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1. Introduction 

Calmodulin is a calcium-binding protein which 
activates a number of Ca”dependent enzymes, and is 

a major cytoplasmic calcium receptor of eukaryotic 
cells [l-4]. It is unique in its ability to interact with 
so many different proteins, and this raises the ques- 
tion of which regions in the molecule are responsible 
for its biological properties, Calmodulin possesses 4 
binding sites for Ca”, each associated with a particu- 
lar region of the primary structure [4]. One approach 

which can be used to investigate this problem is there- 
fore to isolate peptide fragments containing particular 
Ca”’ binding sites [5,63, and to test whether they can 
activate calmodulindependent enzymes. In this paper 
the ability of such fragments to activate phosphoryl- 
ase kinase and cyclic nucleotide phosphodiesterase 
has been compared, as well as their ability to substi- 
tute for troponin-C in neutralizing the inhibition of 
actomyosin-ATPase by troponin-I. These studies 
demonstrate that more than one region of the calmo- 
dulin molecule is capable of interacting with its target 
proteins, and that different calmodu~ndependent pro- 
teins do not interact with calmodulin in an identical 
manner. 

2. Materials and methods 

2 .I. Preparation of proteins and fragments of calmo- 
dulin and troponin-C 

Calmodulin and cyclic nucleotide phosphodiester- 
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ase were isolated from bovine brain as in f7], and 
phosphorylase kinase from rabbit skeletal muscle as 
in [8]. The subunits of troponin [9], actin [lo], myo- 
sin [ 1 l] and tropomyosin [ 121 were isolated from 
rabbit skeletal muscle by standard procedures. 

Fragments of calmodulin were obtained by con- 
trolled tryptic digestion and isolated by polyacrylam- 
ide gel electrophoresis in the presence of urea as in 
[5,6]. Different tryptic fragments were obtained 
depending on whether Ca’* (TR-C peptides) or EDTA 
(TR-E peptides) was present during the digestions. 
These fragments contained different Ca2’-binding 
regions and their compositions are illustrated in fig.1. 
Protein concentrations were determined by amino 

acid analysis. 
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Fig.1. Compositions of the different fragments of calmodulin. 

TRC fragments are produced by limited tryptic digestion in 
the presence of Caz+, and TR-E fragments by digestion in the 

presence of EDTA. The 4 Ca2+-binding domains are repre- 

sented by the hatched areas. 
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2 2. ~easl~~e~enrs oj erzzymc activities 

(a) Actomyosin ATPase was measured at 25°C by 
the phosphate released from ATP as in [ 131. The incu- 
bation mixture (1 .O ml) contained 0.2 mg tropomyosin/ 
ml, 0.06 mg troponin-I/ml, 10 mM Tris-HCl (pH 7.5), 
I .O mM dith~othreito1, 1 .O mM MgC12, 30 mM KC1 and 
I.0 n_tM ATP. The assays also contained either tropo- 
nin_C, calmodulin, or tryptic fragments derived from 
these proteins, and either 1 .O mM EGTA or 0.1 mM 

CaCl,. The reactions were initiated with ATP and ter- 
minated after 5 min by the addition of sodium dodecyl 
Sulphate t0 1%. 

(b) PhosphoryIase kinase was assayed at pH 6.8 and 
30°C as in [14] using N’<2-hydroxymethyl)-ethylene 
diamine-Nfl’,N’-triacetate to buffer the free Ca2+ con- 
centration at 0.05 mM. The assays were carried out in 
the presence and absence of caiitlodu~in or caImodLilin 

fragments. 

(c) The activity of cyclic nucleotide phosphodiester- 
ase was determined in the presence of 0.1 mM CaCl, 
by a two stage assay, the phosphate liberated in the 
second stage being measured as in [15]. 

3. Results 

A Vase by rropon~-I using ca~~nod~~~~~ frag~n~~~s 

Calmodulin can replace trop0nin-C in neutralizing 
the inhibition of actomyosin ATPase by troponin-I 
[ 161. As reported briefly [ 171, troponin-C fragments 
can substitute for intact trop0nin-C in this reaction 
and the most effective fragments are TR2-C and TR,-E. 
Fragments of cal~~odul~ behave similarly to the 
homologous peptides of troponinC, although the 
effect of the TR,-E fragment is somewhat weaker 
than that of the TRP-C fragment (fig.2). These and the 
results in [5,6f concerning the interaction of calmo- 
dulin fragments with troponin-I under the condition 
of urea-poiyacryIamide gel electrophoresis, implicate 
residues 78-90 (which are common to both the 
TR1-E and TR& fragments) as an important region 
in the binding of calmodulin to troponin-I. 

3 2. Activation of ~~os~~~o~~ase kinase b,t f~agrnents 

o~~almodu~i~ 

Phosphorylase kinase is a Ca2’dependent enzyme 
whose dependence on Ca*’ is conferred by a tightly 
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Fig.2. ~e~ltra~zation of troponin-1 (Tn-I) in~~ibit~on of acto- 

myosin ATPase by calmodulin and its tryptic fragments. 

Assays were carried out in the presence ofCa’+ as in section 2. 

The activity of actomyosin ATPase in the presence of Tn-I 

was taken as 0% and in the absence as 100%: (7) calmodulin; 

(3 TR,C; (*) TR,-E; (0) TR,C. 

bound molecule of calmodulin, termed the &-subunit. 
The enzyme is, however, activated a further 5-fold at 
pH 6.8 and saturating concentrations of Ca” byinter- 
action with a second molecule of calmodulin (termed 
the 6’-subunit) [ 141. Half-maximal activation by the 
~‘-sub~Init occurs at 1 .O X lo-” M ca~nlodL~lin. The 
calmodulin fragments TR&, TR,-E and TRI-C were 
found to be capable of activating phosphorylase 
kinase, whereas fragment TR3-E was completely 
inactive (fig.3). Half-maximal activation occurred at 
9 X 10m7 M for TRp-C and 2 X lo-’ M for both TRI-C 
and TR ,-E. These fragments were therefore IOO- and 
2000-fold less effective than intact calmodulin, respec- 
tively . 

3 3 _ Activation of cyclic nucleotide pho.@mdiester- 

asc by ~rag~~eF1 tS of ~a~~~od~~~~ 

~Ialf-nlax~nal activation of cyclic nucleotide phos- 
phodiesterase by intact calmodulin required a concen- 
tration of 10W9 M. 

It was reported in [b] that calmodulin fragment 
TR& was 220-fold less effective than the intact cal- 
modulin molecule in the activation of cyclic nucleo- 
tide phosphodiesterase. The TR& fragment was 
850~times weaker, while other fragments (e.g., TR,-C 
and TRI-E) were at least several thousand-fold weaker 
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Fig.3. Activation of phosphorylase kinase by calmoduhn and 

its fragments. The assays were performed at pH 6.8 and 

0.05 mM CaCl,, using phosphorylase kinase purified up to the 

30 000 rev./min supernatant step [ 141: (v) intact calmodulin; 

(v)TR,C; (0) TR,-E; (0) TR,C; (m) TR,-E. 

[6]. Similar results were reported in the case of myo- 
sin light-chain kinase [ 191. 

More extensive studies have indicated, however, 
that the ability of the TR,-E fragment to activate 
these enzymes varies from preparation to preparation, 

and may be caused by contamination with intact cal- 
modulin (see section 4). 

In this work the same highly purified fragments of 
TRi-E and TR,-C that were used to activate phospho- 
rylase kinase (section 3 2, fig.2) were tested for their 

ability to activate cyclic nucleotide phosphodiesterase. 
These experiments demonstrated that fragment TR,-E 
is a weaker activator than was reported previously. Its 
ability to activate phosphodiesterase is similar to the 
TR2-C fragment, half-maximal activation occurring at 

-8 X lO-7 M. 

3.4. The effect of trifluoperazine on activation of 
phospholylase kinase by calmodulin and its frag- 
men ts 

It had been shown that activation of phosphoryl- 
ase kinase by calmodulin (the 6 ‘-subunit) is inhibited 
by FM levels of the phenathiazine drug trifluopera- 
zine [ 181. As shown in fig.4 activation of phosphoryl- 
ase kinase by the TRi-C and TR2-C fragments is also 
inhibited in the presence of trifluoperazine. However, 
activation by the TR& fragment is inhibited at much 
higher concentrations than activation by the TRi-C 
fragment. For instance at 1.25 X 10m5 M trifluopera- 
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Fig A. Effect of trifluoperazine on the activation of phospho- 

rylase kinase by calmodulin (S’subunit) and its fragments. 

Assays were performed at pH 6.8 and 0.05 mM CaCl, using 

homogeneous preparations of phosphorylase kinase: (w) intact 

cahnodulin, 1.9 X lo-’ M; (0) TR,-C, 1.1 X 10m5 M;(o) 

TR,C, 1.3 X lo-’ M; (v) no additions. Trifluoperazine was a 

gift from Smith, Kline and French. 

zine activation by fragment TR2-C was unaffected, 
whereas activation by fragment TRi-C was inhibited 
almost completely. 

These results were extended by measuring the abil- 
ity of different concentrations of calmodulin and its 
fragments to activate phosphorylase kinase in the pres- 
ence of 125 X lo-’ M trifluoperazine (fig.5). Under 
these conditions half-maximal activation of phospho- 

1 
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Fig.5. Activation of phosphorylase kinase by calmodulin and 

its fragments in the presence of 12.5 FM trifluoperazine. 
Experimental conditions are given in fig.4 and the symbols 

are as in fig.3. 
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rylase kinase was achieved at 6 X 1 0e7 M ~aIrnodulin 
(60-fold higher than in the absence of trifhioperazine) 
and at 6 X 10m6 M TR2-C fragnlent (only 7-fold higher 
than in the absence of trifluoper-azine). In order to 
obtain half-maximal activation of the phosphorylase 
kinase in the presence of I 25 X 10” M trifluopera- 
zinc, it was necessary to add only 1 O-times more of 

fragment TR& than calmodulin (figs), whereas in 
the absence of trifluoperazine lOOtimes more of the 
fragment was needed (fig.3). 

4. Discussion 

These experiments clearly demonstrate that frag- 
ments of calmodulin are capable of activating a num- 
ber of calmodulindependent enzymes. The fragment 
TRaC containing Ca”-binding domains 3 and 4 is a 
more effective activator of p~losphoryiase kinase 
(only I OO-times less effective than native calmodulin) 
than TR,C containing Ca”-binding domains 1 and 2 
(2000-times less effective than calmodulin). Moreover 
fragment TRzC, but not TR,-C, forms a Ca’+depen- 
dent complex with troponin-I [5,6], and is a much 
better activator of actomyosin ATPase than fragment 
TR,-C (fig.2). Since the fragment TRS-E containing 
Ca2+ binding domain 4 is completely unable to acti- 
vate phosphorylase kinase and actomyosin ATPase, 
these results suggest that the region comprising resi- 
dues 78-106 may be particularly important in the 

interaction of calmodu~n with pllospllorylase kinase 
or troponin-I. This region does not contain the tri- 

methyllysine present at residue IT5 in all calmodulins 
[4], except that from Dictyostclium [20]. 

On the other hand, fragment TR,-C only activated 
cyclic nucieotide phospllodiesterase weakly, being 

850-times less effective than callnodulin [6f and frag- 
ment TRr-C was virtually inactive. The ability of frag- 
ment TRr-E (containing Ca2’-binding domains 1 and 
2 and an incomplete domain 3) to activate cyclic 
nucleotide phosphodiesterase varied from preparation 
to preparation, and in the most highly purified prepa- 
rations was similar to that of the TR2-C fragment. 
The results in [6,19,2 1,221 which suggested that the 
TRr-E fragment was a relatively good activator of 
myosin light chain kinase and phosphodiesterase may 
therefore be explained by trace contamination with 
intact ca~odu~n. Fragment TR,-E migrates only 
slightly faster than native calmodulin under the con- 
ditions of ureaapolyacrylamide gel electrophoresis 
used for the separation of the fragments [5,6]. 

144 

This work has demonstrated that identical prepara- 
tions of calmodulin fragments differ in their ability to 
activate particular enzymes. For instance, fragment 
TR#.I was much more effective in the activation of 
phosphorylase kinase than in the activation of phos- 
phodiesterase. The results also demonstrate that more 
than one region of ca~tlodLlli~~ is capable of interacting 
with its target proteins, and this concept has also been 
suggested by a further experiment involving phospho- 
rylase kinase. Crosslinking studies using ] 14C] calmo- 

dulin have shown that the second moiecule of calmo- 
dulin (the ~‘-subunit) is complexed with. both the (Y- 
and P-subunits of phosphorylase kinase 1231, indicat- 
ing that at least two regions of calmoduhn can interact 
with this enzyme. The existence of two or more pro- 
tein binding regions on calmodulin has important 
biological implications, since one molecule of calmo- 
d&in might be capable of activating two different 
enzymes simultaneously. It also raises the possibility 
that several calmodulindependent proteins could 
exist as a complex in vivo in the presence of Ca*‘. 

The phenathiazine drug, trifluoperazine, binds to 
cahnoduhn in the presence of Ca’+ and thereby inhib- 

its ca~llodul~l~ependent enzymes. This interaction 
may underlie some of the therapeutic actions of this 
drug [24]. This work has demonstrated that activa- 
tion of phosphorylase kinase by the TR*-C fragment 
is much less susceptible to inhibition by trifluopera- 
zinc than is activation by the TRr-C fragment. These 
results may indicate that the N-terInina~ domains 1 
and 2 of calmoduljn have a higher affinity for triflu- 
operazine than the C-terminal domains 3 and 4. 

The affinity of trifluoperazine for the different 
fragments of calmodulin is now under investigation in 

our laboratory. 
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