelement of (S — (A; U Bi_1), f, g)}.

Let O; = A; U B;. Note that A; N B; = { for all i. The definition of B; implies that the sets Oy, ..., O, are deletion
sets of (S, f, g). We will show that for every [ > OPT(S, f, g), one of the sets Oy, ..., O, is a maximum deletion set
of (S, f, g) of size I. To prove this, we need the following lemma.

Lemma 4.2. Let O be a deletion set of (S, f, g) and let i >0 be some integer. If |O | > |O| for every 0< j <1, then
0<0; and B; < O.

Proof. We prove the lemma using induction on i. The base of the induction is satisfied since Op = S and By = ¢.
We now prove the lemma for some i > 0. By the induction hypothesis, we have that B;_1 € O. Therefore, |A;_1| =
|Oi—1]| — |Bi—1| > 10| —|Bi—1| = |O — B;_1|, where the first equality is due to the fact that A;_; N B;_; = {J. Hence,
|Ai| =|Ai—1| — 1 2|0 — B;_1], and since A; consists of elements of largest weights, it follows that A; >0 — B;_1.
Since A; N B;_| =@, we obtain that A; U B;_13=0. Therefore, O;=0.
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We now prove that B; € O. Suppose conversely that B; — O # J and let x € B; — O. From the induction hypothesis,
Bi_1 € O,s0x € B — Bj_1, namely x is a bad element of (S — (A; U B;_1), f, g). It follows from Lemma 4.1 that x
is a bad element of (S — O, f, g), contradicting the fact that O is a deletion set. [

We now prove the main result of this section.

Theorem 4.3. For every [ >OPT(S, f, g), one of the sets Oy, ..., Oy is a maximum deletion set of size l of (S, f, g).

Proof. Fix some [ >OPT(S, f, g). We first claim that there is a set among Oy, ..., O, of size at most /. Assume
conversely that |Oy|, ..., |0,| >, and let O be a deletion set of size . As A,, =, we have O,, = B,,. By Lemma 4.2
we obtain that B, C O, hence |0O|>|0,,| >, a contradiction. Thus, there is a set among Oy, ..., O, of size at most

[, and let O; be the first such set.
For every deletion set O of size [, using Lemma 4.2 we get that O < 0O;, and therefore [ = |O| < |O;|. It follows that
O; is a maximum deletion set of size [. [

From Theorem 4.3 we conclude that finding maximum deletion sets can be done in polynomial time. Computing
o(S, f, g) can also be done in polynomial time.

5. Algorithms for 5-TEDP and TEDP;

In this section we give polynomial-time algorithms for 5S-TEDP and TEDP;. We first give an algorithm for 5-TEDP.
We will use algorithm MaxSubforest and the relation <’, from Section 3.

Before describing the algorithm for 5-TEDP, we give some intuition for the fact that 5-TEDP can be solved in
polynomial time, while 6-TEDP is NP-hard. For clarity, some of the statements in the following discussion will not be
accurate. A rigorous analysis of 5S-TEDP will be given later in this section. Recall that the time complexity of algorithm
MaxSubforest depends on the size of the largest complete forests set of some rooted tree w.r.t. <,, which is denoted
by | <'p|. In particular, in order to have a polynomial-time algorithm for some variant of TEDP, it is necessary for | <'p |
to be polynomial in the number of vertices in the obstruction set 7.

Consider first the simple case when # contains only trees of diameter 4. By Lemma 3.5, we can bound | <’,| by
giving a bound on the maximum number of rooted forests G, ..., G; such that each G; is maximum subforest of a
common rooted tree G" that satisfies P, and each two forests G; and G ; are incomparable by the quasiorder < p. By
Lemma 3.4, we need to consider the values of P(G; + H) forall i </ and H € Fp. We introduce a new definition to
simplify the following discussion: for a rooted forest G, let

h(G)=1{J € Fp: P(G+J)=0).

Clearly, él < péz if and only if h(él) D) h(éz). Therefore, the sets h(G1), ..., h(G)) are pairwise incomparable by
the C relation.

Using Lemmas 3.1 and 3.5, we can assume that cg, =cg, =- - - =c¢g,. We now use the fact that for a tree of diameter
4, removing an edge that is not incident with a leaf (and making its endpoint the roots of the two resulting trees) creates
two rooted trees, where at least one of the trees is a star. Consequently, we split the set Fp into two sets Fgirs and
Fron-stars,» Where Firs 18 the set of all rooted stars in Fp, and Fyon-stars contains the rest of the trees of Fp. For every
H € Fyon-stars, the value of P(G + H) depends only on cs . Therefore, P(G1+ H) = P(Gz +H)=---=P(G;+ H)
for every H € Fyon-stars- In other words, h(Gl) N Fnon -stars = h(GZ) N Foon-stars = - -+ = h(G;) N Fnon stars- NOW,
consider some rooted star H € Fyyys. If P(G + H ) =1, then P(G + H) = l for every star H' € Fyaps With more
vertices than H. Therefore, for two rooted forests Gland Gz, one of the sets h(Gl) N Fyars and h(Gz) N Fyars containg
the other set. It follows that / =1 (otherwise, every two forests from G, ..., G; are comparable in the quasiorder < p,
a contradiction).

The analysis becomes more complicated when # contains trees of diameter 5. A tree of diameter 5 contains an
edge (not incident with a leaf) whose removal gives two rooted trees that are not rooted stars. Such edge will be called
special. Note that there is exactly one special edge in a tree of diameter 5. The two trees that are obtained by removing
a special edge will be called mates. We now partition the set Fp into three sets: Fypecial contains the rooted trees that
are obtained by removing the special edges in the diameter 5 trees of J#, Fyurs 1s the set of all rooted stars in Fp, and
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Arbitrarily choose a vertex r in G.
Scan the vertices of G" in postorder.
For every vertex v do
Build a full set 7 of GT.
Build a complete set %, of G’ from %1{ .
OQOutput an arbitrary set from %,.

N =

DO W

Fig. 5. Algorithm MaxSubforest(G).

Fron-stars = Fp — (Fspecial U Fstars). The properties of Fypars and Fon-stars described above also remain true in this case.
Moreover, for a tree H € Fypecial, P(G + H) = 1if and only if H'CxG, where H' is a mate of H. Using the fact that
all the trees in Fypecial have height 2, we have that P(G + H) depends only on the number of children of the root of
G, and the number of children of each child of the root of G. This fact gives a connection to the set deletion problem
(see Claim 5.1 and Lemma 5.2). From this connection we obtain that the set {2(G1) N Fpecial, - - - » 1(G1) N Fypecial}
is totally ordered by the partial order C, namelyh(Gr(1)) N Fspecial © 7(Gr2)) N Fypecial € - -+ € A(Gray) N Fspecial
for some permutation 7. Since the set {A(G1) N Fyar, - .., 1(G) N Fyar} is also totally ordered by € and Gy, ..., G;
are pairwise incomparable by < p, it follows that /1(G z(1)) N Fspeciat C 7(Gr2)) N Fopeciat C - -+ C h(Gr@y) N Fpecial
and 2(G (1)) N Fsar D h(Gr2)) N Fstar D - -+ D h(Gry) N Fytar. Therefore [ <| Fypeciall + 1.

Finally, our method does not give a polynomial-time algorithm for 6-TEDP: for a tree of diameter 6, a special
edge gives two rooted trees, one with height 2 and one with height 3. Due to the height 3 trees, the set {h(G1) N
Fspecial, - - - » 1(G) N Fypecial} may not be totally ordered by C. Therefore, in this case [ can be exponential in | Fypeciall-

We now describe the algorithm for 5-TEDP. We shall use a slightly different formulation of algorithm MaxSubforest.
The new formulation uses the fact that a rooted tree G” has a unique composition tree under the operators set @. Every
vertex u in the composition tree corresponds to some vertex v in G, and the tree associated with u is G7,. It will be
more convenient to describe the algorithm using complete sets instead of complete forests sets, namely for each vertex
v, the algorithm computes a complete set of G7. The new formulation of algorithm MaxSubforest is given in Fig. 5.
From Lemma 3.4, step 5 of the algorithm can be implemented in polynomial time in the input size (assuming that
|(€{ | is polynomial in the input size). In the rest of the section, we will show how to perform step 4 of the algorithm in
polynomial time (in particular, this implies that |(65 | is polynomial in the input size).

We begin with some definitions. For a weighted set L = {1, ..., l;}, define the rooted tree

S(L) =®111(Ki -1, - - - 131,1,171).

The root of S (L) is called the center vertex. We also define S(L) to be the unrooted tree obtained from S (L). As an
example, the tree S({2, 3, 4}) is shown in Fig. 6(a). If H = S(L) then L is called a representation of H. Note that every
tree with diameter 4 has a unique representation, while a tree with diameter 2 or 3 has at most two representations.

Define S(L1, Ly) = S(L1) + S(L2). Every tree H with diameter 5 is the form S(L1, L,) for some L and L. The
centers of S(L1) and S(L,) are called the centers of H. S (L1, L) denotes the rooted tree obtained from S (L1, Ly) by
making the center of S(L) the root.

For the rest of this section, we will show how to solve 5-TEDP for some fixed obstruction set # = {Hy, ..., Hp}.
Without loss of generality, we assume that every tree in # contains at most n vertices (if # contains trees with more
than n vertices, we can remove these trees from ). We also assume that the trees in #” with diameter 5 are Hy, ..., Hp.

Let L; be weighted sets such that H; = S (Li , Lé) fori =1,..., p'. Let & be the set of all the representations of
H,,,H,...,H,,,andlety’z{L; ci=1,...,p,j=1,2}.
Recall that for a rooted forest é,

WG)=1{J € Fp: #<3G + J}.

We have shown above that the set #(G) N Fyyr has an important role. This set can be represented by a single number:
define

hy(G) =min({i >0 : #S3G + K1,i—1} U {00}).
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C G
b H, H, Hy
H, Hs Hg H,
l éﬁ) O/g\o ’
Fig. 6. An example for the definition of hj and hy. Suppose that # consists of a single tree H = S({2,3,4}) (a). The set

Fp ={Hy, Hy, H3, Hy, Hs, Hg, H7, G} is shown in (b). For the rooted tree G shown in (c), n(G) = {Hy, Hy, H3, Hs, Hg}. We have hy(G) =3
as H C G+ Ky and HZG + K| 1. Furthermore, 11 (G) = ¢.

We also define
m(G) = {H € h(G) : ey <h2(G) — 2},

See Fig. 6 for an example. Note that
h(G)=h(G)U{H € F :cp>hy(G) — 1),

so we have that G| < pG if and only if 11(G2) € h(G1) and A2 (G2) <ha(Gh). .
We first show the connection between the quasiorder <, and the set deletion problem from Section 4. Let G* be

some rooted forest. Define S to be a weighted set whose elements are the edges between the root x of G and its
children, and the weight of an edge (x,u) € Sg is c5(u) + 1. We have the following simple connection between
subforest isomorphism and the < relation on weighted sets:

Claim 5.1. Let G* be a rooted forest such that %gaé — {x}. Then

1. For every weighted set L, S‘(L)QRG if and only if LS.
2. For every weighted sets L1 and Lo, S’(Ll, Lz)gRG if and only if there is a child u of x such that S’(LQ)QR(AP; and
L1<Sg — {u}.

We now show a connection between the mapping /2 and the set deletion problem. For a rooted forest G*, and a
child u of x, let Z,,  be a weighted set containing h2(Gy) — 1 elements of weight 1 each. We define two mappings as
follows: for every child u of x,

fa)y=<
and
gew) ={Le 2 :8(L) e M(GHYU(Z, ¢).

Lemma 5.2. Let G* bea rooted forest such that %,@Hé — {x}. Then, hz(é) = oc(SG, £ gé).

Proof. Before we prove the lemma, consider a special case of the lemma that states that hz(é) = 0 if and only if
a(Sgs f, 85) = 0. In other words, G contains a subtree isomorphic to a tree in # if and only if there is a bad element
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of (Sg. [, 8¢)- In one direction, if G contains a subtree isomorphic to a tree H € 5, then using Claim 5.1 we obtain
that LS5 or LS — {u} for some weighted set L that depends on H. We have that L € f(u) or L € g (u) (since
the mappings f'and g were designed to contain all the sets L that are obtained from having a subtree of G isomorphic
to a tree in #°). Therefore, u is a bad element of (Sé, f, gé). The other direction of thestatement above also follows
from Claim 5.1.

We now give the proof for the lemma. We first show that a(Sg, f, g4) < ha(G). Suppose that ha(G) = 1. We need
to show that a(S, f, g5) <[, namely there is a bad element of (Sg, [ f1;, [g5]11)-

By the definition of /5, there is a subtree H of G + K 1,1—1 which is isomorphic to a tree in 2. By the minimality of
[, H contains all the vertices of K 1.1—1. If the diameter of H is 5 then its two centers are vertices of G. Otherwise, we
can choose a representation of H in which the center vertex is a vertex of G.

In the proof we consider two cases, according to whether x is a center vertex of H. If x is a center vertex of H,
we consider two sub-cases: if the diameter of H is at most 4, then H = S(L) for some weighted set L. We have that
S‘([L],)gRé, and by Claim 5.1, [L]1<Sé. Since L € f(u) forevery u € SG’ it follows that every element of Sé isa
bad element of (S, [f1;, [8¢10)-

The second sub-case is when the diameter of H is 5. Suppose that H = S(L1, L»), where x is the center that
corresponds to L. By Claim 5.1, S(Lz)gRG; for some child u of x, and (L1158 —{u}. If [L1|=h2(G}) — 1
then [Zu’é]1<[L1]l<Sé — {u}, so u is a bad element of (Se, Lf 1 Lggln- Otherwise, %CHG" + S(Ll) and c;

|L1] ghz(é;j) — 2, and thereforeL; € gé(u). Thus, u is a bad element of (SG, [f, (810

If x is not a center vertex of H, then [ <1 (as every vertex of H has distance at most two to a center of H), and there
is a child u of x such that every vertex of H is either x, a child of x, a descendent of u, or the single vertex of the star
Kl /—1 (if I = 1). It follows that JngG + K1 {—1+41 SO hg(G")<t + 1. Therefore, [Zu clisSg — {u}, so uis abad
element of (Sg, [f1;, [g5]) and a(Sg, f, gg) <!.

‘We now showthathz(é) goc(Sé, f, gé). Supposethatot(Sé, f, gé)zl andletubeabadelementof(Sé, [f1;, [gé]l).
By definition, either [L1;=Sg for some L € f(u), or [L1;=S¢g — {u} for some L € g ). If [L1;=Sg for some L €
f(u) = &, then by Claim 5.1, S([L],)C g G. It follows that S(L) € G + K, ;_; and therefore h5(G) <[. Otherwise,
[L];=xSg —{u} forsome L € g (u). By Claim 5.1, S([L]I)QR (A}Z (note that (A?L‘C is the rooted tree obtained by removing
u and its descendants from Gx), ) .SA’(L)QR(A??C + Ky . If L= Zu,é’ then the definition of o implies that / <1 and
¢ =ha(GE) — 1. By the definition of 7ip, #C3G + Ky -1,50 ha(G) <L If L # Z, ¢ then HC3GE + S(L). Since
GE+8(L) € G4 (G + K1 1-1)" =G + Ky _1, it follows that #'C3G 4 K11, and hy(G)<I. O

Sy =

We now describe how to perform step 4 of algorithm MaxSubforest. To simplify the notation, we show how to build
the set ‘65 for v =r. Building the set for the other vertices of G is done in the same way. Let u1, .. ., u, be the children
of v. We use the following idea to build (65 For each [, we will build a set X; such that 1>(G — X;) =1 and h (G — X))
is minimal. To build X;, we split it into two sets A and B, where A contains the edges of X; that are incident with v,
and B contains the rest of the edges. Suppose that we already found B and we want to choose A. From Lemma 5.2 we
need to take A that is a deletion set of (Sg_p, [ f1;, [g6—B];). We will show in Lemma 5.3 that taking A to be maximal
deletion set of (Sg—p, [ f1;, [gG—B];) will make /11 (G — (A U B)) minimal. The opposite question is how to choose the
set B assuming that A was chosen. In Lemma 5.4 we show that we need to choose B such that /] (G;i — B) is minimal
for all i.

Lemma 5.3. Let B be a set of edges in G that are not incident with v such that %QHG — B.Let A, A’ C S, be two
sets of edges. If A’ A, then h{(G — (AU B)) € h(G — (A’ U B)).

Proof. Fix J € h1(G — (A U B)). Let H be a subtree of (G — (A U B)) + J which is isomorphic to a tree from 3,
and let Gy and Jy be the rooted subtrees of G and J, respectively, that are induced by the vertices of H. From the fact
that ¢y, <cj <h2(G — (AU B)) — 2 we have that Jy is not a rooted star. Therefore, the height of Gy is at most 2, so
Gy= S’(L) for some weighted set L. From Claim 5.1 L<S;_p — A. Since we have that Sg_p — A<Sg_p — A’ (Lemma
4.1) and < is transitive, it follows that L<Sg_p—A’. By Claim 5.1, Gy CrG—(A’"UB). Thus, #C3(G—(A'UB))+J,
namely J € h(G — (A’ UB)). O



1288 D. Tsur / Discrete Applied Mathematics 155 (2007) 1275—1293

Lemma 5.4. Let A be a set of edges in G that are incident with v. Let By, ..., B, Bi, R B,/ be sets of edges, where
B; C E(G,‘ji) and B] C E(Gzl,)for all i. Ifh](GZi — B;) C h(GZ,- — B)) and hz(G}ji — Bj) >t + 1 — |A| for every
ui ¢ A, and%QHGzi — B; for everyu; € A, then h1(G — (AUB{U---UB))) Ch(G—-(AUB{U---UB)).

Proof. LetJbeatreeinh;(G—(AUBU---UBy)), and let H be a subgraph of (G—(AUB{U---UBy))+ J whichis
isomorphic to a tree in . Suppose that u; ¢ A. Let H; be the rooted tree obtained by taking H, removing the vertices
of H that are in G;l, and making v the root. If H does not contain vertices from G}jl, or contains only the root of G;l s
then clearly #°C3(G,,, — B}) + Hi. Otherwise, H € h(G;, — B1) and cy, <t — |A|<h2(Gy;, — By) — 2. Therefore
Hy € h1(G};,—B1).Thus, we have that H, € h(G, —B}),s0 #' C3(G},, —B))+H € (G—(AUB|UB,U---UB)))+J.
Therefore, J € h(G — (AUB{UBy U---U By)).

If u; € A, then H does not contain vertices from G, , so again we have that J € h(G — (AU BiUByU---UB)).

Repeating these arguments gives that J € h(G — (AU B{ U---UB))). [

We now define (65 ={A| UB, ..., A, U B}, where the sets Ay, ..., A, and B will be defined later. The set (65
is ordered according to the indices of the sets A;, namely the orderis A; U B, A, U B, ..., A, U B. The set ¢, will
also be ordered, and the ordering of its elements will be according to the order of (65 . Since the same process was
used by algorithm MaxSubforest for building the sets €, ..., €y,, then each set €, is ordered (recall that algorithm

MaxSubforest builds the set €, , ..., €, before building (65 ).
Fori=1,...,tand k=0, ...,1,let B{‘ be the first set from %,; (according to the order of 4,;) such that hz(G}ji —

Bik) >t — k + 2. If no such set exists, then B{‘ is the first set from %,,. Let Bk = UleBf.

By Lemma 3.1, theset ¥ ={AUC 1 U---UC; : AC §556,Cy € Gyy,...,Cs € ‘gu,}isafullsetofG.Let‘g’ c¥
be some complete set of G. From Lemma 3.5, all the sets in %’ have the same number of edges, and for every i, all the
sets in %, have the same number of edges. Thus, all the sets in %' have the same number of edges incident with v, and
denote this number by j. We denote B; = B/ and B = B/.

Let A; be a maximum deletion set of (Sg—p, [f1i_1,[g6—Bli_1) of size j, if such set exists. If such set does not
exist, we say that A; is undefined. Define r = min(n, max{/ : A; is defined}). Note that for every [ < r, a deletion set
of (Sg—p,[fl,—1,[g6-B]—1) is also a deletion set of (Sg—p, [ f1;—1, [g6—B1/—1), SO A; is defined.

Lemma 5.5. % is a full set of G.

Proof. We need to show that for every set O € 4’ there is a set A; U B such that G — O g/PG — (A; U B). We will
show this using Lemmas 5.3 and 5.4: We will first take the set O and replace its edges that are not incident with v by
the edges of B. Lemma 5.4 will give us that G — O <’,G — O’, where O’ is the new set. Then we will take O and
replace the edges of O’ that are incident with v by the edges of A;. Note that the set we obtain is A; U B. We will get
from Lemma 5.3 that G — 0" <, G — (A; U B).

Let O be some set from %’. Denote A= 0 NSg, and O; =00E(G}ji) fori=1,...,t.Notethat O=AUO1U---UO;
and O; € 6, forall i. W.l.o.g. suppose that A = {(v, u;—jy1), ..., (v, u)}.

We consider two cases. In the first case, suppose that 1,(G — O) > 1. Denote [ = h>(G — (A U B)). We will show
that G — O<pG — (A; U B). Since |0 = |A; U B|, it will follow that G — O <’,G — (A; U B). To show that
G—0<pG—(A;UB),wewillshowthat G — O<pG —(AUB)and G — (AUB)<pG — (A;UB).

We first show that G — O < pG — (A U B). By Lemma 3.4, it suffices to show that 71 (G — (AU B)) € h(G — O)
and h2(G — (AU B)) > ha(G — 0). Consider some index i <t — j. Recall that €, < (6,{,. and (632 ={AJUB :I<r'}
for some sets A/l, o A/r, and B’. By the definition of &y, we have that hz(G;i — O0;) >t — j + 2. Therefore, the
set B; appears before O; in the order of %,, and hg(Gzl_ — Bj)>t — j + 2. In other words, B; = A; U B’ and
O; = A}, U B’ for some [ <I’. By definition, every deletion set of (SGEI.—B” [flr—1, [86};1_—3’]1’—1)15 a deletion set
of (S(;;i,B/, [fli—1, [865;8’]1—1)- In particular, A, is a deletion set of (S(;gi,B/, [fli—1, [ngi,Br]l,l). From the
maximality of A; we have that A} <Aj. By Lemma 5.3, h1 (G}, — B;) C h(G,,, — O;). Since the previous inequality
is true for all i/, by Lemma 5.4, h1 (G — (AU B)) € h(G — O).

We now show that 12(G — (AU B)) >hy(G — O). By Lemma 5.2, h(G — (AU B)) =a(Sg—p — A, f, g6—p) and
ha(G — 0) =a(Sg—0 — A, f,g6-0). Clearly, for some index i <t — j, aset L € gg—p(u;) does not influence the
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value of a(Sg—0 — A, f, g6—0) (since LﬁSG,B —{u;}). Therefore, a(Sg—p — A, f, g6—-p)=(Sg—p — A, f, g’G_B),
where the mapping g’é (for some rooted forest f}) is defined by g’é(u) ={L € g5(u) : |L|<cg}. Similarly, a(Sg-0 —
A, f.86-0) =u(Sc—0 — A, f. 85_0)-

As hi (G, — Bi) € h(G),, — 0j) and h2(G,,, — O;) =2t — j + 2 for every i <t — j, we have that g/G_B(ui) -
8G—o ;) for every i <t — j. Furthermore, by Lemma 3.5 all the sets in each set %, have the same number of edges
incident with u;. Thus, S = Sg_o. Therefore, a(Sg_p — A, f, g5_p) Z(Sc-0 — A, f. 85_)- It follows that
ho(G — (AU B)) >hy(G — O). We conclude that G — O < pG — (A U B).

Finally, we show that G — (AUB) < pG — (A; U B). Again, we will show that 71 (G — (A;UB)) € h(G—(AUB)) and
ha(G—(AjUB)) > h2(G—(AUB))=I.By Lemma 5.2, we have that A is a deletion set of (Sg—g, [ f1/—1, [g6-Bli—_1),
so A; is defined. By the maximality of A; we get that A< A;. Moreover, by Lemma 5.2, 12 (G — (A; U B)) > 1. Therefore,
G- (AUB)<pG — (A; U B).

If hp(G — O)=1then h(G — O)=F — {Ggyg}. From Lemma 5.2, A UB € (5{ is an optimal deletion set of G, and
we have that G — 0 <, G — (A{UB). O

In order to build the set (65 in polynomial time, we need to show how to compute the value of j. The following
lemma gives an efficient way for computing this value.

Lemma 5.6. j = min{OPT(S;_g«, f, gg_pk) : k=0,...,1}.

Proof. Let O be some set from %,,. From Lemma 3.5, G — O is a maximum subforest of G with property P. By
definition, |Q| = j + |B/|. Fix some k <t. From Lemma 5.2, if a set X is a deletion set of (Sg_pks [ 8Gg—pr), then
G — (X U B¥) has property P, so |X| 4+ |B¥|>|0| = j + |B/|. By Lemma 3.5, the sets B, ..., B’ have the same
size. Therefore, | X| > j and since this is true for all k, we have that min{OPT(Sg_g«, f, gg_pt) 1 k=0,...,t} > .
Moreover, by Lemma 5.2, OPT(S;_p/, f. §6_pi) = j, and the lemma follows. [

From Lemmas 5.5 and 5.6, the following theorem follows.
Theorem 5.7. The problem 5-TEDP can be solved in polynomial time.

We note that we can give an implementation of the algorithm for 5-TEDP whose time complexity is O(pn?). Using
similar ideas, 4-TEDP can be solved in O(pn) time.

We now give the key idea of the algorithm for TEDP;. As the algorithm is similar to the algorithm for 5-TEDP, we
omit the details.

Define P({l1, ..., la)=@1..1(Py,, ..., P,),andlet P({l1, ..., 1;}) be the unrooted tree formed from P ({l1, . . ., L4}).
Every tree with at most one vertex with degree more than 2 has a representation of the form P({/1, ..., l;}) for some
I, ..., 1lz. Let £ be the set of all the representations of the trees in the obstruction set.

Define

hy(G) =min({i >0 : #C3G + P;} U {o0}),

where 130 = Gy.

Assume that GV is a rooted tree satisfying ¢%Q3G — v and let uy, ..., u; denote the children of v. Let S be a
weighted set {(v, u1), ..., (v, us)}, where the weight of (v, ;) is the height of G;,.. We define mappings f'and g by
fuj)=%and gg(u;) = {{hz(G,'ji) — 1}}. We have that 7> (G) = a(Sg, f, gc). From this fact, the following theorem
follows.

Theorem 5.8. The problem TEDP; can be solved in polynomial time.
6. Hardness of the TEDP

In this section we prove several hardness results for the problem. We will show that several variants of TEDP are
NP-hard, and moreover, they are hard to approximate.
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Fig. 7. The constructions of the rooted trees 77, ..., Ty in case 1 forn = 4.
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ki dn s

Fig. 8. The reduction of case 1 for the input Ry = {1, 2}, Ry ={2, 3}.

Theorem 6.1. If P # NP, then there is a constant ¢ such that there is no polynomial-time approximation algorithm
for TEDP with approximation factor less than clogk. This result holds even under each of the following restrictions
of TEDP:

1. G and each tree in A has diameter 6.
2. A consists of one tree with diameter 8.

Furthermore, if P # NP then there is a constant ¢’ such that there is no polynomial-time approximation algorithm
with approximation factor less than 1 + ¢’ for the following restrictions of TEDP:

3. Each tree in A has maximum degree of 3 and at most two vertices with degree 3.
4. A consists of one tree with maximum degree of 3.

Note that the first restriction is a special case of 6-TEDP, and the third restriction is a special case of TEDP;.

Proof. All the reductions in this proof are from Hitting Set or a restriction of this problem. The input to the hitting set
problem is a collection of sets Ry, ..., R, which are subsets of S = {1, ..., n}. The goal is to find a minimal subset
U C Ssuchthat UNR; #@fori=1,...,m. We can assume w.l.0.g. that each R; has at least two elements. It was
shown in [13] that if P # NP then there is a constant cp such that there is no approximation algorithm for Hitting Set
with approximation factor less than cg log n.

We first prove case 1. Given an input Ry, ..., R, to the hitting set problem, we build rooted trees 71, ..., T, by
taking 7; = B, —2; i, where By, is the rooted tree obtained by taking x copies of ﬁl and y copies of 132, adding a new
vertex and connecting it by edges to all the roots of the trees, and making the new vertex the new root (see Fig. 7).
Note that T; ¢ , T; for every i # j, and all the trees have height 2. For every set R;, we build a tree H; by taking a
vertex named v;, and a copy of the tree T; for every j € R;, and adding edges between the roots of these trees and v;.
We define # = {H\, ..., H,}. We build the tree G by taking the trees T1, ..., T, adding a vertex r, and adding edges
between r and the roots of 71, ..., T,,. Denote by uy, ..., u, the roots of the trees 71, ..., T, in G, respectively. See
Fig. 8 for an example of this reduction. Clearly, G and the trees in 5 have diameter 6.
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Fig. 9. The reduction of case 2 for the input Ry = {1, 2}, Ry = {2, 3}. The heavy vertices are highlighted.

For each i <m, we denote by G; the subtree induced from G by the vertex r and the vertices of T} for all j € R;.
Clearly, G; is isomorphic to H;. Moreover, we claim that G; is the only subgraph of G which is isomorphic to H;.
To show this claim, suppose that G’ is a subtree of G which is isomorphic to H;. We now argue which vertices in G
can match v; under the isomorphism. Since the trees 771, ..., T, have height 2, it follows that in H; the vertex v; is the
center of a path of length 6. Furthermore, r is the only vertex in G with this property. Therefore, G’ must contain r, and
the isomorphism between H; and G’ matches v; to r. Each neighbor v of v; is a root of a copy of some tree 7, and is
matched by the isomorphism to the root of some T':. Since T;¢ rTj for j # j', it follows that j = j’, and therefore
G’ = G;. This completes the proof of the claim.

Thus, for a set A of edges of G that are incident on r, we have that H; gG — A iff A contains an edge (r, u ;) for some
Jj € R;. Therefore, given a hitting set U of T1, ..., T,, of size k, the set {(r, u;) : i € U} is a deletion set of (G, ).
Conversely, let A be a deletion set of (G, ') of size k, and suppose that A contains an edge e = (1, v) which is not
incident on r. Let w be vertex after r on the path from r to u in G. Then, A U {(r, w)} — {e} is also a deletion set of
(G, A). By repeating this argument, we obtain a deletion set A" of (G, ) such that all the edges in A’ are incident
on rand |A’|<|A|. Then, {i : (r,u;) € A’} is a hitting set of T, ..., T, of size k. The correctness of the reduction
follows.

We now deal with case 2. Given subsets Ry, ..., R, we build tree 71, ..., T,, where T; = By, _2;+m+1,;- Then, we
build trees Hy, ..., Hy using T1, ..., T, asin case 1. We build a tree H by taking a vertex w, and the trees Hy, ..., Hy,,
and adding an edge between w and v; for every i <m. Let # = {H}. For every i <m, define H' = H), ie., H'
is the rooted tree formed by taking H, removing the vertices of H;, and choosing w as the root. The tree G is built

by taking a vertex named r, the trees 71, ..., T,, and the trees H L .., H™ and adding edges between r and the
roots of 71, ..., T,, Hl, ..., H™. Denote by uy, ...u, the roots of 71, ..., T, in G and by wy, ..., w,, the roots of
H' ..., H™. See Fig. 9 for an example. Note that H has diameter 8 and G has diameter 10.

For each i <m, we denote by G; the subtree induced from G by the vertex r, the vertices of H ! and the vertices of
T; for all j € R;. Each subtree G; is isomorphic to H. We claim that no other subtree of G is isomorphic to H. The
correctness of the reduction follows from this claim in the same fashion as in the proof of case 1. We now prove the
claim: let G’ be a subtree of G which is isomorphic to H. We say that a vertex is heavy if its degree is at least m +n + 1.
Clearly, the isomorphism between H and G’ must map a heavy vertex in H to a heavy vertex in G’. In H, the heavy
vertices are those with distance 2 from w, or in other words, the roots of all the copies of T1, ..., T, in H. In G, the
heavy vertices are uy, ..., u, and descendents of w; with distance 2 from w; fori =1, ..., m, or in other words, the
roots of all the copies of 71, ..., T,, in G. We now argue which vertices in G can match w under the isomorphism. w is
the center of a path of length 4 whose end vertices are heavy. The only vertices in G with this property are uq, ..., u.
Therefore, the isomorphism between H and G’ maps w to some vertex w; . Furthermore, the heavy vertices with distance
2 from w; are uy, ..., u, and the descendents of w; with distance 2 from w;. It follows that G’ = G;.

For case 3, we give a reduction from a restriction of the hitting set problem in which the sets Ry, ..., R, have size
exactly 2. This problem is equivalent to Vertex Cover, and therefore, if P = NP it cannot be approximated within a
factor of 1.166 [9]. Given sets Ry, ..., R, and a positive integer k, we build trees T1, ..., T, as follows: the tree T; is
built by taking a copy of the tree ﬁ,,+1 (the rooted path on n + 1 vertices) and adding a new vertex which is connected
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Fig. 10. The constructions of the rooted trees T, ..., Ty, in case 3 forn = 4.
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Fig. 11. The tree J.
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to the vertex at distance i — 1 from the root. See Fig. 10 for an example. We then generate # = {Hy, ..., Hy,} and G
from 71, ..., T, like in the reduction of case 1. Clearly, as each 7; has one vertex of degree 3 and the rest of its vertices
have degree at most 2, the restrictions are satisfied. The proof of the correctness of the reduction is similar to the proof
in case 1, and thus is omitted.

We also provide a reduction from Vertex Cover in case 4. We begin by building trees 77, . .., T, as in the construction
of case 3. For each i <n we build a tree 7} by taking 7; and a copy for the tree J which is given in Fig. 11, adding an
edge between the root of 7; and a, and making b the new root. We build the trees Hy, ..., H,, from Tl’ e Tn’ like in
case 1. Then, we take a path of length 2m — 1 whose vertices are wy, ..., wa;,—1. We add an edge wy;_1v; for every
i <m. The result is the tree H, and »# = {H}. For i <m, define H = H,Z"Zifl. We build the tree G from T{, R T,:
and H', ..., H™ like in case 2. Note that all the subgraphs of H and G that are isomorphic to J are due to copies of
T|,...T, in H and G. Hence the copies of J play the same role of restricting the isomorphism as the heavy vertices in
case 2. The correctness of the reduction follows from this fact, as in case 2. [

7. Concluding remarks and open problems

We have shown sharp boundaries on the tractability of TEDP: 5-TEDP and TEDP; can be solved in polynomial
time, while 6-TEDP and TEDP, are NP-hard.

As described in Section 3, our algorithms are based on quasiorders. Previous papers use the following equivalence
relations: for a property P, the equivalence relation ~ p is defined by

G~pG < P(G+J)=P(G' +J) foreveryrooted tree J.

Let P be the property of not containing a tree from 2 as an induced subforest, where # consists of trees with diameter
at most 5. As discussed in Section 5, we can show that | < ’P | <2|A°| + 1. On the other hand, the number of equivalence
classes of ~p can be Q22”1 (we omit the details). It would be interesting to find other graph problems for which
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our technique yields faster algorithms. In other words, are there other graph properties (on bounded treewidth graphs,
or on some restricted family of graphs) for which there is a large gap between | <| for some (P, ®@)-order <, and the
number of equivalence classes in ~p?
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