1

Discrete Mathematics 91 (1991) 1-7 North-Holland

Maximum (g, f)-factors of a general graph

William Y. C. Chen

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 5 January 1988 Revised 12 July 1989

Abstract

Chen, W. Y. C., Maximum (g, f)-factors of a general graph, Discrete Mathematics 91 (1991) 1–7.

This paper presents a characterization of maximum (g, f)-factors of a general graph in which multiple edges and loops are allowed. An analogous characterization of the minimum (g, f)-factors of a general graph is also presented. In addition, we obtain a transformation theorem for any two general graphs on the same vertex set. As special cases, we have the transformation theorems for both maximum (g, f)-factors and minimum (g, f)-factors. Our results generalize some of C. Berge's results on maximum matchings and maximum *c*-matchings of a multiple graph.

1. Introduction

In general, we follow the notation and terminology of [1] and [5]. A general graph G is a pair (V(G), E(G)), where V(G) is a finite non-empty set of elements called vertices, and E(G) is a finite collection of unordered pairs of the elements of V(G), called edges. We allow multiple edges and loops in a general graph. A general graph without loops is called a multigraph. A simple graph is a general graph having neither loops nor multiple edges.

Let G be a general graph, and g, f and c be integer-valued functions defined on V(G). We denote by $d_G(v)$ the valency of vertex v in G, and assume that a loop on v contributes 2 to the valency of v. A spanning subgraph H and G is said to be a (g, f)-factor of G if $g(v) \leq d_H(v) \leq f(v)$ for every vertex $v \in V(G)$. A c-matching of G is defined as a (g, f)-factor of G with g(v) = 0 and f(v) = c(v) for every $v \in V(G)$. If c(v) = 1 for every $v \in V(G)$, then a c-matching reduces to a matching of G. A (g, f)-factor of G with maximum (minimum) number of edges is called a maximum (minimum) (g, f)-factor of G. The maximum matching and maximum c-matching are defined analogously (see [5]).

0012-365X/91/\$03.50 (C) 1991 - Elsevier Science Publishers B.V. (North-Holland)

Lovász [8] has given a necessary and sufficient condition for the existence of a (g, f)-factor in a general graph. In this paper, we shall consider the problem of characterizing maximum (g, f)-factors of G if G contains (g, f)-factors. We obtain such a characterization in terms of augmenting chains which generalizes the well-known theorems of C. Berge on maximum matchings and maximum c-matchings. We also give a characterization of minimum (g, f)-factors.

Definition 1.1. For a given subgraph M of a general graph G, an *M*-alternating chain is defined as a chain of G whose edges are alternately in E(M) and $E(G)\setminus E(M)$. Here, a chain is not permitted to use the same edge more than once, but it may visit the same vertex several times.

Definition 1.2. Given a (g, f)-factor F of G, an F-augmenting chain is defined as an F-alternating chain $x_1x_2...x_k$ of G satisfying the following conditions:

(1) (x_1, x_2) and (x_{k-1}, x_k) belong to $E(G) \setminus E(F)$.

(2) If x_1 and x_k are the same vertex, then $d_F(x_1) \le f(x_1) - 2$; otherwise, $d_F(x_1)$ and $d_F(x_k)$ are less than $f(x_1)$ and $f(x_k)$ respectively.

Similarly, an F-reducing chain in G is defined as follows.

Definition 1.3. Given a (g, f)-factor of G, an *F*-reducing chain is defined as an *F*-alternating chain $x_1x_2 \ldots x_k$ of G satisfying the following conditions:

(1) (x_1, x_2) and (x_{k-1}, x_k) belong to E(F).

(2) If x_1 and x_k are the same vertex, then $d_F(x_1) \ge g(x_1) + 2$; otherwise, $d_F(x_1)$ and $d_F(x_k)$ are greater than $g(x_1)$ and $g(x_k)$ respectively.

In this paper, we prove that a (g, f)-factor F of G is maximum if and only if G has no F-augmenting chains. Another problem about maximum c-matchings considered by Berge is the relationship between any two maximum c-matchings. Here we obtain a transformation theorem for any two general graphs on the same vertex set. As special cases, we have transformation theorems for both maximum (g, f)-factors and minimum (g, f)-factors, and Berge's transformation theorem.

2. A characterization of maximum (g, f)-factors

In this section, we give the following characterization of maximum (g, f)-factors of a general graph.

Theorem 2.1. Let G be a general graph and F be a (g, f)-factor of G. Then F is a maximum (g, f)-factor of G if and only if G has no F-augmenting chains.

Corollary 2.2 (Berge [3]). Let G be a multigraph and F be a c-matching of G. Suppose the edges of F are denoted by heavy lines. If we add a new vertex x_0 , linked to x_i by $d_F(x_i)$ light edges and $c_i - d_F(x_i)$ heavy edges, F is a maximum c-matching, if and only if no alternating chain leaves x_0 by a heavy edge and comes back to x_0 by a heavy edge.

Corollary 2.3 (Berge [2]). Let F be a matching of a multigraph G. Then F is a maximum matching if and only if there is no F-augmenting chain in G.

As a dual of Theorem 2.1, we have the following theorem.

Theorem 2.4. Suppose F is a (g, f)-factor of G. Then F is a minimum (g, f)-factor of G if and only if G has no F-reducing chains.

Here we only give the proof of Theorem 2.1, because Theorem 2.4 can be proved similarly. To this end, we need the following definitions and lemmas. For two general graphs F and H on the same vertex set, we shall use $F \oplus H$ to denote the symmetric difference of F and H, namely, the general graph obtained from Fand H by removing their common edges and putting all the remaining edges together. Strictly speaking, let F and G be two general graphs on V = $\{v_1, v_2, \ldots, v_n\}$, and f_i and h_{ij} be the number of edges joining v_i and v_j in F and G respectively, then $F \oplus H$ is the general graph on V with $|f_{ij} - h_{ij}|$ edges joining v_i and v_j .

Definition 2.5. Let F and H be two general graphs on the same vertex set. An F-alternating chain $x_1x_2 \ldots x_k$ $(k \ge 2)$ in $F \oplus H$ is said to be an F-augmenting chain with respect to H if the following conditions are satisfied:

(1) (x_1, x_2) and (x_{k-1}, x_k) belong to E(H).

(2) If x_1 and x_k are the same vertex, then $d_H(x_1) \ge d_F(x_1) + 2$; otherwise, $d_H(x_1)$ and $d_H(x_k)$ are greater than $d_F(x_1)$ and $d_F(x_k)$ respectively.

Let H be a graph containing an edge (x, y). We denote by $H \setminus (x, y)$ the graph obtained from H by deleting the edge (x, y).

Lemma 2.6. Let F and H be two general graphs on the same vertex set, and let x, y and z be vertices of G (here x, y and z are not necessarily distinct). Suppose $(x, y) \in E(H), (y, z) \in E(F)$ and $d_F(z) > d_H(z)$. Denote by H' and F' the graphs $H \setminus (x, y)$ and $F \setminus (y, z)$ respectively. If there exists an F'-augmenting chain C with respect to H', then C is also an F-augmenting chain with respect to H.

Proof. We first consider the case when x, y and z are distinct.

Suppose $C = x_1 x_2 \dots x_k$ is an F'-augmenting chain with respect to H'. So C is also an F-alternating chain in $F \oplus H$ with (x_1, x_2) , $(x_{k-1}, x_k) \in E(H)$. Therefore, we only need to prove that x_1 and x_k satisfy condition (2) in Definition 2.5.

Case 1: $x_1 \neq x_k$.

Suppose $d_F(x_1) \ge d_H(x_1)$. Since $d_{H'}(x_1) > d_{F'}(x_1)$, $F = F' \cup (y, z)$ and $H = H' \cup (x, y)$, we must have $x_1 = z$. Hence

$$d_F(z) = d_{F'}(z) + 1 \le d_{H'}(z) = d_H(z).$$

This contradicts the condition $d_F(z) > d_H(z)$. Therefore, we have $d_H(x_1) > d_F(x_1)$. Similarly, we have $d_H(x_k) > d_F(x_k)$.

Case 2: $x_1 = x_k$.

Suppose $d_H(x_1) < d_F(x_1) + 2$. Since $d_{H'}(x_1) \ge d_{F'}(x_1) + 2$, we may have $x_1 = z$ as in Case 1. Hence

$$d_F(z) = d_{F'}(z) + 1 \le d_{H'}(z) - 1 = d_H(z) - 1,$$

a contradiction again. Thus, we must have $d_H(x_1) \ge d_F(x_1) + 2$.

We have now shown that the lemma is true for the case when x, y and z are distinct. Next we consider the case when x, y and z are not distinct. We have the following four cases: (1) x = y = z. (2) x = z, $x \neq y$. (3) x = y, $x \neq z$. (4) $x \neq y$, y = z. Now for each of the above four cases, we can show that the lemma is true. This is accomplished by using a similar argument for the case when x, y and z are distinct. \Box

Lemma 2.7. Let F and H be two general graphs on the same vertex set. If |E(F)| < |E(H)|, then there exists an F-augmenting chain in $F \oplus H$.

Proof. We apply induction on |E(F)|, and we shall simply write |F| for |E(F)|.

When |F| = 0, i.e., $d_F(v) = 0$ for any $v \in V$, any edge or loop of H is an F-augmenting chain in $F \oplus H$. So we assume the lemma is true for $|F| \le k - 1$ $(k \ge 1)$.

Now suppose |F| = k. Since |H| > |F|, there exists a vertex x_1 such that $d_H(x_1) > d_F(x_1)$. Suppose x_2 is a vertex which is adjacent to x_1 in H. Therefore, we may assume that $x_1x_2 \dots x_k$ is a maximum F-alternating chain in $F \oplus H$ with initial edge (x_1, x_2) .

Case 1: $(x_{k-1}, x_k) \in E(F)$.

Note that from the maximality of $x_1x_2...x_k$, we have $d_F(x_k) > d_H(x_k)$. Since $d_H(x_1) > d_F(x_1)$, we have $x_1 \neq x_k$. Given the fact that $(x_{k-2}, x_{k-1}) \in E(H)$, let $F' = F \setminus (x_{k-1}, x_k)$ and $H' = H \setminus (x_{k-2}, x_{k-1})$.

Now since |F'| = k - 1 and |F'| < |H'|, we have by the inductive hypothesis, that there exists an F'-augmenting chain in $F' \oplus H'$. Applying Lemma 2.6, it follows that there exists an F-augmenting chain in $F \oplus H$ with respect to H.

Case 2: $(x_{k-1}, x_k) \in E(H)$.

Because $x_1x_2...x_k$ is a maximum *F*-alternating chain in $F \oplus H$ with initial edge (x_1, x_2) , we have:

(1) If $x_1 = x_k$, then $d_H(x_1) \ge d_F(x_1) + 2$.

(2) If $x_1 \neq x_k$, then $d_H(x_1) > d_F(x_1)$ and $d_H(x_k) > d_F(x_k)$.

4

Hence there exists an F-augmenting chain in $F \oplus H$ with respect to H. This completes the proof. \Box

Proof of Theorem 2.1. The necessity of Theorem 2.1 is clear. Now we proceed to prove the sufficiency. Suppose F is not a maximum (g, f)-factor of G, and assume there exists a (g, f)-factor H of G such that |H| > |F|. From Lemma 2.7, we know that there exists an F-augmenting chain C with respect to H. By inspection, we can see that C is an F-augmenting chain in G. This completes the proof. \Box

3. A transformation theorem

In this section, we shall give a transformation theorem for any two general graphs on the same vertex set $V = \{x_1, x_2, \ldots, x_n\}$. Let F and H be two general graphs on V. Consider the alternating chains $C = x_1x_2 \ldots x_k$ in the graph $F \oplus H$. Then the end vertex x_1 in the chain C is said to be negative if $(x_1, x_2) \in E(H)$, and $d_H(x_1) > d_F(x_1)$ when $x_1 \neq x_k$, or $d_H(x_1) \ge d_F(x_1) + 2$ when $x_1 = x_k$; similarly, x_1 is said to be positive if $(x_1, x_2) \in E(F)$, and $d_F(x_1) > d_H(x_1)$ when $x_1 \neq x_k$, or $d_F(x_1) \ge d_H(x_1) \ge d_H(x_1) + 2$ when $x_1 = x_k$. The sign of the end vertex x_k is defined analogously.

Definition 3.1. An alternating chain C in $F \oplus H$ is said to be an *alternating cycle* if it is also an even cycle, and it is said to be a *signed chain* if it is not an alternating cycle and its end vertices are signed.

Then we have the following theorem.

Theorem 3.2. Let F and H be two general graphs on V. Then $F \oplus H$ can be decomposed into a set of alternating cycles and signed chains.

Proof. Let $D = F \oplus H$. If D is a balanced graph, i.e., $d_H(x) = d_F(x)$ for every vertex x, then by a theorem of [7] D can be decomposed into a set of alternating cycles (see also [6]). Otherwise, we may assume without loss of generality that there is a vertex x_1 such that $d_H(x_1) > d_F(x_1)$. Now suppose that $C = x_1x_2 \dots x_k$ is a maximum alternating chain in D such that $(x_1, x_2) \in E(H)$. Then we have the following two cases:

Case 1: $(x_{k-1}, x_k) \in E(H)$.

If $x_1 = x_k$, we must have that $d_H(x_1) \ge d_F(x_1) + 2$. Otherwise, we have $d_H(x_k) \ge d_F(x_k)$. Therefore, C is a signed chain.

Case 2: $(x_1, x_k) \in E(F)$.

From the maximality of C, we have $d_F(x_k) > d_H(x_k)$. Hence, $x_1 \neq x_k$. So C is a signed chain.

W.Y.C. Chen

Remove the edges in the above signed chain from F and H, and denote the resulting graphs by F_1 and H_1 respectively. Let $D_1 = F_1 \oplus H_1$. If D_1 is a balanced graph, then the proof is complete. Otherwise, we may repeat the above procedure to obtain a signed chain C_1 in D_1 . If this procedure is repeated, then we may obtain a sequence of signed chains C, C_1, \ldots, C_i in a sequence D, D_1, \ldots, D_{i+1} of graphs such that $D_i = F_i \oplus H_i$, F_i and H_i are obtained by deleting the edges in C_{i-1} from F_{i-1} and H_{i-1} , and D_{i+1} is a balanced graph.

We now proceed to prove that the sign of the end vertices of C_i for D_i is the same as that for D. We use induction on i. When i = 1 the result is obvious. Now suppose that the assertion is true for the subsequence C, C_1, \ldots, C_{i-1} (here we regard C as C_0). Let x be an end vertex of C_i . Without loss of generality we may assume that x is negative for C_i with respect to D_i . Let $\Delta_i = d_{H_i}(x) - d_{F_i}(x)$ and let $\Delta = d_H(x) - d_F(x)$. Consider the change from Δ to Δ_i . Note that only the end vertices of C_j ($0 \le j \le i - 1$) which are identical to x could affect Δ_i . If there is no end vertex of C_j which is identical to x and also positive with respect to D_j , then the proof is complete; otherwise we may assume that x is an end vertex of some C_j ($0 \le j \le i - 1$) which is positive for C_j with respect to D_j , then, from the inductive hypothesis, x must be a positive vertex for all the signed chains C_j $1 \le j \le i - 1$ which have x as and end vertex with respect to D_j . Choose the largest j such that C_j has x as an end vertex and $0 \le j \le i - 1$. Consider the following two cases:

Case 1: The two end vertices of C_i coincide with x.

Thus, we have $d_{F_i}(x) \ge d_{H_i}(x) + 2$. Since j is the largest, it follows that $d_{F_i}(x) = d_{F_i}(x) - 2$ and $d_{H_i}(x) = d_{H_i}(x)$. Thus, we have $d_{F_i}(x) \ge d_{H_i}(x)$. However, this contradicts the assumption that x is a negative vertex of C_i with respect to D_i . Case 2: The two end vertices of C_i are distinct.

Similar to Case 1, we have $d_{F_i}(x) > d_{H_i}(x)$, $d_{F_i}(x) = d_{F_i}(x) - 1$ and $d_{H_i}(x) = d_{H_i}(x)$. Thus, we have $d_{F_i}(x) \ge d_{H_i}(x)$, a contradiction again.

Therefore, by induction we have proved that x is a negative vertex of C_i with respect to D. \Box

Once we have proved Theorem 3.2, we may see that the order of signed chains in the proof is not important. Suppose F and H are both maximum (g, f)-factors of a general graph G. Thus, neither an F-augmenting chain with respect to H nor an H-augmenting chain with respect to F can exist. Then we may obtain the following transformation theorem for maximum (g, f)-factors of G which generalizes Berge's transformation theorem for maximum c-matchings.

For a (g, f)-factor H of G, we construct a colored graph R(H) as follows: Add to G a vertex x_0 , called *origin* that is joined to each vertex v_i by $f(x_i) - g(x_i)$ edges for all vertices x_i . Let the edges of H be represented by dark lines, and let $f(x_i) - d_H(x_i)$ edges from x_0 to x_i also be represented by dark lines for all x_i . Then other edges of R(H) are represented by light lines. A transfer along a dark/light alternating chain is defined as the interchange of the dark and light coloring along the chain. **Theorem 3.3.** Let F and H be two maximum (g, f)-factors of G. Then F can be obtained from H by transfers along dark/light alternating cycles of R(H) that are pairwise edge disjoint (but not necessarily elementary).

Note that the above theorem also holds for minimum (g, f)-factors.

Corollary 3.4 (Berge [3]). If E_0 and E_1 are two maximum c-matchings of a multigraph G, then E_1 can be obtained from E_0 by transfers along dark/light alternating cycles of $R(E_0)$ that are pairwise edge disjoint (but not necessarily elementary).

Let \mathcal{P} be the set of maximum (g, f)-factors of G. A free edge of \mathcal{P} is defined to be any edge of G that is contained in some graph in \mathcal{P} but not in every graph in \mathcal{P} . We have the following corollary as an extension to a theorem in [3] (see also [5, p. 152]).

Corollary 3.5. An edge e is a free edge of \mathcal{P} , if and only if, given a (g, f)-factor H of G in \mathcal{P} , e lies on a dark/light alternating cycle of R(H).

Finally, we remark that Theorem 2.1 can also be proved by using the above transformation theorem for two general graphs on the same vertex set.

Acknowledgments

The author would like to thank Professor C. Berge and J. S. Oliveira for their valuable suggestions, and to thank A. Shastri for helpful discussions about an early version of this paper.

References

- J. Akiyama and M. Kano, Factors and factorizations of graphs: A survey, J. Graph Theory 9 (1985) 1-42.
- [2] C. Berge, Two theorems in graph theory, Proc. Nat. Acad. Sci. USA 43 (1957) 842-844.
- [3] C. Berge, Sur le couplage maximum d'un graphe, C. R. Acad. Sci. Paris 247 (1958) 258-259.
- [4] C. Berge, Alternating chain methods: A survey, in R.C. Read, ed., Graph Theory and Computing (Academic Press, New York, 1972) 1–13.
- [5] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
- [6] P. Das and S.B. Rao, Alternating Eulerian trails with prescribed degrees in two edge-colored complete graphs, Discrete Math. 43 (1983) 9–20.
- [7] A. Kotzig, Moves without forbidden transitions in a graph, Časopis Pěst. Mat. 18 (1968) 76-80.
- [8] L. Lovász, Subgraphs with prescribed valencies, J. Combin. Theory 8 (1970) 391-416.