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a b s t r a c t

The aim of this paper is to develop high-order methods for solving time-fractional partial
differential equations. The proposed high-order method is based on high-order finite
elementmethod for space and finite differencemethod for time. Optimal convergence rate
O((∆t)2−α

+ N−r ) is proved for the (r − 1)th-order finite element method (r ≥ 2).
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Fractional partial differential equations (PDEs) havewide applications in the real world (see e.g., in [1,2] and [3]) and thus
the solutions of the equations become increasingly popular (see e.g., in [1,4–6] and the listed references). In this paper, we
study one type of time-fractional PDEs, which can be obtained from the standard parabolic PDEs by replacing the first-order
time derivative with a fractional derivative of order α, 0 < α < 1. More precisely, we consider

∂αu(x, t)
∂tα

−
∂2u(x, t)

∂x2
= f (x, t), (x, t) ∈ [0, 1] × [0, T ] (1)

subject to the initial and boundary conditions:

u(x, 0) = u0(x), x ∈ I = [0, 1], (2)
u(0, t) = u(1, t) = 0, t ∈ (0, T ], (3)

where 0 < α < 1, f and u0 are given smooth functions and ∂αu(x,t)
∂tα is Caputo fractional derivative defined by

∂αu(x, t)
∂tα

=
1

Γ (1 − α)

∫ t

0

∂u(x, s)
∂s

ds
(t − s)α

.
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The analytical solutions of the time-fractional PDEs are studied using Green’s functions or Fourier–Laplace transforms (see
e.g., in [1,7–9]). However, the references for the numerical methods are very limited. Most existing methods are lower-
order methods, for example, Liu et al. [10] study the first-order finite difference methods; Scherer et al. [11] develop
Grünwald–Letnikov’s approach (a variant of finite difference method), analyze the stability and discuss the convergence
rates.

As pointed out in paper [12], it is necessary to develop high-order methods due to the fractional term. High-order
methods—spectral methods are studied by Lin and Xu [12]. Lin and Xu [12] (in Theorem 4.2, 4.3) show that the methods for
α-order time-fractional partial differential equationswith 0 < α < 1 have convergence rateO(∆t2−α

+N−m/(∆t)α), where
mmeasures the regularity of the solution in space. Obviously the convergence rates in their paper are not optimal due to the
impairment of the factor (∆t)−α . In this paper, we use high-order finite element methods to solve the same equation and
prove an optimal convergence rate. Since the finite element methods use piecewise polynomial bases not like the spectral
methods using global polynomial bases, the finite element methods are much easier to implement.

In the rest of the paper, we assume that the solution u is sufficiently smooth.We use the following norms: ‖v‖ = ‖v‖L2(I)
and ‖v‖r = ‖v‖Hr (I). C denotes a generic positive constant that is independent of mesh but depends on the smoothness
of u.

2. High-order finite element methods

Let τ = T/L be the time meshsize, tn = nτ , n = 0, 1, . . . , L be mesh points and tn−1/2 =
tn−1+tn

2 , n = 1, 2, . . . , L, be mid
mesh points, where L is a positive integer. The time-fractional derivative ∂αu(x,t)

∂α t at tn is estimated by

∂αu(x, tn)
∂tα

=
1

Γ (1 − α)

n−
k=1

∫ tk

tk−1

∂u(x, s)
∂s

ds
(tn − s)α

=
1

Γ (1 − α)

n−
k=1

∂

∂t
u(x, tk−1/2)

∫ tk

tk−1

ds
(tn − s)α

+ γ (1)
n (x)

=
1

Γ (1 − α)

n−1−
k=0

∂

∂t
u(x, tn−k−1/2)

∫ tk+1

tk

ds
sα

+ γ (1)
n (x)

=
τ 1−α

Γ (2 − α)

n−1−
k=0

bk
∂

∂t
u(x, tn−k−1/2) + γ (1)

n (x), (4)

where bk = (k + 1)1−α
− k1−α and

γ (1)
n (x) =

1
Γ (1 − α)

n−
k=1

∫ tk

tk−1

∂u(x, s)
∂s

ds
(tn − s)α

−
1

Γ (1 − α)

n−
k=1

∂u(x, tk−1/2)

∂t

∫ tk

tk−1

ds
(tn − s)α

.

Let h = 1/N and use the uniform space mesh with mesh points

xi = ih, i = 0, 1, . . . ,N.

Denote Sh the set of piecewise polynomials of degree at most r − 1 on mesh {xi}. Define Ritz projection Rh from H1
0 (I) into

Sh by the orthogonal relation

a(Rhv, χ) = a(v, χ), ∀χ ∈ Sh, v ∈ H1
0 (I).

Define

γ (2)
n (x) =

τ 1−α

Γ (2 − α)

n−1−
k=0

bk


∂

∂t
u(x, tn−k−1/2) −

Rhu(x, tn−k) − Rhu(x, tn−k−1)

τ


.

Then combining with (4), we have

∂αu(x, tn)
∂tα

=
τ 1−α

Γ (2 − α)

n−1−
k=0

bk
Rhu(x, tn−k) − Rhu(x, tn−k−1)

τ
+ γn(x), (5)

with γn(x) = γ
(1)
n (x) + γ

(2)
n (x).

The weak form of (1)–(3) is given by
∂α

∂tα
u, φ


+ a(u, φ) = (f , φ), ∀φ ∈ H1

0 (I), (6)
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where (·, ·) is the inner product in L2(I), a(u, φ) =

I u

′φ′dx. Denoting

∂Rhu(x, tk) =
Rhu(x, tk) − Rhu(x, tk−1)

τ

and using (5), we rewrite the weak form (6) at tn as

τ 1−α

Γ (2 − α)

n−1−
k=0

bk (∂Rhu(x, tn−k), φ) + a(u(x, tn), φ) + (γn(x), φ) = (fn, φ), ∀φ ∈ H1
0 (I), (7)

where fn(x) = f (x, tn). Moreover, since Sh ⊂ H1
0 (I), we have

τ 1−α

Γ (2 − α)

n−1−
k=0

bk (∂Rhu(x, tn−k), χ) + a(Rhu(x, tn), χ) + (γn(x), χ) = (fn, χ), ∀χ ∈ Sh. (8)

Denote by Un
∈ Sh the approximation of u(·, tn) and

∂Un
=

Un
− Un−1

τ
.

Now we define the fully discrete finite element method by

τ 1−α

Γ (2 − α)

n−1−
k=0

bk

∂Un−k, χ


+ a(Un, χ) = (fn, χ), ∀χ ∈ Sh (9)

or

(Un, χ) + Γ (2 − α)τ αa(Un, χ) =

n−1−
k=1

(bk−1 − bk)(Un−k, χ) + bn−1(U0, χ) + Γ (2 − α)τ α(fn, χ), ∀χ ∈ Sh. (10)

From (8), we know that the truncation error is γn, which will be estimated in the following lemma.

Remark 2.1. The stability is stable and the proof is analogous to that in [12]. So the proof is omitted here.

Lemma 2.1. The truncation error γn(x) defined by Eq. (8) is bounded by

‖γn(x)‖ ≤ C(hr
+ τ 2

+ τ 2−α),

where C is dependent of T , α, u.

Proof. γ 1
n (x) can be estimated by (see [12])

‖γ (1)
n (x)‖ ≤

 n−
k=1

∫ tk

tk−1

2s − (tk−1 − tk)
2(tn − s)α

ds

 + Cτ 2
≤ Cτ 2−α (11)

with C being dependent of T , α, u. To estimate γ 2
n (x), we estimate that

∂

∂t
u(x, tk−1/2) − ∂Rhu(x, tk) = (I − Rh)

∂

∂t
u(x, tk−1/2) + Rh


∂

∂t
u(x, tk−1/2) −

u(x, tk) − u(x, tk−1)

τ


.

Hence we have ∂

∂t
u(x, tk−1/2) −

Rhu(x, tk) − Rhu(x, tk−1)

τ

 ≤ C(hr
+ τ 2),

and thus

‖γ (2)
n (x)‖ ≤ C(hr

+ τ 2), (12)

where C is dependent of T , α, u. Combining the estimations on γ 1
n (x) and γ 2

n (x), we complete the proof of this lemma. �

The following lemma will be also used in the proof of the convergence rate of the finite element methods.

Lemma 2.2. Let εk
≥ 0, k = 0, 1, . . . , L, satisfy

εn
≤

n−1−
k=1

(bk−1 − bk)εn−k
+ γ (13)
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with γ > 0. Then

εn
≤ b−1

n−1γ . (14)

Furthermore, we have

εn
≤ nαn−αb−1

n−1γ ≤ Cτ−αγ , n = 1, 2, . . . , L, (15)

with C being dependent of T , α and u.

Proof. This lemma and the proof are included in the proof of Theorem 3.2 in [12]. �

We are now ready to present and prove the main convergence theorem.

Theorem 2.1. With u and Un be the solutions of (1) and (9). Then

‖u(·, tn) − Un
‖ ≤ C(τ 2−α

+ hr),

where positive constant C is independent of T , α, u.

Proof. Letting εn
= Un

− Rhu(x, tn) and subtracting (9) and (8) give

τ 1−α

Γ (2 − α)

n−1−
k=0

bk

∂εn−k, χ


+ a(εn, χ) = (γn(x), χ) (16)

or

(εn, χ) + Γ (2 − α)τ αa(εn, χ) =

n−1−
k=1

(bk−1 − bk)(εn−k, χ) + bn−1(ε
0, χ) + Γ (2 − α)τ α(γn(x), χ). (17)

Taking χ = εn in (17) gives

‖εn
‖
2

≤

n−1−
k=1

(bk−1 − bk)‖εn−k
‖ ‖εn

‖ + bn−1‖ε
0
‖ ‖εn

‖ + Γ (2 − α)τ α
‖γn(x)‖ ‖εn

‖. (18)

By (11) and (12), ‖γn(x)‖ ≤ C(τ 2−α
+ hr), and we have

‖εn
‖ ≤

n−1−
k=1

(bk−1 − bk)‖εn−k
‖ + bn−1‖ε

0
‖ + Cτ α(τ 2−α

+ hr), n = 1, 2, . . . , L. (19)

By Lemma 2.2, we have ‖εn
‖ ≤ C(τ 2−α

+ hr). That is,

‖Rhu(x, tn) − Un
‖ ≤ C(τ 2−α

+ hr).

It is well known that (see e.g., in [13])

‖u(x, tn) − Rhu(x, tn)‖ + h‖(u(x, tn) − Rhu(x, tn))′‖ ≤ Chr , n = 0, 1, . . . , L. (20)

Therefore, we obtain

‖u(x, tn) − Un
‖ ≤ ‖u(x, tn) − Rhu(x, tn)‖ + ‖Rhu(x, tn) − Un

‖ ≤ C(τ 2−α
+ hr).

The theorem is proved. �

3. Numerical examples

In this section, we use the following example to verify our theoretical finding. We consider the same equation as that in
Lin and Xu [12]:

∂αu(x, t)
∂tα

−
∂2u(x, t)

∂2x
= f (x, t), (x, t) ∈ [0, 1] × [0, 1] (21)

with

f (x, t) =
2

Γ (3 − α)
t2−α sin(2πx) + 4π2t2 sin(2πx),

initial condition u0(x) = 0 and homogeneous boundary conditions. The exact solution of the problem is given by u =

t2 sin(2πx). The spatial and temporal meshes are taken uniform. That is, h = 1/N, τ = 1/L, where N and L are the
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Table 1
α = 0.2, L = 10 000.

N 10 15 20 25

maxn ‖un
− Un

‖∞ 8.0204 × 10−5 1.5861 × 10−5 4.9956 × 10−6 2.0696 × 10−6

maxn ‖un
− Un

‖ 1.8782 × 10−5 3.6930 × 10−6 1.1665 × 10−6 4.7731 × 10−7

Rate 4.0113 4.0059 4.0046

N 30 35 40
maxn ‖un

− Un
‖∞ 1.0004 × 10−6 5.3949 × 10−7 3.1550 × 10−7

maxn ‖un
− Un

‖ 2.2997 × 10−7 1.2399 × 10−7 7.2570 × 10−8

Rate 4.0051 4.0073 4.0115

Table 2
α = 0.2, N = 200.

L 1000 3000 5000 7000

maxn ‖un
− Un

‖∞ 2.2699 × 10−8 3.5862 × 10−9 1.6865 × 10−9 1.1038 × 10−9

maxn ‖un
− Un

‖ 1.5657 × 10−8 2.1762 × 10−9 8.6694 × 10−10 4.7265 × 10−10

Rate 1.7962 1.8017 1.8028

L 9000 11000 13000
maxn ‖un

− Un
‖∞ 8.5336 × 10−10 7.1606 × 10−10 6.3280 × 10−10

maxn ‖un
− Un

‖ 3.0059 × 10−10 2.0933 × 10−10 1.5487 × 10−10

Rate 1.8010 1.8032 1.8036

Table 3
α = 0.5, L = 20 000.

N 10 15 20 25

maxn ‖un
− Un

‖∞ 8.0187 × 10−5 1.5856 × 10−5 4.9917 × 10−6 2.0658 × 10−6

maxn ‖un
− Un

‖ 1.8778 × 10−5 3.6905 × 10−6 1.1640 × 10−6 4.7488 × 10−7

Rate 4.0124 4.0108 4.0181

N 30 35 40
maxn ‖un

− Un
‖∞ 9.9666 × 10−7 5.3572 × 10−7 3.1174 × 10−7

maxn ‖un
− Un

‖ 2.2754 × 10−7 1.2156 × 10−7 7.0151 × 10−8

Rate 4.0353 4.0665 4.1174

numbers of meshes in space and time. The finite element method using third-order piecewise polynomials is used for the
space and the scheme for time described in previous sections is used in this example. The set of piecewise polynomials of
degree at most 3 is constructed as

Sh =


3N−1−
k=1

vkφk/3; vk ∈ R, k = 1, . . . , 3N − 1


,

where φk/3, k = 1, . . . , 3N − 1 are basis functions defined in the following way: let xk+1/3, xk+2/3 be three-equal-division
points of the interval [xk, xk+1], denote lk,j(x) (j = 0, 1, 2, 3) the basis functions of the cubic Lagrange interpolation with
respect to points xk, xk+1/3, xk+2/3, xk+1 and

φk =

lk,0(x), x ∈ [xk, xk+1]

lk−1,3(x), x ∈ [xk−1, xk]
0, otherwise

k = 1, . . . ,N − 1;

φk+j/3 =


lk,j(x), x ∈ [xk, xk+1]

0, otherwise j = 1, 2, k = 0, 1, . . . ,N − 1.

The rates of the convergence are computed by

Rate for space =

 ln(‖Error on finer grid‖/‖Error on coarser grid‖)
ln(N of finer grid/N of coarser grid)

 ,
Rate for time =

 ln(‖Error on finer grid‖/‖Error on coarser grid‖)
ln(L of finer grid/L of coarser grid)

 .
The L2-norm and L∞-norm are used for space in this example. From the numerics in Tables 1–6, we can see that the
convergence rate for space is fourth order and the convergence rate for time is τ 2−α . The numerical results are consistent
with our theoretical results in Theorem 2.1.
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Table 4
α = 0.5, N = 80.

L 1000 3000 5000 7000

maxn ‖un
− Un

‖∞ 3.8371 × 10−7 8.6701 × 10−8 4.8715 × 10−8 3.5630 × 10−8

maxn ‖un
− Un

‖ 2.5717 × 10−7 4.9093 × 10−8 2.2700 × 10−8 1.3650 × 10−8

Rate 1.5074 1.5100 1.5116

L 9000 11000 13000
maxn ‖un

− Un
‖∞ 2.9368 × 10−8 2.5812 × 10−8 2.3568 × 10−8

maxn ‖un
− Un

‖ 9.3328 × 10−9 6.8876 × 10−9 5.3476 × 10−9

Rate 1.5129 1.5139 1.5148

Table 5
α = 0.8, L = 60 000.

N 10 15 20 25

maxn ‖un
− Un

‖∞ 8.0142 × 10−5 1.5824 × 10−5 4.9606 × 10−6 2.0345 × 10−6

maxn ‖un
− Un

‖ 1.8756 × 10−5 3.6702 × 10−6 1.1439 × 10−6 4.5479 × 10−7

Rate 4.0232 4.0524 4.1334

N 30 35 40
maxn ‖un

− Un
‖∞ 9.6537 × 10−7 5.0447 × 10−7 2.8557 × 10−7

maxn ‖un
− Un

‖ 2.0759 × 10−7 1.0188 × 10−7 5.0984 × 10−8

Rate 4.3014 4.6173 5.1845

Table 6
α = 0.8, N = 40.

L 1000 3000 5000 7000

maxn ‖un
− Un

‖∞ 5.0671 × 10−6 1.5391 × 10−6 9.4844 × 10−7 7.1645 × 10−7

maxn ‖un
− Un

‖ 3.3741 × 10−6 8.9630 × 10−7 4.8330 × 10−7 3.2157 × 10−7

Rate 1.2066 1.2091 1.2108

L 9000 11000 13000
maxn ‖un

− Un
‖∞ 5.9503 × 10−7 5.2121 × 10−7 4.7196 × 10−7

maxn ‖un
− Un

‖ 2.3712 × 10−7 1.8587 × 10−7 1.5174 × 10−7

Rate 1.2122 1.2134 1.2145

4. Concluding remarks

In this paper, we studied high-order finite element methods for solving a class of time-fractional partial differential
equations. The convergence rate of the method was proved to be optimal. Moreover, the theoretical results in this paper are
also valid when the finite elementmethods are used to solve two-dimensional time-fractional partial differential equations.
In the future we will investigate the finite element methods on moving meshes and simulate the blow-up solutions of the
time-fractional equations with nonlinear source term (see e.g., in [14]).
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