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Abstract 

Chen, W. Y. C., Maximum (g, f)-factors of a general graph, Discrete Mathematics 91 (1991) 

l-7. 

This paper presents a characterization of maximum (g, f)-factors of a general graph in which 

multiple edges and loops are allowed. An analogous characterization of the minimum 

(g,f)-factors of a general graph is also presented. In addition, we obtain a transformation 

theorem for any two general graphs on the same vertex set. As special cases, we have the 

transformation theorems for both maximum (g, f)-factors and minimum (g, f)-factors. Our 

results generalize some of C. Berge’s results on maximum matchings and maximum 

c-matchings of a multiple graph. 

1. Introduction 

In general, we follow the notation and terminology of [l] and [5]. A general 

graph G is a pair (V(G), E(G)), P w ere V(G) is a finite non-empty set of 

elements called vertices, and E(G) is a finite collection of unordered pairs of the 

elements of V(G), called edges. We allow multiple edges and loops in a general 

graph. A general graph without loops is called a multigraph. A simple graph is a 

general graph having neither loops nor multiple edges. 

Let G be a general graph, and g, f and c be integer-valued functions defined on 

V(G). We denote by C&(V) the valency of vertex u in G, and assume that a loop 

on v contributes 2 to the valency of ZJ. A Spanning subgraph H and G is said to be 

a (g,f)-factor of G if g(v) s dH(n) <f(v) for every vertex v E V(G). A 

c-matching of G is defined as a (g, f)-factor of G with g(v) = 0 and f(v) = C(V) 

for every v E V(G). If c(v) = 1 for every 21 E V(G), then a c-matching reduces to 

a matching of G. A (g, f)-factor of G with maximum (minimum) number of edges 

is called a maximum (minimum) (g, f)-factor of G. The maximum matching and 

maximum c-matching are defined analogously (see [5]). 

0012-365X/91/$03.50 0 1991- Elsevier Science Publishers B.V. (North-Holland) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81942797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 W. Y. C. Chen 

Lo&z [S] has given a necessary and sufficient condition for the existence of a 

(g, f)-factor in a general graph. In this paper, we shall consider the problem of 

characterizing maximum (g,f)-factors of G if G contains (g, f)-factors. We 

obtain such a characterization in terms of augmenting chains which generalizes 

the well-known theorems of C. Berge on maximum matchings and maximum 

c-matchings. We also give a characterization of minimum (g, f)-factors. 

Definition 1.1. For a given subgraph M of a general graph G, an M-alternating 
chain is defined as a chain of G whose edges are alternately in E(M) and 

E(G)\E(M). H ere, a chain is not permitted to use the same edge more than 

once, but it may visit the same vertex several times. 

Definition 1.2. Given a (g, f)-factor F of G, an F-augmenting chain is defined as 

an F-alternating chain x,x2 . . . xk of G satisfying the following conditions: 

(1) (xi, x2) and (xk-i, xk) belong to E(G)\E(F). 
(2) If xi and xk are the same vertex, then dF(xl) <f (x1) - 2; otherwise, dF(x,) 

and dF(xt) are less than f (x1) and f(xk) respectively. 

Similarly, an F-reducing chain in G is defined as follows. 

Definition 1.3. Given a (g, f)-factor of G, an F-reducing chain is defined as an 

F-alternating chain x1x2 . . . xk of G satisfying the following conditions: 

(1) (x,, x2) and (xk_i, xk) belong to E(F). 
(2) If xi and xk are the same vertex, then dF(xI) ag(x,) + 2; otherwise, dF(xI) 

and dF(xk) are greater than g(xJ and g(x,J respectively. 

In this paper, we prove that a (g, f)-factor F of G is maximum if and only if G 

has no F-augmenting chains. Another problem about maximum c-matchings 

considered by Berge is the relationship between any two maximum c-matchings. 

Here we obtain a transformation theorem for any two general graphs on the same 

vertex set. As special cases, we have transformation theorems for both maximum 

(g, f)-factors and minimum (g, f)-factors, and Berge’s transformation theorem. 

2. A characterization of maximum (g,f)-factors 

In this section, we give the following characterization of maximum (g, f)- 
factors of a general graph. 

Theorem 2.1. Let G be a general graph and F be a (g, f)-factor of G. Then F is a 
maximum (g, f)-factor of G if and only if G has no F-augmenting chains. 
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Corollary 2.2 (Berge [3]). Let G be a multigraph and F be a c-matching of G. 
Suppose the edges of F are denoted by heavy lines. If we add a new vertex x0, 
linked to xi by dF(xi) light edges and ci - d,(x;) heavy edges, F is a maximum 
c-matching, if and only if no alternating chain leaves xg by a heavy edge and comes 
back to x0 by a heavy edge. 

Corollary 2.3 (Berge [2]). Let F be a matching of a multigraph G. Then F is a 
maximum matching if and only if there is no F-augmenting chain in G. 

As a dual of Theorem 2.1, we have the following theorem. 

Theorem 2.4. Suppose F is a (g, f )-factor of G. Then F is a minimum (g, f )-factor 
of G if and only if G has no F-reducing chains. 

Here we only give the proof of Theorem 2.1, because Theorem 2.4 can be 

proved similarly. To this end, we need the following definitions and lemmas. For 

two general graphs F and H on the same vertex set, we shall use F @ H to denote 

the symmetric difference of F and H, namely, the general graph obtained from F 
and H by removing their common edges and putting all the remaining edges 

together. Strictly speaking, let F and G be two general graphs on V = 

{ 211, Fz,. . . , v,}, and f; and h;j be the number of edges joining vi and vj in F and 

G respectively, then F @ H is the general graph on V with Iij - h,jJ edges joining 

V, and Vj. 

Definition 2.5. Let F and H be two general graphs on the same vertex set. An 

F-alternating chain x1x2 . . . xk (k 2 2) in F @ H is said to be an F-augmenting 
chain with respect to H if the following conditions are satisfied: 

(1) (xi, x2) and (xk_,, xk) belong to E(H). 
(2) If x1 and xk are the same vertex, then dH(xI) >dF(x,) + 2; otherwise, 

d&x1) and dH(xk) are greater than dF(xI) and dF(xk) respectively. 

Let H be a graph containing an edge (x, y). We denote by H\(x, y) the graph 

obtained from H by deleting the edge (x, y). 

Lemma 2.6. Let F and H be two general graphs on the same vertex set, and let x, y 
and z be vertices of G (here x, y and z are not necessarily distinct). Suppose 

(x, Y) E E(H), (Y, 2) E E(F) and dF(z) > d&). Denote by H’ and F’ the graphs 
H\(x, y) and F\(y, z) respectively. If there exists an F’-augmenting chain C with 
respect to H’, then C is also an F-augmenting chain with respect to H. 

Proof. We first consider the case when x, y and z are distinct. 

Suppose C =x1x2 . . . xk is an F’-augmenting chain with respect to H’. So C is 

also an F-alternating chain in F @H with (xi, x2), (xk-,, xk) E E(H). Therefore, 

we only need to prove that x1 and xk satisfy condition (2) in Definition 2.5. 
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Case 1: xl#xk. 
Suppose &(x1) 2 &,(x1). Since d&x,) > &(x1), F = F’ U (y, z) and H = 

H’ U (x, y), we must have x1 = z. Hence 

dF(Z) = dF.(Z) + 1 =Z &p(Z) = dH(Z). 

This contradicts the condition dF(z) >d,(z). Therefore, we have d&x1) > 

&(x1). Similarly, we have dH(xk) > dF(xk). 

Case 2: x1 = xk. 

Suppose &,(x1) < d,(x,) + 2. Since d&x,) 2 &(x1) + 2, we may have x1 = z as 

in Case 1. Hence 

dF(Z) = dF(Z) + 16 d&z) - 1= &(Z) - 1, 

a contradiction again. Thus, we must have dH(xI) 2 d&x,) + 2. 

We have now shown that the lemma is true for the case when x, y and z are 

distinct. Next we consider the case when x, y and z are not distinct. We have the 

following four cases: (1) x =Y = 2. (2) x = 2, x fy. (3) X = y, X ZZ. (4) X Zy, 

y = z. Now for each of the above four cases, we can show that the lemma is true. 

This is accomplished by using a similar argument for the case when x, y and z are 

distinct. 0 

Lemma 2.7. Let F and H be two general graphs on the same vertex set. If 
IE(F)I < [E(H)/, then there exists an F-augmenting chain in F @H. 

Proof. We apply induction on IE(F)I, and we shall simply write IFI for IE(F)I. 
When JFI =O, i.e., dF(v) = 0 for any v E V, any edge or loop of H is an 

F-augmenting chain in F 63 H. So we assume the lemma is true for IFI G k - 1 

(k 2 1). 

Now suppose (F( = k. Since (HI > IFI, there exists a vertex x1 such that 

d,(xJ > dF(xI). Suppose x2 is a vertex which is adjacent to x, in H. Therefore, 

we may assume that x1x2. . . xk is a maximum F-alternating chain in F @ H with 

initial edge (x1, x2). 
Case 1: (x~-~, xk) E E(F). 
Note that from the maximality of x,x2. . . xk, we have dF(xk) > dH(xL). Since 

dH(xl) > d,(xJ, we have x1 fxk. Given the fact that (x~_~, x+,) E E(H), let 

F’ = F\(x~-~, x,J and H’ = H\(x,_,, xk_,). 
Now since IF’1 = k - 1 and IF’1 < IH’I, we have by the inductive hypothesis, 

that there exists an F’-augmenting chain in F’ 633 H’. Applying Lemma 2.6, it 

follows that there exists an F-augmenting chain in F G3 H with respect to H. 
Case 2: (xk-,, xk) E E(H). 
Because x1x2 . . . xk is a maximum F-alternating chain in F @ H with initial 

edge (x,, x2), we have: 

(1) If x1 = xk, then d,(xl) > dF(xI) + 2. 

(2) If Xl f Xk, then d,(x,) > d,(xJ and dH(xk) > dF(xk). 
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Hence there exists an F-augmenting chain in F @ H with respect to H. This 

completes the proof. •i 

Proof of Theorem 2.1. The necessity of Theorem 2.1 is clear. Now we proceed to 

prove the sufficiency. Suppose F is not a maximum (g, f)-factor of G, and assume 

there exists a (g, f)-factor H of G such that IH( > (FI. From Lemma 2.7, we know 

that there exists an F-augmenting chain C with respect to H. By inspection, we 

can see that C is an F-augmenting chain in G. This completes the proof. Cl 

3. A transformation theorem 

In this section, we shall give a transformation theorem for any two general 

graphs on the same vertex set V = {x1, x2, . . . , x,}. Let F and H be two general 

graphs on V. Consider the alternating chains C = x1x2 . . . xk in the graph F @ H. 

Then the end vertex x1 in the chain C is said to be negative if (x1, x2) E E(H), and 

4,(x,) > d&,) when x1 fxk, or dH(xl) 2 cIF(xl) + 2 when x1 = xk; similarly, x1 is 

said to be positive if (xl, x2) E E(F), and dF(xl) > dH(x,) when x1 #x~, or 

dF(x,) 2 d&i) + 2 when x1 = xk. The sign of the end vertex xk is defined 

analogously. 

Definition 3.1. An alternating chain C in F C&J H is said to be an alternating cycle 

if it is also an even cycle, and it is said to be a signed chain if it is not an 

alternating cycle and its end vertices are signed. 

Then we have the following theorem. 

Theorem 3.2. Let F and H be two general graphs on V. Then F 03 H can be 

decomposed into a set of alternating cycles and signed chains. 

Proof. Let D = F C3 H. If D is a balanced graph, i.e., dH(x) = dF(x) for every 

vertex x, then by a theorem of [7] D can be decomposed into a set of alternating 

cycles (see also [6]). Otherwise, we may assume without loss of generality that 

there is a vertex X, such that dH(xI) > dF(xI). NOW suppose that C =x1x2. . . xk is 

a maximum alternating chain in D such that (x,, x2) E E(H). Then we have the 

following two cases: 

CUSe 1: (X&1, Xk) E E(H). 

If x, =xk, we must have that d&x,) 2dF(x,) + 2. Otherwise, we have 

dH(xk) > dF(xk). Therefore, C is a signed chain. 

&Se 2: (X1, Xk) E E(F). 
From the maximality of C, we have dF(xk) > dH(xk). Hence, x, #xk. So C is a 

signed chain. 
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Remove the edges in the above signed chain from F and H, and denote the 

resulting graphs by Fl and HI respectively. Let D, = Fl 63 HI. If Di is a balanced 

graph, then the proof is complete. Otherwise, we may repeat the above 

procedure to obtain a signed chain C1 in D,. If this procedure is repeated, then 

we may obtain a sequence of signed chains C, Ci, . . . C, in a sequence 

D, Q, . . . D,+I of graphs such that Di = fi @Hi, E and Hi are obtained by 

deleting the edges in C-r from 6-i and Hi-l, and D,,, is a balanced graph. 

We now proceed to prove that the sign of the end vertices of Ci for Di is the 

same as that for D. We use induction on i. When i = 1 the result is obvious. Now 

suppose that the assertion is true for the subsequence C, C1, . . . C,_, (here we 

regard C as C,,). Let x be an end vertex of C,. Without loss of generality we may 

assume that x is negative for Ci with respect to 0,. Let Ai = dN,(x) - dF,(x) and let 

A = d&x) - dF(x). C onsider the change from A to Aj. Note that only the end 

vertices of C, (0 <j G i - 1) which are identical to x could affect Ai. If there is no 

end vertex of Cj which is identical to x and also positive with respect to 4, then 

the proof is complete; otherwise we may assume that x is an end vertex of some 

Cj (0 c j < i - 1) which is positive for Ci with respect to Dj, then, from the 

inductive hypothesis, x must be a positive vertex for all the signed chains Ci 

16 j G i - 1 which have x as and end vertex with respect to Dj. Choose the largest 

j such that C, has x as an end vertex and 0. j < ’ c i - 1. Consider the following two 

cases: 

Case 1: The two end vertices of Cj coincide with x. 
Thus, we have dF,(x) 3 d”,(x) + 2. Since j is the largest, it follows that 

dF,(x) = dF,(x) - 2 and d&x) = dH,(x). Th us, we have dF,(x) 3 d&x). However, 

this contradicts the assumption that x is a negative vertex of C, with respect to Di. 
Case 2: The two end vertices of Cj are distinct. 
Similar to Case 1, we have dF,(x) > d,=,(x), dF,(x) = dF,(x) - 1 and d”,(x) = 

dH,(x). Thus, we have dF,(x) 3 dH,(x), a contradiction again. 

Therefore, by induction we have proved that x is a negative vertex of C, with 

respect to D. 0 
Once we have proved Theorem 3.2, we may see that the order of signed chains 

in the proof is not important. Suppose F and H are both maximum (g, f)-factors 

of a general graph G. Thus, neither an F-augmenting chain with respect to H nor 

an H-augmenting chain with respect to F can exist. Then we may obtain the 

following transformation theorem for maximum (g, f)-factors of G which 

generalizes Berge’s transformation theorem for maximum c-matchings. 

For a (g, f)-factor H of G, we construct a colored graph R(H) as follows: Add 

to G a vertex x0, called origin that is joined to each vertex vi by f(xi) - g(x,) 

edges for all vertices xi. Let the edges of H be represented by dark lines, and let 

f (x,) - dH(xi) edg es f rom x0 to xi also be represented by dark lines for all xi. Then 

other edges of R(H) are represented by light lines. A transfer along a dark/light 

alternating chain is defined as the interchange of the dark and light coloring along 

the chain. 
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Theorem 3.3. Let F and H be two maximum (g, f)-factors of G. Then F can be 
obtained from H by transfers along dark/light alternating cycles of R(H) that are 
pairwise edge disjoint (but not necessarily elementary). 

Note that the above theorem also holds for minimum (g, f)-factors. 

Corollary 3.4 (Berge [3]). If E. and E, are two maximum c-matchings of a 
multigraph G, then E, can be obtained from E,, by transfers along dark/light 
alternating cycles of R(E,,) that are pairwise edge disjoint (but not necessarily 
elementary). 

Let ?? be the set of maximum (g, f)-factors of G. A free edge of 9’ is defined to 

be any edge of G that is contained in some graph in 9 but not in every graph in 

9. We have the following corollary as an extension to a theorem in [3] (see also 

]5, P- 154). 

Corollary 3.5. An edge e is a free edge of 9, if and only if, given a (g, f )-factor H 
of G in 9, e lies on a darkllight alternating cycle of R(H). 

Finally, we remark that Theorem 2.1 can also be proved by using the above 

transformation theorem for two general graphs on the same vertex set. 
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