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a b s t r a c t

An abelian variety over a field K is said to have big monodromy, if the image of the Galois
representation on ℓ-torsion points, for almost all primes ℓ, contains the full symplectic
group. We prove that all abelian varieties over a finitely generated field K with the
endomorphism ring Z and semistable reduction of toric dimension one at a place of the
base field K have big monodromy. We make no assumption on the transcendence degree
or on the characteristic of K . This generalizes a recent result of Chris Hall.
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0. Introduction

It has been known in number theory, since times immemorial that Galois representation attached to the action of
the absolute Galois group on torsion points of an abelian group scheme carries a lot of basic arithmetic and geometric
information. The first aimwhich one encounters naturally, while studying such representations is to determine their images
in terms of linear algebraic groups. There exists a vast variety of results in the literature concerning computations of Galois
representations for abelian varieties defined over number fields and their applications to some classical questions such as
Hodge, Tate and Mumford–Tate conjectures; see for example [21,2]. In this paper we are interested in computing images of
Galois representations attached to abelian varieties defined over finitely generated fields in arbitrary characteristic, i.e., to
families of abelian varieties.

LetK be a field and denote byGK its absolute Galois group. Let A/K be an abelian variety and ℓ ≠ char(K) a prime number.
We denote by ρA[ℓ] : GK −→ Aut(A[ℓ]) the Galois representation attached to the action of GK on the ℓ-torsion points of
A. We define MK (A[ℓ]) := ρA[ℓ](GK ) and call this group the mod-ℓ monodromy group of A/K . We fix a polarization and
denote by eℓ:A[ℓ] × A[ℓ] → µℓ the corresponding Weil pairing. Then MK (A[ℓ]) is a subgroup of the group of symplectic
similitudes GSp(A[ℓ], eℓ) of the Weil pairing. We will say that A/K has big monodromy if there exists a constant ℓ0 such that
MK (A[ℓ]) contains the symplectic group Sp(A[ℓ], eℓ), for every prime number ℓ ≥ ℓ0. Note that the property of having big
monodromy does not depend on the choice of the polarization.

Certainly, the most prominent result on computing monodromy groups is the classical theorem of Serre (cf. [18,19]): If
A is an abelian variety over a finitely generated field K of characteristic zero with End(A) = Z and dim(A) = 2, 6 or odd, then
A/K has big monodromy. In this paper we consider monodromies for abelian varieties over finitely generated fields which
have been recently investigated by Hall [11,12]. To simplify notation, we will say that an abelian variety A over a finitely
generated field K is of Hall type, if End(A) = Z and K has a discrete valuation at which A has semistable reduction of toric
dimension one.
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In the special case, when K = F(t) is a rational function field over another finitely generated field, it has been shown
by Hall that certain hyperelliptic Jacobians have big monodromy; namely the Jacobians JC of hyperelliptic curves C/K with
affine equation C : Y 2

= (X− t)f (X), where f ∈ F [X] is a monic squarefree polynomial of even degree≥ 4 (cf. [11, Theorem
5.1]). Furthermore, Hall has proved recently [12] the following theorem which in our notation reads: If K is a global field,
then every abelian variety A/K of Hall type has big monodromy. We strengthen these results in our main theorem as follows.

Main Theorem (cf. Theorem 3.6). If K is a finitely generated field (of arbitrary characteristic) and A/K is an abelian variety
of Hall type, then A/K has big monodromy.

Our proof of the main theorem follows Hall’s proof of [12] to some extent, e.g., we have borrowed a group theory
result from [12] (cf. Theorem 3.4). In addition to that we had to apply a substantial quantity of new methods to achieve
the extension to all finitely generated fields, such as for instance finite generation properties of fundamental groups of
schemes and Galois theory of certain division fields of abelian varieties, which are gathered in Sections 2 and 3 of the paper.
Furthermore, at a technical point in the case char(K) = 0, we perform a tricky reduction argument (described in detail in
Section 3) at a place of K whose residue field is a number field. The paper carries an Appendix with a self-contained proof
of the group theoretical Theorem 3.4 due to Hall, which can be of independent value for the reader.

Theorem A plays an important role in our paper [1], where we make progress on the conjecture of Geyer and Jarden (cf.
[9]) on torsion of abelian varieties over large algebraic extensions of finitely generated fields.

As a further application, we combine our monodromy computation with recent results of Ellenberg, Hall and Kowalski in
order to obtain the following result on endomorphism rings and simplicity of fibres in certain families of abelian varieties.
If K is a finitely generated transcendental extension of another field F and A/K is an abelian variety, then we call A weakly
isotrivial with respect to F , if there is an abelian variety B/F and anK -isogeny BK → AK .
Corollary (cf. Corollary 4.3). Let F be a finitely generated field and K = F(t) the function field of P1/F . Let A/K be an abelian
variety. Let U ⊂ P1 be an open subscheme such that A extends to an abelian scheme A/U . For u ∈ U(F) denote by Au/F the
corresponding special fibre of A. Assume that A is not weakly isotrivial with respect to F and that either of the conditions
(i) or (ii) listed below is satisfied.

(i) A is of Hall type.
(ii) char(K) = 0, End(A) = Z and dim(A) = 2, 6 or odd.

Then the sets:

X1 := {u ∈ U(F) | End(Au) ≠ Z}

and

X2 := {u ∈ U(F) | Au/F is not geometrically simple}

are finite.

Note that Ellenberg, Elsholtz, Hall and Kowalski proved the statement of the Corollary in the special case when A is the
Jacobian variety of the hyperelliptic curve given by the affine equation Y 2

= (X − t)f (X), with f ∈ F [X] squarefree and
monic of even degree≥ 4 (cf. [6, Theorem 8]). It is the case, where the monodromy of A is known by Hall [11, Theorem 5.1].
We obtain Part (i) of the Corollary as a consequence of the main theorem, our Proposition 4.2 below and also Propositions 4
and 7 of [6]. In order to prove (ii) we use Serre’s Theorem [18,19] instead of the main theorem.

We warmly thank Gerhard Frey, Dieter Geyer, Cornelius Greither and Moshe Jarden for conversations and useful
comments on the topic of this paper. The mathematical content of the present work has been much influenced by seminal
results of Serre contained in [18–21] and by the inspiring paper [12] of Hall. We acknowledge this with pleasure.

1. Notation and background material

In this section we fix notation and gather some background material on Galois representations that is important for the
rest of this paper.

Let X be a scheme. For x ∈ X we denote by k(x) the residue field at x. If X is integral, then R(X) stands for the function
field of X , that is, for the residue field at the generic point of X . If X happens to be a scheme of finite type over a base field F ,
then we often write F(x) instead of k(x) and F(X) instead of R(X).

If K is a field, then we denote by Ksep (resp.K ) the separable (resp. algebraic) closure of K and by GK its absolute Galois
group. A finitely generated field is by definition a field which is finitely generated over its prime field. For an abelian variety
A/K we let EndK (A) be the ring of all K -endomorphisms of A.We denote by End(A) := EndK (AK ) the absolute endomorphism
ring.

If Γ is an object in an abelian category and n ∈ Z, then nΓ : Γ → Γ is the morphism ‘‘multiplication by n’’ and Γ [n] is
the kernel of nΓ . Recall that there is an equivalence of categories between the category of finite étale group schemes over
K and the category of finite (discrete) GK -modules, where we attach Γ (Ksep) to a finite étale group scheme Γ /K . For such a
finite étale group scheme Γ /K we sometimes write just Γ instead of Γ (Ksep), at least in situations where we are sure that
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this does not cause any confusion. For example, if A/K is an abelian variety and n an integer coprime to char(K), then we
often write A[n] rather than A(Ksep)[n]. Furthermore we put A[n∞] :=


i∈N A[ni

].
If M is a GK -module (for example M = µn or M = A[n] where A/K is an abelian variety), then we shall denote the

corresponding representation of the Galois group GK by

ρM : GK → Aut(M)

and define MK (M) := ρM(GK ). We define K(M) := K ker(ρM )
sep to be the fixed field in Ksep of the kernel of ρM . Then K(M)/K is

a Galois extension and G(K(M)/K) ∼=MK (M).
If R is a commutative ring with 1 (usually R = Fℓ or R = Zℓ) and M is a finitely generated free R-module equipped with

a non-degenerate alternating bilinear pairing e : M × M → R′ into a free R′-module of rank 1 (which is a multiplicatively
written R-module in our setting below), then we denote by

Sp(M, e) = {f ∈ AutR(M) | ∀x, y ∈ M : e(f (x), f (y)) = e(x, y)}

the corresponding symplectic group and by

GSp(M, e) = {f ∈ AutR(M) | ∃ε ∈ R× : ∀x, y ∈ M : e(f (x), f (y)) = εe(x, y)}

the corresponding group of symplectic similitudes.
Let n be an integer coprime to char(K) and ℓ be a prime different from char(K). Let A/K be an abelian variety. We denote

by A∨ the dual abelian variety and let en : A[n] × A∨[n] → µn and eℓ∞ : TℓA × TℓA∨ → Zℓ(1) be the corresponding Weil
pairings. If λ : A→ A∨ is a polarization, then we deduceWeil pairings eλ

n : A[n] × A[n] → µn and eλ
ℓ∞ : TℓA× TℓA→ Zℓ(1)

in the obviousway. If ℓ does not divide deg(λ) and if n is coprime to deg(λ), then eλ
n and eλ

ℓ∞ are non-degenerate, alternating,
GK -equivariant pairings. Hence we have representations

ρA[n] : GK → GSp(A[n], eλ
n),

ρTℓA : GK → GSp(TℓA, eλ
ℓ∞)

with images MK (A[n]) ⊂ GSp(A[n], eλ
n) and MK (TℓA) ⊂ GSp(TℓA, eλ

ℓ∞). We shall say that an abelian variety (A, λ) over a
field K has big monodromy, if there is a constant ℓ0 > max(char(K), deg(λ)) such that MK (A[ℓ]) ⊃ Sp(A[ℓ], eλ

ℓ) for every
prime number ℓ ≥ ℓ0.

Now let S be a noetherian regular 1-dimensional connected scheme with function field K = R(S) and A/K an abelian
variety. Denote by A → S the Néron model (cf. [3]) of A. For s ∈ S let As := A ×S Spec(k(s)) be the corresponding fibre.
Recall that we say that A has good reduction at s provided As is an abelian variety. In general, we denote by A◦s the connected
component of As. If T is amaximal torus in A◦s , then dim(T ) does not depend on the choice of T [10, IX.2.1] andwe call dim(T )
the toric dimension of the reduction As of A at s. Finally recall that one says that A has semi-stable reduction at s, if A◦s is an
extension of an abelian variety by a torus.

We shall also need the following connections between the reduction type ofA andproperties of theGalois representations
attached to A. Let s be a closed point of S. The valuation v attached to s admits an extension to the separable closure Ksep; we
choose such an extension v and denote by D(v) the corresponding decomposition group. This is the absolute Galois group of
the quotient field Ks = Q (Oh

S,s) of the henselization Oh
S,s of the valuation ring OS,s of v. Hence the results mentioned in [10,

I.0.3] for the henselian case carry over to give the following description of D(v): If I(v) is the kernel of the canonical map
D(v) → Gk(s) defined by v, then D(v)/I(v) ∼= Gk(s). Let p be the characteristic of the residue field k(s) (p is zero or a prime
number). I(v) has a maximal pro-p subgroup P(v) (P(v) = 0 if p = 0) and

I(v)/P(v) ∼= lim
←−
n/∈pZ

µn(k(s)sep) ∼=


ℓ≠p prime

Zℓ(1).

Hence the maximal pro-ℓ-quotient Iℓ(v) of I(v) is isomorphic to Zℓ(1), if ℓ ≠ p is a prime.

Proposition 1.1. Let ℓ ≠ p be a prime number. Assume that A has semi-stable reduction at s.

(a) The image ρA[ℓ](P(v)) = {Id} and ρA[ℓ](I(v)) is a cyclic ℓ-group.
(b) Let g be a generator of ρA[ℓ](I(v)). Then (g − Id)2 = 0.
(c) Assume that ℓ does not divide the order of the component group of As. The toric dimension of A at s is equal to 2 dim(A) −

dimFℓ
(Eig(g, 1)) if Eig(g, 1) = ker(g − Id) is the eigenspace of g at 1.

Proof. Parts (a) and (b) are immediate consequences of [10, IX.3.5.2.].
Assume from now on that ℓ does not divide the order of the component group of As. This assumption implies A◦s [ℓ] ∼=

As[ℓ].
As we assumed A to be semi-stable at s, there is an exact sequence

0→ T → A◦s → B→ 0
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where T is a torus and B is an abelian variety and dim(T )+ dim(B) = dim(As) = dim(A). Now dimFℓ
(T [ℓ]) = dim(T ) and

dimFℓ
(B[ℓ]) = 2 dim(B) = 2 dim(A)− 2 dim(T ). Taking into account that we have an exact sequence

0→ T [ℓ] → A◦s [ℓ] → B[ℓ] → 0

(note that T (k) ∼= (k×)dim(T ) is divisible by ℓ), we find the relation dimFℓ
(As[ℓ]) = dimFℓ

(A◦s [ℓ]) = 2 dim(A)− dim(T ). This
implies c), because As[ℓ] = A[ℓ]I(v) [22, p. 495] and obviously A[ℓ]I(v)

= Eig(g, 1). �

In general, if V is a finite dimensional vector space over Fℓ, and g ∈ EndFℓ
(V ), then one defines drop(g) = dim(V ) −

dim(Eig(g, 1)). One calls g a transvection, if it is unipotent of drop 1. We shall say that an abelian variety A over a field K
is of Hall type, provided End(A) = Z and there is a discrete valuation v on K such that A has semistable reduction of toric
dimension 1 at v (i.e. at the maximal ideal of the discrete valuation ring of v). We have thus proved the following.

Proposition 1.2. If A is an abelian variety of Hall type over a finitely generated field K , then there is a constant ℓ0 such that
MK (A[ℓ]) contains a transvection for every prime number ℓ ≥ ℓ0.

2. Finiteness properties of division fields

If A is an abelian variety over a field K (of arbitrary characteristic) and p = char(K), then we denote by A≠p the group of
points in A(Ksep) of order prime to p. Then

K(A≠p) =


ℓ≠p prime

K(A[ℓ∞]) =

n/∈pZ

K(A[n]).

If p = 0, then K(A≠p) = K(Ator). In this section we prove among other things: If K is finitely generated of positive
characteristic, then G(K(A≠p)/K) is a finitely generated profinite group.

In this section, a function field of n variables over a field F will be a finitely generated field extension E/F of transcendence
degree n. As usual we call such a function field E/F of n variables separable if it has a separating transcendency base. The
following Lemma is an easy consequence of [8, Proposition 3.1].

Lemma 2.1 (cf. [8]). Let F be a field and K/F a function field of one variable. Assume that K/F is separable. Let p = char(F).
Let A/K be an abelian variety. Let F ′ be the algebraic closure of F in K(A≠p). Then G(K(A≠p)/F ′K) is a finitely generated profinite
group.

Lemma 2.2. Let (K , v) be a discrete valued field, A/K an abelian variety with good reduction at v, n an integer coprime to the
residue characteristic of v, L = K(A[n]) and w an extension of v to L. Denote the residue field of v (resp. w) by k(v) (resp. k(w)).
Let Av/k(v) be the reduction of A at v. Then k(w) = k(v)(Av[n]).

Proof. Let R be the valuation ring of v and S = Spec(R). Let A→ S be an abelian scheme with generic fibre A. Then
Av = A×S Spec(k(v)), A[n] is a finite étale group scheme over S, and if T is the normalization of S in L, then the restriction
map r : A[n](L) ∼= A[n](T )→ Av[n](k(w)) is bijective (cf. [22]). The assertion follows easily from that. �

Definition 2.3. We shall say in the sequel that a field K has property F , if G(K ′(A≠p)/K ′) is a finitely generated profinite
group for every finite separable extension K ′/K and every abelian variety A/K ′.

Proposition 2.4. Let F be a field that has property F . Let p = char(F). Let K be a function field over F . Assume that K/F is
separable. Then K has property F .

Proof. By a routine induction on trdeg(K/F) it is enough to prove the proposition in the special casewhere K/F is a function
field in one variable. Wemay thus assume trdeg(K/F) = 1 and we have to show that G(K ′(A≠p)/K ′) is finitely generated for
every finite separable extension K ′/K and every abelian variety A/K ′. But if K ′/K is a finite separable extension, then K ′/F is
a separable function field of one variable again. Hence it is enough to prove that G(K(A≠p)/K) is finitely generated for every
abelian variety A/K .

Let A/K be an abelian variety. Let F0 be the algebraic closure of F in K . Then K/F0 is a regular extension. Let C/F0 be a
smooth curve with function field K and such that A has good reduction at all points of C . There is a finite Galois extension
F1/F0 such that C(F1) ≠ ∅. If we put K1 := F1K , then K1/F1 is regular. Furthermore there is an exact sequence

1→ G(K1(A≠p)/K1)→ G(K(A≠p)/K)→ G(K1/K)

and G(K1/K) is finite. If we prove that G(K1(A≠p)/K1) is finitely generated, then it follows that G(K(A≠p)/K) is finitely
generated as well. Hence we may assume that K1 = K , i.e. that K/F is regular and that C(F) ≠ ∅.

Choose a point c ∈ C(F) and denote by Ac/F the (good) reduction of A at c. As in Lemma 2.1 denote by F ′ the algebraic
closure of F in K(A≠p).

Claim. F ′ ⊂ F(Ac,≠p).
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Let x ∈ F ′. Then x is algebraic over F and x ∈ K(A[n]) for some nwhich is coprime to p. If Fn denotes the algebraic closure
of F in K(A[n]), then x ∈ Fn. Let w be the extension to K(A[n]) of the valuation attached to c. Then k(w) = F(Ac[n]) by
Lemma 2.2. Obviously Fn ⊂ k(w). Hence x ∈ F(Ac[n]) ⊂ F(Ac,≠p). This finishes the proof of the claim.

The profinite group G(F(Ac,≠p)/F) is finitely generated, because F has property F by assumption. Hence its quotient
G(F ′/F) is finitely generated as well. Note that G(F ′K/K) = G(F ′/F). On the other hand G(K(A≠p)/F ′K) is finitely generated
by Lemma 2.1. From the exact sequence

1→ G(K(A≠p)/F ′K)→ G(K(A≠p)/K)→ G(F ′K/K)→ 1

we see that G(K(A≠p)/K) is finitely generated as desired. �

Corollary 2.5. Let K be a finitely generated field of positive characteristic or K be a function field over an algebraically closed
field of arbitrary characteristic. Then K has property F . In particular G(K(A≠p)/K) is finitely generated for every abelian variety
A/K .

Proof. In both cases K is a function field over a perfect field F which has property F . The assertion hence follows from
Proposition 2.4 �

Remark 2.6. A finitely generated field K of characteristic zero does not have property F . In fact, if A/K is a principally
polarized abelian variety, then by the existence of theWeil pairing K(Ator) ⊃ K(µ∞), and plainlyG(K(µ∞)/K) is not finitely
generated, when K is a finitely generated extension of Q.

3. Monodromy computations

LetK be a field andA/K an abelian variety.Webeginwith the questionwhetherA[ℓ] is a simpleGK -module for sufficiently
large ℓ.

Proposition 3.1. Let A be an abelian variety over a finitely generated field K . Assume that EndK (A) = Z. Then there is a constant
ℓ0 such that A[ℓ] is a simple Fℓ[GK ]-module for all primes ℓ ≥ ℓ0.

In the cases we need to consider, this proposition is a consequence of the following classical result (cf. [7, p. 118, p. 204],
[24,25,15]).

Theorem 3.2 (Faltings, Zarhin). Let K be a finitely generated field and A/K an abelian variety. Then there is a constant ℓ0 >
char(K) such that the Fℓ[GK ]-module A[ℓ] is semisimple and the canonical map EndK (A)⊗ Fℓ → EndFℓ

(A[ℓ]) is injective with
image EndFℓ[GK ](A[ℓ]) for all primes ℓ ≥ ℓ0.

Proof of Proposition 3.1. By Theorem 3.2 there is a constant ℓ0 such that A[ℓ] is a semisimple Fℓ[GK ]-module with
EndFℓ[GK ](A[ℓ]) = FℓId for every prime ℓ ≥ ℓ0. This is only possible if A[ℓ] is a simple Fℓ[GK ]-module for all primes
ℓ ≥ ℓ0. �

We need some notation in order to explain a theorem of Raynaud that will be of importance later. Let E/Fp be a
finite field extension with |E| = pd and F/Fp an algebraic extension. Denote by Emb(E,F) the set of all embeddings
E → F . Let χ : E× → F be a character. If i ∈ Emb(E,F) is one such embedding, then there is a unique function
e : Emb(E,F)→ {0, . . . , p− 1} such that

χ =


j∈Emb(E,F)

(j|E×)e(j),

and such that e(j) < p− 1 for some j ∈ Emb(E,F). We define amp(χ) := max(e(j) : j ∈ Emb(E,F)) to be the amplitude of
the character χ . Let ρ : E× → AutFp(V ) be a representation of E× on a finite dimensional Fp-vector space V . If V is a simple
Fp[E×]-module, then there is a finite field FV with |FV | = |V | and a structure of 1-dimensional FV -vector space on V such
that ρ factors through a character χρ : E× → F×V . We then define amp(V ) := amp(ρ) := amp(χρ). In general we define
amp(V ) := amp(ρ) := max(amp(Vi) : i = 1, . . . , t) where {V1, . . . , Vt} is the set of Jordan–Hölder quotients of V to be
the amplitude of the representation ρ.

Theorem 3.3 (Raynaud [16], [17, p. 277]). Let A be an abelian variety over a number field K . Let v be a place of K with residue
characteristic p. Let e be the ramification index of v|Q. Let w be an extension of v to K(A[p]). Let I be the inertia group of w|v and
P the p-Sylow subgroup of I. Let C ⊂ I be a subgroup that maps isomorphically onto I/P. Then there is a finite extension E/Fp and
a surjective homomorphism E× → C such that the resulting representation

ρ : E× → C → AutFp(A[p])

has amplitude amp(ρ) ≤ e.

The technical heart of our monodromy computations is the following group theoretical result, which can be extracted
from the work of Hall [11,12].
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Theorem 3.4. Let ℓ > 2 be a prime, let (V , eV ) be a finite-dimensional symplectic space over Fℓ and M a subgroup of Γ :=

GSp(V , eV ). Assume thatM contains a transvection and that V is a simpleFℓ[M]-module. Denote by R the subgroup ofM generated
by the transvections in M.

(a) Then there is a non-zero symplectic subspaceW ⊂ V , which is a simple Fℓ[R]-module, such that the following properties hold
true:
(i) Let H = StabM(W ). There is an orthogonal direct sum decomposition V =


g∈M/H gW. In particular |M/H| ≤ dim(V ).

(ii) R ∼=


g∈M/H Sp(W ) and NΓ (R) ∼=


g∈M/H GSp(W ) o Sym(M/H).
(iii) R ⊂ M ⊂ NΓ (R).
Denote by ϕ : NΓ (R)→ Sym(M/H) the projection.

(b) Let e ∈ N. Let E/Fℓ be a finite extension and ρ : E× → M ⊂ GSp(V , eV ) a homomorphism such that the corresponding
representation of E× on V has amplitude amp(ρ) ≤ e. If ℓ > dim(V )e+ 1, then ϕ(ρ(E×)) = {1}.

Hall’s proof in [11,12] addresses a slightly less general situation. We will present a self-contained proof of Theorem 3.4
in the Appendix.

Remark 3.5. Assume that in the situation of Theorem 3.4 the module V is a simple Fℓ[ker(ϕ) ∩ M]-module. Then V
is in particular a simple Fℓ[ker(ϕ)]-module and ker(ϕ) =


g∈M/H GSp(W ). This is only possible if M = H , V = W and

R = Sp(V , e) ⊂ M .

We now state the main result of this section.

Theorem 3.6. Let K be a finitely generated field. Let (A, λ) be a polarized abelian variety over K of Hall type. Then (A, λ) has big
monodromy.

The case where K is a global field is due to Hall (cf. [12]) and we follow his line of proof to some extent, but we need a lot
of additional arguments in order to make things work in the more general situation. The proof will occupy almost the rest
of this section.

There is a constant ℓ0 > max(deg(λ), char(K)) such that the following holds true for all primes ℓ ≥ ℓ0:

1. The subgroup MK (A[ℓ]) of GSp(A[ℓ], eλ
ℓ) contains a transvection. Denote by Rℓ the subgroup of MK (A[ℓ]) generated by

the transvections in MK (A[ℓ]) (cf. Proposition 1.2).
2. A[ℓ] is a simple Fℓ[GK ]-module (cf. Proposition 3.1).

Now Hall’s group theory result (cf. Theorem 3.4) gives – for every prime ℓ ≥ ℓ0 – a non-zero symplectic subspace
Wℓ ⊂ A[ℓ], which is simple as a Fℓ[Rℓ]-module such that the properties (i)–(iii) of Theorem 3.4 are satisfied. Let Hℓ be
the stabilizer ofWℓ under the action of MK (A[ℓ]). DefineMℓ :=MK (A[ℓ]) and Γℓ := GSp(A[ℓ], eλ

ℓ). Then
Mℓ/Hℓ

Sp(Wℓ, eλ
ℓ)
∼= Rℓ ⊂ Mℓ ⊂ NΓℓ

(Rℓ) =


Mℓ/Hℓ

Sp(Wℓ, eλ
ℓ) o Sym(Mℓ/Hℓ),

and we denote by ϕℓ : NΓℓ
(Rℓ)→ Sym(Mℓ/Hℓ) the projection. We have the following property (cf. Remark 3.5):

If A[ℓ] is a simple Fℓ[ker(ϕℓ) ∩ Mℓ]-module for some prime ℓ ≥ ℓ0, then Mℓ = Hℓ, Wℓ = A[ℓ] and Mℓ ⊃ Sp(A[ℓ], eλ
ℓ) for

this prime ℓ.
We denote by Nℓ the fixed field inside Ksep of the preimage ρ−1A[ℓ](Mℓ ∩ ker(ϕℓ)), where ρA[ℓ] : GK → Γℓ is the mod-ℓ

representation attached toA. ThenNℓ is an intermediate field ofK(A[ℓ])/K which is Galois overK , andG(Nℓ/K) is isomorphic
to the subgroup ϕℓ(Mℓ) of Sym(Mℓ/Hℓ). In particular [Nℓ : K ] ≤ (2 dim(A))! is bounded independently of ℓ. If we denote by
N :=


ℓ≥ℓ0 prime Nℓ the corresponding composite field, thenGN =


ℓ≥ℓ0 prime GNℓ

. Hence the following property holds true.

If A[ℓ] is simple as a Fℓ[GN ]-module for some prime ℓ ≥ ℓ0, then Mℓ ⊃ Sp(A[ℓ], eλ
ℓ) for this prime ℓ. (∗)

Proof of Theorem 3.6 in the special case char(K) > 0. If char(K) > 0, then the Galois group G(K(A≠p)/K) (p := char(K))
is finitely generated, because K then has property F by Corollary 2.5. Furthermore Nℓ is an intermediate field of K(A≠p)/K
which is Galois over K and with [Nℓ : K ] bounded independently of ℓ. Hence N/K must be finite. In particular N is finitely
generated. A second application of the result of Faltings and Zarhin (cf. Proposition 3.1) yields a constant ℓ1 ≥ ℓ0 such that
A[ℓ] is a simple Fℓ[GN ]-module for all primes ℓ ≥ ℓ0. Hence A has big monodromy by (∗). �

To finish the proof of Theorem 3.6 we assume for the rest of the proof that char(K) = 0. We shall prove that N/K is finite
also in that case, but the proof of this fact is more complicated, because now K is not F -finite (cf. Remark 2.6). We briefly
sketch the main steps in the proof, before we go into the details: The first and hardest step is to show that the algebraic
closure L of Q in N is a finite extension of Q. In order to achieve this we will construct a finite extension L′/Q such that some
L′-rational ‘‘place’’ of KL′ splits up completely into L′-rational ‘‘places’’ of NℓL′ for every sufficiently large prime ℓ. We use
this to show that G(NL/KL) ∼= G(NLsep/KLsep) and the fact that the latter group can be proved to be finite, because KLsep is
F -finite (unlike K itself). This suffices to prove that N/K is finite. Once we know this, we shall proceed as in the positive
characteristic case above.
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We now go into the details. Let F be the algebraic closure of Q in K . Then F is a number field. Let S be a smooth affine
F-variety with function field K such that A extends to an abelian scheme A over S with generic fibre A (i.e. such that A
has good reduction along S). Let Sℓ be the normalization of S in Nℓ and let S ′ℓ be the normalization of Sℓ in K(A[ℓ]). Then
S ′ℓ → Sℓ → S are finite étale covers. (Note that char(F(s)) = 0 for every point s ∈ S.) In particular S ′ℓ and Sℓ are smooth
F-schemes. (Compare the diagram below.)

Fix a geometric point P ∈ S(Fsep) and denote by AP := A ×S Spec(F(P)) the corresponding special fibre of A. Then
AP is an abelian variety over the number field F(P). Fix for every ℓ ≥ ℓ0 a geometric point Qℓ ∈ Sℓ(Fsep) over P and a
geometric point Q ′ℓ ∈ S ′ℓ(Fsep) over Qℓ. Then F(Q ′ℓ)/F(Qℓ) and F(Qℓ)/F(P) are finite extensions of number fields. Note that
F(Q ′ℓ) = F(P)(AP [ℓ]) by Lemma 2.2. Denote by O (resp. Oℓ, resp. O′ℓ) the integral closure of Z in F(P) (resp. in F(Qℓ), resp.
in F(Q ′ℓ)). For every prime ℓ ≥ ℓ0 we have the following diagram on the level of schemes

Spec(K(A[ℓ])) //

��

Spec(Nℓ) //

��

Spec(K)

��
S ′ℓ // Sℓ

// S

Spec(F(P)(AP [ℓ])) Spec(F(Q ′ℓ)) //

��

OO

Spec(F(Qℓ)) //

��

OO

Spec(F(P))

��

OO

Spec(O′ℓ) // Spec(Oℓ)
fℓ // Spec(O)

We now study the ramification of prime ideals m ∈ Spec(O) in the extension F(Qℓ)/F(P). Let Pbad be the (finite) set of
primes p ∈ Spec(O) where AP/F(P) has bad reduction.
Lemma 3.7. There is a constant ℓ2 ≥ ℓ0 with the following property: for every prime number ℓ ≥ ℓ2 the map fℓ : Spec(Oℓ)→
Spec(O) is étale at every point m ∈ Spec(O) outside of Pbad.
Proof. Let ℓ2 := max(ℓ0, (2 dim(A))![F(P) : Q] + 2).

Now let ℓ ≥ ℓ2 be a prime number. Let m ∈ Spec(O) be an arbitrary prime ideal with m /∈ Pbad. We have to show that m

is unramified in F(Qℓ). Let p = char(O/m) be the residue characteristic of m.
If p ≠ ℓ, then m is unramified even in F(Q ′ℓ) = F(P)(AP [ℓ]).
We can hence assume that p = ℓ . Let mℓ ∈ Spec(Oℓ) be a point over m and m′ℓ ∈ Spec(O′ℓ) a point over mℓ. Let D(m′ℓ)

(resp. D(mℓ)) be the decomposition group of m′ℓ/F(P) (resp. of mℓ/F(P)) and I(m′ℓ) (resp. I(mℓ)) the corresponding inertia
group. Let P(m′ℓ) (resp. P(mℓ)) be the (unique) p-Sylow subgroup of I(m′ℓ) (resp. I(mℓ)).

We have the following commutative diagram on the level of groups:
Mℓ/Hℓ

GSp(Wℓ)
� � / / NΓℓ

(Mℓ) // // Sym(Mℓ/Hℓ)

Mℓ ∩ ker(ϕℓ)
� � /?�

O

Mℓ
// //?�

O

ϕℓ(Mℓ)
?�

O

G(K(A[ℓ])/Nℓ)
� � / G(K(A[ℓ])/K) // // G(Nℓ/K)

G(F(Q ′ℓ)/F(Qℓ))
� � /

?�

O

G(F(Q ′ℓ)/F(P)) // //
?�

O

G(F(Qℓ)/F(P))
?�

O

D(m′ℓ)
// //

?�

O

D(mℓ)
?�

O

I(m′ℓ) // //
?�

O

I(mℓ)
?�

O

P(m′ℓ)
// //

?�

O

P(mℓ)
?�

O
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Wehave to prove that the image of I(m′ℓ) in Sym(Mℓ/Hℓ) by themaps in the diagram is {1}. Now p = ℓ > (2 dim(A))! due
to our choice of ℓ2 and |Sym(Mℓ/Hℓ)| ≤ (2 dim(A))!, hence P(m′ℓ) maps to {1} in Sym(Mℓ/Hℓ). In particular, P(mℓ) = {1}.
Consider the tame ramification group It = I(m′ℓ)/P(m′ℓ). It is a cyclic group of order prime to p. Choose a subgroup C ⊂ I(m′ℓ)
that maps isomorphically onto It under the projection. It is enough to show that C maps to {1} in Sym(Mℓ/Hℓ).

By Raynaud’s theorem (cf. Theorem 3.3) there is a finite extension E/Fp and an epimorphism E× → C such that the
resulting representation

E× → C → Aut(AP [ℓ]) = Aut(A[ℓ])

has amplitude ≤ e, where e is the ramification index of m over Q. Clearly e ≤ [F(P) : Q]. By part b) of Theorem 3.4, the
image of E× in Sym(Mℓ/Hℓ) is {1}. Hence the image of C in Sym(Mℓ/Hℓ) is {1} as desired. �

Lemma 3.8. Let L be the algebraic closure of F in N. Then L/F is a finite extension.

Proof. Let L′ :=


ℓ≥ℓ0 prime F(Qℓ). For every prime ℓ ≥ ℓ2 the Galois extension of number fields F(Qℓ)/F(P) is unramified
outside Pbad by Lemma 3.7. Furthermore [F(Qℓ) : F(P)] ≤ (2 dim(A))! for every prime ℓ ≥ ℓ2. The Theorem of Hermite–
Minkowski (cf. [14], p. 122) implies that


ℓ≥ℓ2 prime F(Qℓ) is a finite extension of F(P). This in turn implies that L′/F is a finite

extension. It is thus enough to show that L ⊂ L′.
Recall that K = F(S) is the function field of the F-variety S and Sℓ is the normalization of S in the finite Galois extension

Nℓ/K . Denote by Ŝ the normalization of S in N and by hℓ : Ŝ → Sℓ the canonical projection. The canonical morphism Ŝ → S
is surjective, hence there is a point P̂ ∈ Ŝ(Fsep) over P . The point hℓ(P̂) ∈ Sℓ(Fsep) lies over P . Hence hℓ(P̂) is conjugate to Qℓ

under the action of G(Nℓ/K). This implies that F(hℓ(P̂)) = F(Qℓ). For every ℓ ≥ ℓ0 there is a diagram

Spec(N) // Spec(Nℓ) // Spec(K)

Ŝ
hℓ //

��

OO

Sℓ
//

��

OO

S

��

OO

Spec(F(P̂)) // Spec(F(Qℓ)) // Spec(F(P))

where the morphisms Sℓ → S are étale covers and N =


ℓ≥ℓ0
Nℓ. It follows that F(P̂) =


ℓ≥ℓ0

F(Qℓ) = L′. On the other
hand L is the algebraic closure of F in N , hence Ŝ is a scheme over L. This implies that L is a subfield of F(P̂). Hence in fact
L ⊂ L′ as desired. �

Endof the proof of Theorem 3.6 in the case char(K) = 0.Wehave an isomorphismG(NLsep/KLsep) ∼= G(N/KL), becauseN/L
and KL/L are regular extensions. The field KLsep is F -finite by Corollary 2.5. Hence the profinite group G(KLsep(Ator)/KLsep)
is finitely generated. As NLsep ⊂ KLsep(Ator), G(NLsep/KLsep) must be finitely generated as well. Furthermore NLsep =

ℓ≥ℓ0
NℓLsep where [NℓLsep : KLsep] is bounded independently from ℓ. Hence G(NLsep/KLsep) is finite and this implies that

N/KL is a finite extension. On the other hand it follows from Lemma 3.8 that KL/K is finite. Hence N/K is a finite extension.
Consequently N is finitely generated, because K is finitely generated. Proposition 3.1 yields a constant ℓ3 > ℓ0 such that
A[ℓ] is a simple Fℓ(GN)-module for every prime ℓ ≥ ℓ3. Hence A/K has big monodromy by (∗), as desired. �

4. Applications

In this section we apply our methods to prove a generalization of a result of Ellenberg, Elsholz, Hall and Kowalski on
endomorphism rings and simplicity of fibres in certain families of abelian varieties (cf. [6, Theorem 8]).

Proposition 4.1. Let K be a field and (A, λ) a polarized abelian variety over K with big monodromy. Let L/K be a finite extension.
Then the following properties hold.

(a) There is a constant ℓ0 ≥ max(char(K), deg(λ)) such that ML(A[ℓ]) ⊃ Sp(A[ℓ], eλ
ℓ) for every prime number ℓ ≥ ℓ0.

(b) A is geometrically simple.

Proof. Part (a). Let E0 be the maximal separable extension of K in L and E/K a finite Galois extension containing E0. By our
assumption there is a constant ℓ0 > max(deg(λ), char(K), 5) such that MK (A[ℓ]) ⊃ Sp(A[ℓ], eλ

ℓ) for every prime ℓ ≥ ℓ0.
For ℓ ≥ ℓ0 let Kℓ be the fixed field of Sp(A[ℓ], eλ

ℓ) in K(A[ℓ])/K . Then MKℓ
(A[ℓ]) = Sp(A[ℓ], eλ

ℓ) and MEKℓ
(A[ℓ]) is a normal

subgroup of MKℓ
(A[ℓ]) of index≤ [E : K ]. Put ℓ1 := max(ℓ0, [E : K ] + 1). Then

|MEKℓ
(A[ℓ])| ≥

1
[E : K ]

|Sp(A[ℓ], eλ
ℓ)| > 2
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for all primes ℓ ≥ ℓ1. On the other hand the only proper normal subgroups of Sp(A[ℓ], eλ
ℓ) are {±1} and the trivial group (cf.

[21, p. 53]). Hence

ME0(A[ℓ]) ⊃ME(A[ℓ]) ⊃MEKℓ
(A[ℓ]) = Sp(A[ℓ], eλ

ℓ)

for all primes ℓ ≥ ℓ1. As L/E0 is purely inseparable, we find

ML(AL[ℓ]) =ME0(A[ℓ]) ⊃ Sp(A[ℓ], eλ
ℓ)

for all primes ℓ ≥ ℓ1 as desired.
Part (b). Let A1, A2/K be abelian varieties and f : AK → A1×A2 an isogeny. Then A1, A2 and f are defined over some finite

extension L/K . Hence there is an Fℓ[GL]-module isomorphism A[ℓ] ∼= A1[ℓ] × A2[ℓ] for every prime ℓ > deg(f ). By Part (a)
ML(A[ℓ]) ⊃ Sp(A[ℓ]), eλ

ℓ) for all sufficiently large primes ℓ. Hence A[ℓ] is a simple Fℓ[ML(A[ℓ])]-module and in particular a
simple Fℓ(GL)-module for all sufficiently large primes ℓ. This is only possible if A1 = 0 or A2 = 0. �

Let F be a finitely generated field and K/F a finitely generated transcendental field extension and A/K an abelian variety.
We say that A/K is weakly isotrivial with respect to F , if there is an abelian variety B/F and aK -isogeny BK → AK .
Proposition 4.2. Let F be a finitely generated field, K/F a finitely generated separable transcendental field extension and (A, λ)
a polarized abelian variety over K . Assume that A/K has big monodromy and that A/K is not weakly isotrivial with respect to F .
Define K ′ := FsepK. Then there is a constant ℓ0 ≥ max(char(K), deg(λ)) such that MK ′(A[ℓ]) = Sp(A[ℓ], eλ

ℓ) for every prime
number ℓ ≥ ℓ0.

Proof. Let ℓ0 ≥ max(deg(λ), char(K), 5) be a constant such that MK (A[ℓ]) ⊃ Sp(A[ℓ], eλ
ℓ) for every prime ℓ ≥ ℓ0. Let

ℓ ≥ ℓ0 be a prime number. Then we have

MK ′(A[ℓ]) ⊂ Sp(A[ℓ], eλ
ℓ) ⊂MK (A[ℓ]),

because K ′ contains µℓ. Furthermore MK ′(A[ℓ]) a normal subgroup of MK (A[ℓ]), because K ′/K is Galois. It follows that
MK ′(A[ℓ]) is normal in Sp(A[ℓ], eλ

ℓ).
The only proper normal subgroups in Sp(A[ℓ], eλ

ℓ) are {1} and {±1} (cf. [21, p. 53]), because ℓ ≥ 5. Hence either
MK ′(A[ℓ]) = Sp(A[ℓ], eλ

ℓ) or |MK ′(A[ℓ])| ≤ 2. Let Λ be the set of prime numbers ℓ ≥ ℓ0 where |MK ′(A[ℓ])| ≤ 2. We
claim that Λ is finite.

For every ℓ ∈ Λ we have [K ′(A[ℓ]) : K ′] ≤ 2. Furthermore G(K ′(A≠p)/K ′) is profinitely generated, where p = char(K).
To see this note that

G(K ′(A≠p)/K ′) = G(FK ′(A≠p)/FK ′)
becauseF/Fsep is purely inseparable and use Corollary 2.5. HenceN :=


ℓ∈Λ K ′(A[ℓ]) is a finite extension of K ′. In particular

N/Fsep is a finitely generated regular extension. A/K must be geometrically simple by our assumption that A/K has big
monodromy (cf. Proposition 4.1). In particular AN is simple. Hence the assumption that A is notweakly isotrivial with respect
to F implies that the Chow trace TrN/Fsep(AN) is zero. It follows by the Mordell–Lang–Néron theorem (cf. [4, Theorem 2.1])
that A(N) is a finitely generated Z-module. In particular the torsion group A(N)tor is finite. On the other hand, A(N) contains
a non-trivial ℓ-torsion point for every ℓ ∈ Λ. It follows that Λ is in fact finite.

Thus, after replacing ℓ0 by a bigger constant, we see that MK ′(A[ℓ]) = Sp(A[ℓ], eλ
ℓ) for all primes ℓ ≥ ℓ0. �

Corollary 4.3. Let F be a finitely generated field and K = F(t) the function field of P1/F . Let A/K be a polarized abelian variety.
Let U ⊂ P1 be an open subscheme such that A extends to an abelian schemeA/U. For u ∈ U(F) denote by Au/F the corresponding
special fibre of A. Assume that A is not weakly isotrivial with respect to F and that either condition (i) or (ii) is satisfied.

(i) A is of Hall type.
(ii) char(K) = 0, End(A) = Z and dim(A) = 2, 6 or odd.

Then the sets:

X1 := {u ∈ U(F) | End(Au) ≠ Z}

and

X2 := {u ∈ U(F) | Au/F is not geometrically simple}

are finite.

Proof. The abelian variety A/K has big monodromy. In case (i) this follows by Theorem 3.6. In case (ii) this is a well-
known theorem of Serre, cf. [18,19].) Define K ′ := FsepK . As A/K is not weakly isotrivial with respect to F by assumption,
Proposition 4.2 implies that there is a constant ℓ0 > char(K) such thatMK ′(A[ℓ]) = Sp(A[ℓ], eλ

ℓ) for all primes ℓ ≥ ℓ0. Hence
AK ′/K ′ has big monodromy. Now Propositions 4 and 7 of [6] imply the assertion. Note that the notion of ‘‘big monodromy’’
in the paper [6] is slightly different from ours. �
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Appendix. Proof of Theorem 3.4

The aim of this appendix is to provide a self-contained proof of Theorem 3.4, which was first proven in the papers
[11,12]. We have also taken advantage of the exposition in [13].

Let ℓ > 2 be a prime number, let (V , e) be a finite-dimensional symplectic space over Fℓ and Γ = GSp(V , e). In what
followsM will be a subgroup of Γ which contains a transvection, such that V is a simple Fℓ[M]-module.

Remark A.1. • For a set U ⊂ V , we will denote by ⟨U⟩ the vector space generated by U in V .
• For a vector u ∈ V and a scalar λ ∈ Fℓ, we denote by Tu[λ] ∈ Γ the morphism v → v+ λe(v, u)u. For each transvection

τ ∈ Γ there exist u ≠ 0, λ ≠ 0 such that τ = Tu[λ], and ⟨u⟩ = ker(τ − Id). If this is the case we will say that ⟨u⟩ is the
direction of τ . Each nonzero vector in ⟨u⟩ shall be called a direction vector of τ .
• Given a group G ⊂ Γ , we will denote by L(G) the set of vectors u ∈ V such that there exists a transvection in G with

direction vector u.
• We will say that a group G ⊂ Γ fixes a vector spaceW if {g(w) : g ∈ G, w ∈ W } ⊂ W .

The proof of Part (iii) of Theorem 3.4 is quite simple and is based on the following observation.

Lemma A.2. Let G ⊆ GSp(V ) be a subgroup and R the subgroup of G generated by the transvections in G. Then for all g ∈ G,
r ∈ R, grg−1 ∈ R.

Proof. Note that if T = Tv[λ] ∈ G is a transvection, then gTv[λ]g−1 = Tgv[λ] is also a transvection, which belongs to G,
therefore also to R. Now if we have an element of R, say T1 ◦ · · · ◦ Tk for certain transvections T1, . . . , Tk, then g(T1 ◦ · · · ◦
Tk)g−1 = (gT1g−1) ◦ · · · ◦ (gTkg−1) is the composition of transvections of G, therefore an element of R. �

Part (i) of Theorem 3.4 is essentially Lemma 3.2 of [11]. Before proceeding to prove it, note the following elementary
facts.

Lemma A.3. Let G be a group that acts irreducibly on V , and let W ⊂ V a nonzero vector space. Then V =


g∈G gW.

Proof. Let S be the set S = {g(w) : g ∈ G, w ∈ W }. Consider the vector space ⟨S⟩. This vector space is fixed by G, hence
since G acts irreducibly on V it must coincide with V . �

Lemma A.4. Let W be a vector subspace of V , and assume that it is fixed by a transvection T = Tu[λ]. Then either u ∈ W or
u ∈ W⊥.

Proof. Recall that, for all v ∈ V , T (v) = v + λe(v, u)u. If u ∉ W , the only way for T to fix W is that e(w, u) = 0 for all
w ∈ W . �

Proof of Theorem 3.4(i). Consider the action of R on V . The first step is to fix one simple nonzero R-submoduleW contained
in V (This always exists because V is finite-dimensional as an Fℓ-vector space).

By LemmaA.3, we know that V =


g∈M gW . Moreover, for g1, g2 ∈ M it holds that g1W = g2W if and only if g1H = g2H .
Therefore we can write V =


g∈M/H gW , where H is the stabilizer of W in M . The proof of (i) boils down to prove that the

sum is direct and orthogonal, that is, if g1H ≠ g2H , then g1W ∩ g2W = 0 and g1W ⊂ (g2W )⊥. Equivalently, we will prove
that for any g ∈ M , if gW ≠ W , then gW ∩W = 0 and gW ⊥ W .

The first claim, namely gW ≠ W implies gW ∩W = 0 is easy. The key point is to note that for each g ∈ M , gW is also
fixed by R. Take r ∈ R, gw ∈ gW . Then rgw = g(g−1rg)w ∈ gW since g−1rg ∈ R by Lemma A.2 and hence fixes W . Now
it follows that W ∩ gW is fixed by R, and thus is an R-subrepresentation of W . But W is an simple R-module, hence since
W ∩ gW ≠ W , it must follow that gW ∩W = 0.

To prove that gW ≠ W implies gW ⊥ W , we need to make first the following very important observation.

Claim A.5. The set L(M) ∩W generates W.
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Proof of Claim A.5. First let us see that L(M) ∩ W is nontrivial. Since any transvection in M fixes W by definition of W ,
it follows by Lemma A.4 that either its direction vector belongs to W , or else it is orthogonal to W , in which case the
transvection acts trivially on W . But it cannot happen that all transvections in M act trivially on W . For, if a transvection
T acts trivially on W , then for all g ∈ M , gTg−1 acts trivially on gW . But since R = gRg−1 (because of Lemma A.2), then if
all R acts trivially on W , it also acts trivially on gW . Now recall that V =


g∈M gW . Then R would act trivially on V . But R

contains at least a transvection, and this does not act trivially on V . We have a contradiction.
Hence L(M) ∩ W is non zero. But now observe that this set is fixed by the action of R, since the elements of M bring

direction vectors into direction vectors. Therefore the vector space ⟨L(M) ∩ W ⟩ ⊂ W is fixed by the action of R. Since we
are assuming W is an simple R-module, it follows that ⟨L(M) ∩W ⟩ = W . �

Now we are able to prove that if gW ≠ W , then gW ⊂ W⊥. Because of the previous claim, it suffices to show that, for
any nonzero vector w ∈ W which is the direction vector of a transvection inM , say T , w ∈ (gW )⊥. Now recall that, since T
fixes gW , by Lemma A.4 either w ∈ gW or w ∈ (gW )⊥. But gW ∩W = 0, so w ∈ (gW )⊥. �

Before proving Part (ii) of Theorem 3.4, we will introduce some notation.
Definition A.6. Let g ∈ M . We will denote by Rg the subgroup of R generated by the transvections that act non-trivially on
gW .

The following lemma is Lemma 7 of [12].
Lemma A.7. Let g1, g2 ∈ M with g1H ≠ g2H. Then the commutator [Rg1 , Rg2 ] is trivial.

Proof. For i = 1, 2, let Ti ∈ Rgi be a transvection. We will see that they commute. By Lemma A.4 applied to giW , either Ti
acts trivially on giW or its direction vector, say ui, belongs to giW . By definition of Rgi we have the second possibility. But
because of Part (i) of Theorem 3.4, for each g ∈ M such that giW ≠ gW , giW ∩ gW = 0, hence ui ∉ gW . Therefore again
by Lemma A.4 applied now to gW , it follows that Ti acts trivially on gW . Therefore T1 and T2 commute on each gW , since at
least one of them acts trivially on it. Since V =


g∈M/H gW , it follows that they commute on all V . �

Proof of Theorem 3.4(ii). LetM/H = {g1H, . . . , gsH}, with g1 = Id. Define the map

P :
s

i=1

Rgi → R

(r1, r2, . . . , rs) → r1 · r2 · · · rs.

Since by Lemma A.7 elements from the different Rgi commute, this map is a group homomorphism. Let us see that it is
also an isomorphism.

Assume that r1 · r2 · · · · rs = Id, and that there is a certain rj which is not the identity matrix. Then rj must act
nontrivially on a certain vector v ∈ V . Since the elements of Rgj act trivially on the elements of giW for i ≠ j and V =s

i=1 giW , we can assume that v ∈ gjW . But then the remaining ri with i ≠ j act trivially on v and on rj(v). Therefore
Id(v) = r1 · · · · · rs(v) = rj(v) ≠ v, which is a contradiction. To prove surjectivity, it suffices to note that each transvection
T of M belongs to one of the Rgi , (hence each element of R can be generated by elements of ∪iRgi ). And this holds because,
since T fixes all the giW , the direction vector of T must either belong to giW or be orthogonal to it because of Lemma A.4,
and since V = ⊕s

i=1giW it cannot be orthogonal to all the giW . Therefore we get that R ≃
s

i=1 Rgi .
Now we are going to apply the following result [23, Main Theorem]:

Theorem A.8. Suppose G ⊂ GL(n, k) is an irreducible group generated by transvections. Suppose also that k is a finite field of
characteristic ℓ > 2, and that n > 2. Then G is conjugate in GL(n, k) to one of the groups SL(n, k0), Sp(n, k0) or SU(n, k0), where
k0 is a subfield of k.

Note that, if n = 2, the result is also true and well known (cf. [5, Section 252]).
Now Rg1 is generated by transvections, and acts irreducibly on W (because R acts irreducibly on W , and Rg1 is the group

generated by all those transvections inM that act nontrivially onW ). Therefore Rg1 is conjugated to Sp(W ). Since all Rgi are
conjugated to Rg1 , the same holds for them. Therefore we have the isomorphism R ≃

s
i=1 Sp(W ).

Finally, we can viewH1 =
s

i=1 GSp(W ) ≃
s

i=1 GSp(giW ) as the subgroup ofΓ fixing each giW and, fixing a symplectic
basis on each giW , we can view H2 = Sym(M/H) as the subgroup of Γ that permutes the giW by bringing the fixed
symplectic basis of each giW into the fixed symplectic basis of another gjW . The group generated by H1 and H2 inside Γ ,
which is the group of elements of Γ that permute the giW , is the semidirect product H1 o H2.

Recall that NΓ (R) = {g ∈ Γ : gRg−1 = R}. Note that g ∈ NΓ (R) if and only if for all transvections T ∈ M , gTg−1 ∈ R.
Now, if T = Tv[λ], it holds that gTg−1 = Tg(v)[λ], and this transvection belongs to R if and only if it is a transvection of M ,
that is to say, if and only if g(v) ∈ L(M). Therefore g ∈ NΓ (R) if and only if g(L(M)) = L(M). Now since R is isomorphic tos

i=1 Sp(giW ), L(M) is the disjoint union of the giW . And moreover, if W is an R-module and g ∈ NΓ (R), then R fixes gW .
Therefore, if W is an simple R-module, then gW ≠ W implies that gW ∩W = 0. Thus if g ∈ NΓ (R), then g permutes the
giW . In other words, NΓ (R) ⊂

s
i=1 GSp(W )o Sym(M/H). Reciprocally, each element of

s
i=1 GSp(W )o Sym(G/H) carries

elements of


i giW in elements of


i giW , that is to say, carries L(M) into L(M), and therefore belongs to NΓ (R). �

This completes the proof of Part (a) of Theorem 3.4.
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Proof of Part (b) of Theorem 3.4. Recall that (V , e) is a symplectic space over Fℓ and M a subgroup of Γ := GSp(V , e). M
contains a transvection andV is a simpleFℓ[M]-module by assumption. Furthermore R is the subgroup ofM generated by the
transvections inM , 0 ≠ W ⊂ V is a simple Fℓ[R]-module andH = StabM(W ).We already proved that there is an orthogonal
direct sum decomposition V =


g∈M/H gW . Furthermore R ∼=


g∈M/H Sp(W ), NΓ (R) ∼=


g∈M/H GSp(W ) o Sym(M/H)

and R ⊂ M ⊂ NΓ (R). Denote by ϕ : NΓ (R)→ Sym(M/H) the projection.
Let E/Fℓ be a finite extension and ρ : E× → M ⊂ GL(V ) a representation of amplitude amp(ρ) ≤ e. Assume that

ℓ > e dim(V )+ 1. We have to prove that ϕ(ρ(E×)) = {1}.
Define S := ker(ϕ ◦ ρ) ⊂ E×. Then [E× : S] ≤ |M/H| ≤ dim(V ), and this implies e[E× : S] < ℓ− 1. Furthermore

ρ(S) ⊂ ker(ϕ) ∼=


g∈M/H

GSp(gW ).

Obviously ρ(S) commutes with the centre

Z(ker(ρ)) ∼=


g∈M/H

F×ℓ IdgW

of ker(ρ). Now by Hall [12, Lemma 3] ρ(E×) commutes with Z(ker(ρ)), because e[E× : S] < ℓ − 1. It can easily be seen
that the centralizer of Z(ker(ρ)) in NΓ (R) is equal to ker(ϕ) ∼=


g∈M/H GSp(gW ). Hence ρ(E×) ⊂ ker(ϕ) and this implies

ϕ ◦ ρ(E×) = {1}. �
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