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Abstract

Subdifferentials of a singular convex functional representing the surface free energy of a crystal under the
roughening temperature are characterized. The energy functional is defined on Sobolev spaces of order −1,
so the subdifferential mathematically formulates the energy’s gradient which formally involves 4th order
spacial derivatives of the surface’s height. The subdifferentials are analyzed in the negative Sobolev spaces
of arbitrary spacial dimension on which both a periodic boundary condition and a Dirichlet boundary condi-
tion are separately imposed. Based on the characterization theorem of subdifferentials, the smallest element
contained in the subdifferential of the energy for a spherically symmetric surface is calculated under the
Dirichlet boundary condition.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

When a time evolution problem has a structure of gradient flow and its governing energy
functional has good properties such as convexity and lower semi-continuity, the evolution prob-
lem can be formulated into a well-posed initial value problem whose right-hand side is given by
subdifferential of the energy functional. An advantage of the subdifferential formulation is that
smoothness of the energy functional is not required, enabling us to handle a large class of physical
models, which only have a formal meaning at most, within mathematical context. However, this
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mathematical formulation might look too abstract to extract physical insights which the model is
initially expected to present. The abstract appearance is mainly due to the multi-valued nature of
subdifferential. In this formulation the time derivative of unknown is not described by an equal-
ity, but is only contained in a set of possible gradients of the energy at the time. This ambiguity
motivates us to characterize the subdifferential of the singular functional explicitly so that one
can interpret the abstract evolution problem involving subdifferential as a natural formulation of
the original singular model.

Our intention is especially to give an interpretation to the subdifferential formulation of the
following 4th order equation.

∂

∂t
f = −�div

(|∇f |−1∇f + μ|∇f |p−2∇f
) (

μ > 0, p ∈ (1,∞)
)
, (1.1)

where f is a time-dependent, real-valued function defined on a bounded domain Ω of Rd obey-
ing an appropriate boundary condition. Apparently Eq. (1.1) loses a mathematical meaning when
∇f = 0. However, if we put the mathematical rigor aside temporarily, we can go on to rewrite
Eq. (1.1) symbolically into a gradient flow equation

∂

∂t
f = −δF (f )

δf
(1.2)

governed by the energy functional

F(f ) =
∫
Ω

(∣∣∇f (x)
∣∣ + μ

p

∣∣∇f (x)
∣∣p)

dx. (1.3)

Here the functional derivative of F is taken with respect to the metric of the space H−1(Ω) so
that

δF (f )

δf
= �div

(|∇f |−1∇f + μ|∇f |p−2∇f
)
.

Recall that if we choose a Dirichlet boundary condition for instance, H−1(Ω) is defined as
the dual space of H 1

0 (Ω). Using the isometry −� : H 1
0 (Ω) → H−1(Ω), we can formally regard

H−1(Ω) as a Hilbert space having the inner product
∫
Ω

(−�)−1f (x) ·g(x) dx (f,g ∈ H−1(Ω)).
The function spaces will be defined later in this section in more rigorous context.

The idea of the subdifferential formulation is simply to replace the formal functional derivative
by the subdifferential of F . The formulation of (1.2) is

d

dt
f ∈ −∂F (f ). (1.4)

We wish to postpone the mathematical definition of subdifferential until the following subsec-
tions. Here let us only note that subdifferential is an extended concept of derivative since its value
is no other than the usual derivative if the functional is differentiable. The strength of the abstract
theory guarantees the unique solvability of the initial value problem of (1.4). In this paper we
characterize the value of ∂F (f ) so that we can regain a visible expression like (1.1) from (1.4).



Y. Kashima / Journal of Functional Analysis 262 (2012) 2833–2860 2835
Physically the solution f to Eq. (1.1) models the height of a crystalline surface driven by sur-
face diffusion under the roughening temperature. Spohn [13] systematically derived Eq. (1.1) and
formulated it into a free boundary value problem with evolving facets. Kashima [10] proposed
the subdifferential formulation (1.4) of the singular problem (1.1) under the Dirichlet bound-
ary condition and characterized the subdifferential of the energy by revising the characterization
theorem of subdifferentials for 2nd order equations by Attouch and Damlamian [3]. Odisharia
[12, Chapter 3] derived a free boundary value problem, which is consistent with Spohn’s free
boundary formulation [13], from the subdifferential formulation by Kashima [10]. Odisharia’s
derivation excludes a speculation by Kashima in [10] that the subdifferential formulation of (1.1)
is inconsistent with the free boundary value problem with facets. Developments on the subject
have been continuing until today. Recently Giga and Kohn [8] proved that the solution to the
initial value problem of (1.4) under the periodic boundary condition becomes uniformly zero
in finite time and obtained an upper bound on the extinction time independently of the vol-
ume of the domain. Kohn and Versieux [11] proposed a finite element approximation of (1.4)
and established an error estimate between the solution to (1.4) and the fully discrete finite el-
ement solution. More topics on singular diffusion equations including (1.1) are found in the
article [7].

This paper improves the previous results in [10]. The article [10] tried to characterize H−1-
subdifferentials of a class of convex functionals including (1.3) under the Dirichlet boundary
condition in a way parallel to the general L2-theory [3]. In this paper by restricting the argu-
ment to the functional (1.3) we construct our proofs in a self-contained manner using only a few
basic facts from convex analysis and characterize its H−1-subdifferentials under both the peri-
odic boundary condition and the Dirichlet boundary condition separately. The characterization is
carried out in arbitrary spacial dimension, improving the results in [10], where the dimension is
assumed to be less than equal to 4. In addition to the removal of the dimensional constraint, the
characterized value of the subdifferential seems more natural especially in the periodic setting as
a formulation of (1.1). The main task in our proof is to characterize the conjugate functional of
the energy functional and a technical difference from the argument [10, Subsection 3.3] lies in
this part, too. Though it was also aimed to simplify the proof of the characterization of the con-
jugate functional of (1.3) in [10, Subsection 3.3], its argument needed the Sobolev embedding
theorem and consequently characterized the conjugate functional under a restrictive assumption
on the exponent p. In this paper we complete the characterization of the conjugate functional
for all p > 1. Remark that this approach is different from the method used to characterize L2-
subdifferential of total variation in [1, Chapter 1], which is based on a fact that the functional of
total variation is positive homogeneous of degree 1. By applying the characterization theorem we
calculate the smallest element in the subdifferential of the energy functional under the Dirichlet
boundary condition for a spherically symmetric surface in any spacial dimension. The smallest
element is called canonical restriction. Our calculation of the canonical restriction is seen as an
extension of that of 1-dimensional case presented in [10, Section 4] for the Dirichlet problem,
[12, Chapter 3] for the periodic problem. The canonical restriction is relevant to the study of the
crystalline motion since the general theory (see e.g. [5]) suggests that it actually represents the
speed of the surface during the time evolution. From the canonical restriction we can, therefore,
predict how the surface behaves in the next moment, which was in fact the strategy of Odisharia
[12, Chapter 3] to derive the free boundary value problem.

In the rest of this section we prepare notations, introduce function spaces, and state the
main results concerning the characterization of subdifferentials. In Section 2 we give proofs
of the characterization theorems first for the periodic problem, then for the Dirichlet problem.
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In Section 3 we calculate the canonical restriction under the Dirichlet boundary by assuming a
spherical symmetry of the surface.

1.1. Function spaces with a periodic boundary condition

Here we introduce notations and function spaces to formulate the periodic problem. Through-
out the paper the number d (∈ N) denotes the spacial dimension and p (∈ (1,∞)) is used to define
the exponent of the spaces of integrable functions. The notation T

d stands for a d-dimensional
flat torus; Td := ∏d

i=1(R/ωiZ) with ωi > 0 (i = 1,2, . . . , d). Set Ωper := ∏d
i=1(0,ωi) (⊂ R

d).
We consider the following real Banach space of periodic integrable functions.

Lp
(
T

d ;Rm
) :=

{
f ∈ L

p

loc

(
R

d ;Rm
) ∣∣∣ f(x) = f(x + (m1ω1, . . . ,mdωd))

a.e. x ∈R
d , ∀(m1, . . . ,md) ∈ Z

d

}
,

where m ∈N and the notation f ∈ L
p

loc(R
d ;Rm) means that for any open bounded set O (⊂ R

d),
f|O ∈ Lp(O;Rm). The norm of Lp(Td ;Rm) is defined by

‖f‖Lp(Td ;Rm) :=
( ∫

Ωper

∣∣f(x)
∣∣p dx

)1/p

.

Among these spaces L2(Td ;Rm) is a Hilbert space having the inner product

〈f,g〉L2(Td ;Rm) :=
∫

Ωper

〈
f(x),g(x)

〉
Rm dx.

When m = 1, let us simply write Lp(Td) instead of Lp(Td ;R).
The space L

p
ave(T

d) is a subspace of Lp(Td) defined by

L
p
ave

(
T

d
) :=

{
f ∈ Lp

(
T

d
) ∣∣∣ ∫

Ωper

f (x) dx = 0

}
.

The Sobolev spaces W 1,p(Td), W
1,p
ave (Td) are defined by

W 1,p
(
T

d
) := {

f ∈ Lp
(
T

d
) ∣∣ ∇f

(∈D′(
R

d;Rd
))

satisfies ∇f ∈ Lp
(
T

d ;Rd
)}

,

W
1,p
ave

(
T

d
) := W 1,p

(
T

d
) ∩ L

p
ave

(
T

d
)
.

We use the notation H 1
ave(T

d) in place of W
1,2
ave (Td).

Poincaré’s inequality states that there exists a constant C (> 0) such that

‖f ‖Lp(Td ) � C‖∇f ‖Lp(Td ;Rd ), ∀f ∈ W
1,p
ave

(
T

d
)
.

This inequality enables us to adapt ‖∇·‖Lp(Td ;Rd ) as the norm of W
1,p
ave (Td) and 〈∇·,∇·〉L2(Td ;Rd )

as the inner product of the Hilbert space H 1 (Td).
ave
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Throughout the paper we use the notation 〈·,·〉 to denote the scalar product of duality between
a real Banach space and its topological dual space. We do not specify which duality is being
described by 〈·,·〉 if it is clear from the context.

Let H−1
ave (T

d) denote the topological dual space of H 1
ave(T

d). We define a linear operator
−�per : H 1

ave(T
d) → H−1

ave (T
d) by

〈−�perf, ·〉 := 〈∇f,∇·〉L2(Td ;Rd ), ∀f ∈ H 1
ave

(
T

d
)
.

Because of our choice of the inner product of H 1
ave(T

d) and Riesz’ representation theorem, the
operator −�per : H 1

ave(T
d) → H−1

ave (T
d) is an isometry. The dual space H−1

ave (T
d) can be consid-

ered as a Hilbert space equipped with the inner product 〈·,·〉
H−1

ave (Td )
defined by

〈f,g〉
H−1

ave (Td )
:= 〈

(−�per)
−1f,g

〉
, ∀f,g ∈ H−1

ave

(
T

d
)
.

Introduce the space of smooth periodic functions by

C∞(
T

d ;Rm
) :=

{
f ∈ C∞(

R
d ;Rm

) ∣∣∣ f(x) = f(x + (m1ω1, . . . ,mdωd)),

∀x ∈R
d , ∀(m1, . . . ,md) ∈ Z

d

}
.

Again let us simply write C∞(Td) instead of C∞(Td ;R). We define a subspace of C∞(Td) by

C∞
ave

(
T

d
) :=

{
f ∈ C∞(

T
d
) ∣∣∣ ∫

Ωper

f (x) dx = 0

}
.

We will make use of the following density property.

Lemma 1.1. The set C∞
ave(T

d) is dense in W
1,p
ave (Td).

Proof. Let ρ ∈ C∞
0 (Rd) be such that

ρ(x) � 0
(∀x ∈R

d
)
, ρ(x) = 0 if |x|� 1,

∫
Rd

ρ(x) dx = 1. (1.5)

For any f ∈ W
1,p
ave (Td) and δ > 0 define a function fδ :Rd →R by

fδ(x) :=
∫
Rd

δ−dρ

(
x − y

δ

)
f (y) dy.

By using standard properties of the mollifier and the periodicity of f one can check that fδ ∈
C∞

ave(T
d) and fδ converges to f in W

1,p
ave (Td) as δ ↘ 0. �

Remark that these spaces of periodic functions are equivalent to those axiomatically defined
on the compact Riemannian manifold T

d , the flat torus. See e.g. [9] for the construction of Td as
a Riemannian manifold and [4] for Sobolev spaces on Riemannian manifolds in general.
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We define a subset Xper of H−1
ave (T

d) as follows. An f (∈ H−1
ave (T

d)) belongs to Xper if there

exists f̃ ∈ W
1,p
ave (Td) such that

〈f,φ〉 = lim
n→∞

∫
Ωper

f̃ (x)φn(x) dx, ∀φ ∈ H 1
ave

(
T

d
)
,

where {φn}∞n=1 (⊂ C∞
ave(T

d)) is any sequence converging to φ in H 1
ave(T

d) as n → ∞.

Note that for any f ∈ Xper such f̃ (∈ W
1,p
ave (Td)) uniquely exists. From now we use the no-

tation “ ·̃ ” to indicate the corresponding function of W
1,p
ave (Td) to a given element of Xper. It

follows that Xper is a real linear space and the map f �→ f̃ : Xper → W
1,p
ave (Td) is linear.

By using these notions we now define the functional Fper : H−1
ave (T

d) → R∪ {∞} by

Fper(f ) :=
{∫

Ωper
σ(∇f̃ (x)) dx if f ∈ Xper,

∞ otherwise,

where σ : Rd → R is defined by

σ(y) := |y| + μ

p
|y|p (

μ > 0, p ∈ (1,∞)
)
.

Lemma 1.2. The functional Fper : H−1
ave (T

d) → R ∪ {∞} is convex, lower semi-continuous and
not identically ∞.

Proof. Being convex and not identically ∞ can be seen from the definition. To show the lower
semi-continuity of Fper, assume that {fn}∞n=1 (⊂ H−1

ave (T
d)) converges to f in H−1

ave (T
d) as

n → ∞ and Fper(fn) � λ (∀n ∈N), where λ� 0.

Since {f̃n}∞n=1 is bounded in W
1,p
ave (Td), there are g ∈ W

1,p
ave (Td) and a subsequence {f̃n(j)}∞j=1

of {f̃n}∞n=1 such that f̃n(j) weakly converges to g in W
1,p
ave (Td) as j → ∞. Mazur’s theorem for

H−1
ave (T

d) × W
1,p
ave (Td) guarantees that for any k ∈ N there exist jk ∈ N and αk

l ∈ [0,1] (l =
1, . . . , jk) satisfying

∑jk

l=1 αk
l = 1 such that as k → ∞

jk∑
l=1

αk
l fn(l) → f in H−1

ave

(
T

d
)
,

jk∑
l=1

αk
l f̃n(l) → g in W

1,p
ave

(
T

d
)
.

Moreover, for any ψ ∈ C∞
ave(T

d)

〈f,ψ〉 = lim
k→∞

〈
jk∑

l=1

αk
l fn(l),ψ

〉
= lim

k→∞

∫
Ωper

jk∑
l=1

αk
l f̃n(l)(x)ψ(x) dx

=
∫

Ω

g(x)ψ(x) dx.
per
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Hence, for any φ ∈ H 1
ave(T

d) and {φn}∞n=1 (⊂ C∞
ave(T

d)) converging to φ in H 1
ave(T

d)

〈f,φ〉 = lim
n→∞〈f,φn〉 = lim

n→∞

∫
Ωper

g(x)φn(x) dx,

which means that f ∈ Xper and g = f̃ .
Then by the convexity and the continuity of

∫
Ωper

σ(·) dx in Lp(Td ;Rd)

Fper(f ) =
∫

Ωper

σ
(∇f̃ (x)

)
dx = lim

k→∞

∫
Ωper

σ

(
jk∑

l=1

αk
l ∇f̃n(l)(x)

)
dx

� lim sup
k→∞

jk∑
l=1

αk
l Fper(fn(l)) � λ,

which concludes that Fper is lower semi-continuous in H−1
ave (T

d). �
1.2. Function spaces with a Dirichlet boundary condition

Here we prepare some notions necessary to formulate the Dirichlet problem. Let Ω be an open
bounded subset of Rd . By Poincaré’s inequality we may choose ‖∇·‖Lp(Ω;Rd ) as the norm of

W
1,p

0 (Ω) and 〈∇·,∇·〉L2(Ω;Rd ) as the inner product of H 1
0 (Ω). Let H−1(Ω) denote the topolog-

ical dual space of the Hilbert space H 1
0 (Ω). We define a linear map −�D : H 1

0 (Ω) → H−1(Ω)

by

〈−�Df, ·〉 := 〈∇f,∇·〉L2(Ω;Rd ), ∀f ∈ H 1
0 (Ω).

By using Riesz’ representation theorem we can prove that the linear map −�D : H 1
0 (Ω) →

H−1(Ω) is an isometry. The dual space H−1(Ω) is a Hilbert space having the inner product
〈·,·〉H−1(Ω) defined by

〈f,g〉H−1(Ω) := 〈
(−�D)−1f,g

〉
, ∀f,g ∈ H−1(Ω).

Let XD denote a subset of H−1(Ω) consisting of any f ∈ H−1(Ω) for which there exists
f̃ ∈ W

1,p

0 (Ω) such that

〈f,φ〉 = lim
n→∞

∫
Ω

f̃ (x)φn(x) dx, ∀φ ∈ H 1
0 (Ω),

where {φn}∞n=1 (⊂ C∞
0 (Ω)) is any sequence converging to φ in H 1

0 (Ω) as n → ∞. For given

f ∈ XD such f̃ (∈ W
1,p

0 (Ω)) uniquely exists. As in the periodic case we use the notation “ ·̃ ” to

represent the function of W
1,p

(Ω) associated with a given element of XD.
0
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We define the functional FD : H−1(Ω) → R∪ {∞} by

FD(f ) :=
{∫

Ω
σ(∇f̃ (x)) dx if f ∈ XD,

∞ otherwise.

The following lemma can be proved in the same way as in Lemma 1.2.

Lemma 1.3. The functional FD : H−1(Ω) → R∪ {∞} is convex, lower semi-continuous and not
identically ∞.

1.3. Subdifferentials

Subdifferential is an extended concept of differential. Subdifferential of a functional becomes
a multi-valued operator if the functional is not differentiable in the normal sense. Let us see this
by calculating the subdifferential of the energy density σ . The subdifferential ∂σ (·) : Rd → 2R

d

is defined by

∂σ (x) := {
y ∈R

d
∣∣ 〈y, z〉Rd + σ(x)� σ(x + z), ∀z ∈ R

d
}
, ∀x ∈R

d .

It follows directly from the definition that

∂σ (x) =
{ {|x|−1x + μ|x|p−2x} if x �= 0,

{y ∈R
d | |y|� 1} if x = 0.

From this characterization we see that if x �= 0 the only element of ∂σ (x) is nothing but the
gradient of σ(·) at x. However, at x = 0, where σ(·) is not differentiable, ∂σ (x) becomes multi-
valued.

We define the subdifferential ∂Fper(·) : H−1
ave (T

d) → 2H−1
ave (Td ) of Fper by

∂Fper(f ) := {
g ∈ H−1

ave

(
T

d
) ∣∣ 〈g,h〉

H−1
ave (Td )

+ Fper(f )� Fper(f + h), ∀h ∈ H−1
ave

(
T

d
)}

and the subdifferential ∂FD(·) : H−1(Ω) → 2H−1(Ω) of FD by

∂FD(f ) := {
g ∈ H−1(Ω)

∣∣ 〈g,h〉H−1(Ω) + FD(f ) � FD(f + h), ∀h ∈ H−1(Ω)
}
.

Our main purpose is to characterize ∂Fper(·) and ∂FD(·). The results are the following.

Theorem 1.4. If ∂Fper(f ) �= ∅,

∂Fper(f ) =
{
−(−�per)div g

∣∣∣ g ∈ Lp/(p−1)(Td ;Rd) satisfying that div g ∈ H 1
ave(T

d),

g(x) ∈ ∂σ (∇f̃ (x)) a.e. x ∈R
d

}
.

Theorem 1.5. If ∂FD(f ) �= ∅,

∂FD(f ) =
⎧⎨
⎩−(−�D)div g

∣∣∣ g ∈ Lp/(p−1)(Ω;Rd) satisfying that div g ∈ H 1
0 (Ω),

g(x) ∈ ∂σ (∇f̃ (x)) a.e. x ∈ Ω,

〈h,div g〉 + ∫
Ω

〈∇h̃(x),g(x)〉Rd dx = 0, ∀h ∈ XD

⎫⎬
⎭ .
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By assuming an additional condition on p (∈ (1,∞)) we can simplify the characterization of
Theorem 1.5 as follows.

Corollary 1.6. Assume that

p ∈ (1,∞) if d � 4,

p ∈
[

2d

d + 4
,∞

)
if d � 5. (1.6)

If ∂FD(f ) �= ∅,

∂FD(f ) =
{
−(−�D)div g

∣∣∣ g ∈ Lp/(p−1)(Ω;Rd) satisfying that div g ∈ H 1
0 (Ω),

g(x) ∈ ∂σ (∇f̃ (x)) a.e. x ∈ Ω

}
.

Remark 1.7. In Lemmas 1.2 and 1.3 we have seen that both Fper : H−1
ave (T

d) → R ∪ {∞} and
FD : H−1(Ω) → R ∪ {∞} are convex, lower semi-continuous, and not identically ∞. These
properties are sufficient to ensure the unique solvability of the initial value problems to find
fper ∈ C([0,∞);H−1

ave (T
d)) and fD ∈ C([0,∞);H−1(Ω)) such that

⎧⎨
⎩

d

dt
fper(t) ∈ −∂Fper

(
fper(t)

)
a.e. t > 0,

fper(0) = fper,0 (∈ Xper),

⎧⎨
⎩

d

dt
fD(t) ∈ −∂FD

(
fD(t)

)
a.e. t > 0,

fD(0) = fD,0 (∈ XD)

(see e.g. [5]). Theorems above characterize the right-hand sides of these evolution systems and
provide us with explicit representations comparable to the right-hand side of the original model
(1.1).

2. Proof of the characterization of subdifferentials

In this section we prove Theorems 1.4, 1.5 and Corollary 1.6. Let us fix some notational
conventions and recall a few basic facts from convex analysis beforehand. For a real Banach
space B let B∗ denote its topological dual space. For a functional E : B → R ∪ {∞} being not
identically ∞ its conjugate functional E∗ : B∗ → R∪ {∞} is defined by

E∗(v) := sup
u∈B

{〈v,u〉 − E(u)
}
, ∀v ∈ B∗.

Lemma 2.1. Assume that E : B → R ∪ {∞} is convex, lower semi-continuous and not identi-
cally ∞. The following hold true.

(1) E∗ : B∗ →R∪ {∞} is convex, lower semi-continuous and not identically ∞.
(2) (E∗)∗(v) = E(v), ∀v ∈ B .

For a functional defined on a real Hilbert space H we adapt the inner product 〈·,·〉H to de-
fine its conjugate functional. To distinguish from Banach spaces’ case, let us change a notation.
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For a functional F : H → R ∪ {∞} being not identically ∞ we define its conjugate functional
F # : H → R∪ {∞} by

F #(v) := sup
u∈H

{〈v,u〉H − F(u)
}
, ∀v ∈ H.

Moreover, we define its subdifferential ∂F : H → 2H by

∂F (u) := {
v ∈ H

∣∣ 〈v,w〉H + F(u) � F(u + w), ∀w ∈ H
}
.

Lemma 2.2. Assume that a functional F : H → R ∪ {∞} is convex, lower semi-continuous and
not identically ∞. The following statements are equivalent to each other.

(i) v ∈ ∂F (u).
(ii) u ∈ ∂F #(v).

(iii) F(u) + F #(v) = 〈u,v〉H .

We use Lemmas 2.1 and 2.2 without providing the proofs. See e.g. [6] to verify them.
The conjugate functional σ # : Rd → R of σ and its subdifferential ∂σ #(·) : Rd → 2R

d
can be

calculated from the definitions.

Lemma 2.3. For any y ∈R
d

σ #(y) =
{

0 if |y| � 1,

(1 − 1
p
)μ−1/(p−1)(|y| − 1)p/(p−1) if |y| > 1,

(2.1)

∂σ #(y) =
{ {0} if |y|� 1,

{μ−1/(p−1)(|y| − 1)1/(p−1)|y|−1y} if |y| > 1.
(2.2)

2.1. Proof for the periodic problem

We are going to characterize the subdifferential of the periodic energy Fper. We introduce the
real Banach space H−1

ave (T
d)×Lp(Td ;Rd) having the norm defined by ‖(f,g)‖ := ‖f ‖

H−1
ave (Td )

+
‖g‖Lp(Td ;Rd ). Define functionals Q,R : H−1

ave (T
d) × Lp(Td ;Rd) →R∪ {∞} by

Q((f,g)) :=
∫

Ωper

σ
(
g(x)

)
dx,

R((f,g)) :=
{

0 if f ∈ Xper and g = ∇f̃ ,

∞ otherwise.

One can check that Q, R are convex, lower semi-continuous, and not identically ∞.
We define a linear map Φp/(p−1) : H−1

ave (T
d) × Lp/(p−1)(Td ;Rd) → (H−1

ave (T
d) × Lp(Td ;

R
d))∗ by
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〈
Φp/(p−1)((u,v)), (f,g)

〉 := 〈u,f 〉
H−1

ave (Td )
+

∫
Ωper

〈
v(x),g(x)

〉
Rd dx,

∀(u,v) ∈ H−1
ave

(
T

d
) × Lp/(p−1)

(
T

d;Rd
)
, ∀(f,g) ∈ H−1

ave

(
T

d
) × Lp

(
T

d;Rd
)
.

The map Φp/(p−1) is an isomorphism between these Banach spaces.
In our proof characterizing the conjugate functional F #

per (: H−1
ave (T

d) → R ∪ {∞}) is crucial
to characterize ∂Fper. The first step is the following.

Lemma 2.4. For any u ∈ H−1
ave (T

d)

F #
per(u) = (Q + R)∗

(
Φp/(p−1)((u,0))

)
. (2.3)

Proof. Take any (u,v) ∈ H−1
ave (T

d) × Lp/(p−1)(Td ;Rd).

(Q + R)∗
(
Φp/(p−1)((u,v))

)
= sup

(f,g)∈H−1
ave (Td )×Lp(Td ;Rd )

{〈
Φp/(p−1)((u,v)), (f,g)

〉 − (Q + R)((f,g))
}

= sup
f ∈Xper

{
〈u,f 〉

H−1
ave (Td )

+
∫

Ωper

〈
v(x),∇f̃ (x)

〉
Rd dx −

∫
Ωper

σ
(∇f̃ (x)

)
dx

}
,

from which the claimed equality follows. �
We will characterize the right-hand side of (2.3) after characterizing Q∗ and R∗.

Lemma 2.5. For any (u,v) ∈ H−1
ave (T

d) × Lp/(p−1)(Td ;Rd)

Q∗(Φp/(p−1)((u,v))
) =

{∫
Ωper

σ #(v(x)) dx if u = 0,

∞ otherwise.

Proof. Take any (u,v) ∈ H−1
ave (T

d) × Lp/(p−1)(Td ;Rd).

Q∗(Φp/(p−1)((u,v))
)

= sup
(f,g)∈H−1

ave (Td )×Lp(Td ;Rd )

{〈
Φp/(p−1)((u,v)), (f,g)

〉 − Q((f,g))
}

= sup
(f,g)∈H−1

ave (Td )×Lp(Td ;Rd )

{
〈u,f 〉

H−1
ave (Td )

+
∫

Ωper

〈
v(x),g(x)

〉
Rd dx −

∫
Ωper

σ
(
g(x)

)
dx

}

=
{

supg∈Lp(Td ;Rd )

∫
Ωper

(〈v(x),g(x)〉Rd − σ(g(x))) dx if u = 0,
(2.4)
∞ otherwise.
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On one hand, it follows from the definition of σ # that

sup
g∈Lp(Td ;Rd )

∫
Ωper

(〈
v(x),g(x)

〉
Rd − σ

(
g(x)

))
dx �

∫
Ωper

σ #(v(x)
)
dx. (2.5)

On the other hand, let us define h ∈ Lp(Td ;Rd) by

h(x) :=
{

0 if |v(x)| � 1,

μ−1/(p−1)(|v(x)| − 1)1/(p−1)|v(x)|−1v(x) if |v(x)| > 1.

By (2.2)

h(x) ∈ ∂σ #(v(x)
)

a.e. x ∈ R
d . (2.6)

By Lemma 2.2 the inclusion (2.6) implies that

σ #(v(x)
) = 〈

v(x),h(x)
〉
Rd − σ

(
h(x)

)
a.e. x ∈ R

d,

which leads to

∫
Ωper

σ #(v(x)
)
dx � sup

g∈Lp(Td ;Rd )

∫
Ωper

(〈
v(x),g(x)

〉
Rd − σ

(
g(x)

))
dx. (2.7)

By putting (2.4), (2.5) and (2.7) together, we obtain the result. �
To characterize R∗ we need a couple of lemmas based on density properties of smooth func-

tions in the periodic Sobolev spaces.

Lemma 2.6. For any f ∈ W
1,p
ave (Td) and φ ∈ C∞(Td ;Rd)

∫
Ωper

f (x)divφ(x) dx +
∫

Ωper

〈∇f (x),φ(x)
〉
Rd dx = 0.

Proof. Lemma 1.1 justifies the equality. �
Lemma 2.7. For any v ∈ Lp/(p−1)(Td ;Rd) satisfying div v ∈ H 1

ave(T
d) there exists {vn}∞n=1 ⊂

C∞(Td ;Rd) such that as n → ∞

vn → v in Lp/(p−1)
(
T

d;Rd
)
,

div vn → div v in H 1
ave

(
T

d
)
.



Y. Kashima / Journal of Functional Analysis 262 (2012) 2833–2860 2845
Proof. As in Lemma 1.1 let us define a function vδ :Rd → R
d by

vδ(x) :=
∫
Rd

δ−dρ

(
x − y

δ

)
v(y) dy

by choosing a function ρ ∈ C∞
0 (Rd) having the properties (1.5) and δ > 0. The function vδ is

contained in C∞(Td ;Rd) and converges to v in the way claimed above as δ ↘ 0. �
Then we have

Lemma 2.8. For any (u,v) ∈ H−1
ave (T

d) × Lp/(p−1)(Td ;Rd)

R∗(Φp/(p−1)((u,v))
) =

{
0 if div v (∈ D′(Rd)) satisfies div v = (−�per)

−1u,

∞ otherwise.

Proof. Take any (u,v) ∈ H−1
ave (T

d) × Lp/(p−1)(Td ;Rd).

R∗(Φp/(p−1)((u,v))
)

= sup
(f,g)∈H−1

ave (Td )×Lp(Td ;Rd )

{〈
Φp/(p−1)((u,v)), (f,g)

〉 − R((f,g))
}

= sup
f ∈Xper

{
〈u,f 〉

H−1
ave (Td )

+
∫

Ωper

〈
v(x),∇f̃ (x)

〉
Rd dx

}

� sup
φ∈C∞

ave(T
d )

{ ∫
Ωper

(−�per)
−1u(x) · φ(x) dx +

∫
Ωper

〈
v(x),∇φ(x)

〉
Rd dx

}

= sup
y∈Rd

sup
φ∈C∞

ave(T
d )

∫
Ωper+y

(
(−�per)

−1u(x) · φ(x) + 〈
v(x),∇φ(x)

〉
Rd

)
dx

� sup
y∈Rd

sup
φ∈C∞

0 (Ωper+y)

∫
Ωper+y

(
(−�per)

−1u(x) · φ(x) + 〈
v(x),∇φ(x)

〉
Rd

)
dx

=
{

0 if div v (∈ D′(Ωper + y)) satisfies div v = (−�per)
−1u|Ωper+y (∀y ∈R

d),

∞ otherwise,
(2.8)

where we have used the fact that
∫
Ωper+y(−�per)

−1u(x) dx = 0. From the inequality (2.8) we
can deduce that

R∗(Φp/(p−1)((u,v))
)
�

{
0 if div v (∈D′(Rd)) satisfies div v = (−�per)

−1u, (2.9)
∞ otherwise.
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To confirm this, assume that div v (∈ D′(Ωper + y)) satisfies div v = (−�per)
−1u|Ωper+y (∀y ∈

R
d ). For any proposition P let 1P (∈ {0,1}) be defined by

1P :=
{1 if P is true,

0 otherwise.

Take a function η ∈ C∞
0 (R) such that 0 � η(x) � 1 (∀x ∈ R), η(x) = 0 if |x| � 1 and∫

R
η(x)dx = 1. By using η we define functions fi,n ∈ C∞

0 (R) (i ∈ {1, . . . , d}, n ∈ Z) by

fi,n(x) :=
∫
R

(
ωi

8

)−1

η

(
x − y

ωi/8

)
1y∈[0,ωi/2)+ωin/2 dy.

Remark that suppfi,n ⊂ (0,ωi) + ωin/2 − ωi/4 and
∑

n∈Z fi,n(x) = 1 (∀x ∈ R). For any
n (= (n1, . . . , nd)) ∈ Z

d set fn(x) := ∏d
i=1 fi,ni

(xi). We see that fn ∈ C∞
0 (Ωper + yn) and∑

n∈Zd fn(x) = 1 (∀x ∈ R
d ), where yn := (ω1n1/2 − ω1/4,ω2n2/2 − ω2/4, . . . ,ωdnd/2 −

ωd/4) (∈ R
d). For any φ ∈ C∞

0 (Rd) there exists N ∈N such that

suppφ ⊂
⋃

n∈Zd

|ni |�N (i=1,...,d)

(Ωper + yn).

Then for any x ∈ suppφ

∑
n∈Zd

|ni |�N+1 (i=1,...,d)

fn(x) = 1.

Thus, by assumption

∫
Rd

〈
v(x),−∇φ(x)

〉
Rd dx =

∑
n∈Zd

|ni |�N+1 (i=1,...,d)

∫
Ωper+yn

〈
v(x),−∇(

fn(x)φ(x)
)〉
Rd dx

=
∑

n∈Zd

|ni |�N+1 (i=1,...,d)

∫
Ωper+yn

(−�per)
−1u(x) · fn(x)φ(x) dx

=
∫
Rd

(−�per)
−1u(x) · φ(x) dx.

Hence, div v (∈ D′(Rd)) satisfies div v = (−�per)
−1u, which means that the right-hand side of

(2.8) is larger than equal to that of (2.9), resulting in the inequality (2.9).
To show that the inequality (2.9) is actually the equality, let us assume that div v =

(−�per)
−1u. By Lemma 2.7 we can take a sequence {vn}∞n=1 (⊂ C∞(Td ;Rd)) such that vn → v

in Lp/(p−1)(Td ;Rd), div vn → div v in H 1
ave(T

d) as n → ∞. Applying Lemma 2.6, we observe
that
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R∗(Φp/(p−1)((u,v))
) = sup

f ∈Xper

{
〈div v, f 〉 +

∫
Ωper

〈
v(x),∇f̃ (x)

〉
Rd dx

}

= sup
f ∈Xper

lim
n→∞

{ ∫
Ωper

(
div vn(x)f̃ (x) + 〈

vn(x),∇f̃ (x)
〉
Rd

)
dx

}

= 0,

which concludes the proof. �
For any u ∈ H−1

ave (T
d) let Yper(u) (⊂ Lp/(p−1)(Td ;Rd)) be defined by

Yper(u) := {
s ∈ Lp/(p−1)

(
T

d;Rd
) ∣∣ div s = (−�per)

−1u
}
.

Using Lemmas 2.5 and 2.8, we show the following.

Lemma 2.9. For any (u,v) ∈ H−1
ave (T

d) × Lp/(p−1)(Td ;Rd)

(Q + R)∗
(
Φp/(p−1)((u,v))

) =
{

mins∈Yper(u)

∫
Ωper

σ #(v(x) − s(x)) dx if Yper(u) �= ∅,

∞ otherwise.

Remark 2.10. A direct application of the general theorem [2, Proposition 3.4] on inf-convolution
can shorten the proof of Lemma 2.9 below. However, we prove the lemma by referring only to
the basic facts Lemma 2.1 and Lemma 2.2 for self-containedness of the paper.

Proof of Lemma 2.9. Define a functional S : H−1
ave (T

d) × Lp/(p−1)(Td ;Rd) →R∪ {∞} by

S((u,v)) := inf
(r,s)∈H−1

ave (Td )×Lp/(p−1)(Td ;Rd )

{
Q∗(Φp/(p−1)

(
(u,v) − (r, s)

))
+ R∗(Φp/(p−1)((r, s))

)}
, ∀(u,v) ∈ H−1

ave

(
T

d
) × Lp/(p−1)

(
T

d ;Rd
)
. (2.10)

Lemmas 2.5 and 2.8 imply that

S((u,v)) =
{

infs∈Yper(u)

∫
Ωper

σ #(v(x) − s(x)) dx if Yper(u) �= ∅,

∞ otherwise.
(2.11)

We need to show that S((u,v)) = (Q + R)∗(Φp/(p−1)((u,v))).
By using the convexity of Q∗ and R∗ in (2.10) we can prove that S is convex as well. More-

over, from (2.11) and (2.1) we see that S is not identically ∞. To show the lower semi-continuity
of S, let us assume that (un,vn) converges to (u,v) in H−1

ave (T
d) × Lp/(p−1)(Td ;Rd) as n → ∞

and there is λ � 0 such that S((un,vn)) � λ (∀n ∈ N). The equality (2.11) ensures that there
exists {sn

i }∞i=1 (⊂ Lp/(p−1)(Td ;Rd)) such that div sn
i = (−�per)

−1un (∀i ∈N) and

lim
i→∞

∫
Ω

σ #(vn(x) − sn
i (x)

)
dx = inf

s∈Yper(un)

∫
Ω

σ #(vn(x) − s(x)
)
dx.
per per
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There exists λ′ � 0 such that

∫
Ωper

σ #(vn(x) − sn
i (x)

)
dx � λ + λ′, ∀i ∈N.

By this inequality and (2.1) {sn
i }∞i=1 is bounded in Lp/(p−1)(Td ;Rd). Thus, we can extract a sub-

sequence {sn
i(l)}∞l=1 from {sn

i }∞i=1 so that sn
i(l) weakly converges to some sn in Lp/(p−1)(Td ;Rd)

as l → ∞. Moreover, Mazur’s theorem for the space Lp/(p−1)(Td ;Rd) ×R guarantees that for
any k ∈ N there exist lk ∈ N and βk

j ∈ [0,1] (j = 1, . . . , lk) satisfying
∑lk

j=1 βk
j = 1 such that as

k → ∞
lk∑

j=1

βk
j sn

i(j) → sn in Lp/(p−1)
(
T

d ;Rd
)
,

lk∑
j=1

βk
j

∫
Ωper

σ #(vn(x) − sn
i(j)(x)

)
dx → inf

s∈Yper(un)

∫
Ωper

σ #(vn(x) − s(x)
)
dx.

Furthermore, by extracting a subsequence from {∑lk
j=1 βk

j sn
i(j)}∞k=1 we may assume that as

k → ∞
lk∑

j=1

βk
j sn

i(j)(x) → sn(x) a.e. x ∈R
d ,

where we used the same notation for simplicity. Then, by Fatou’s lemma and the convexity of σ #

we have that

∫
Ωper

σ #(vn(x) − sn(x)
)
dx � liminf

k→∞

lk∑
j=1

βk
j

∫
Ωper

σ #(vn(x) − sn
i(j)(x)

)
dx

= inf
s∈Yper(un)

∫
Ωper

σ #(vn(x) − s(x)
)
dx. (2.12)

Since the set Yper(w) is a convex, closed subset of Lp/(p−1)(Td ;Rd) for any w ∈ H−1
ave (T

d) with
Yper(w) �= ∅, we obtain

div sn = (−�per)
−1un. (2.13)

By (2.12), (2.13) we have that sn ∈ Yper(un) and

∫
Ω

σ #(vn(x) − sn(x)
)
dx = min

s∈Yper(un)

∫
Ω

σ #(vn(x) − s(x)
)
dx � λ. (2.14)
per per
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It follows from (2.14) that {sn}∞n=1 is bounded in Lp/(p−1)(Td ;Rd). By using Mazur’s theo-
rem for the space H−1

ave (T
d)×Lp/(p−1)(Td ;Rd)×Lp/(p−1)(Td ;Rd) one can show that there are

sequences {n(j)}∞j=1, {mk}∞k=1 (⊂ N), γ k
j ∈ [0,1] (j = 1, . . . ,mk) with

∑mk

j=1 γ k
j = 1 (∀k ∈ N)

and s ∈ Lp/(p−1)(Td ;Rd) such that as k → ∞
mk∑
j=1

γ k
j (un(j),vn(j)) → (u,v) in H−1

ave

(
T

d
) × Lp/(p−1)

(
T

d;Rd
)
,

mk∑
j=1

γ k
j sn(j) → s in Lp/(p−1)

(
T

d ;Rd
)
.

Moreover, by taking a subsequence if necessary we may claim that as k → ∞
mk∑
j=1

γ k
j vn(j)(x) → v(x),

mk∑
j=1

γ k
j sn(j)(x) → s(x) a.e. x ∈R

d .

Then, Fatou’s lemma, the convexity of σ # and (2.14) prove that

∫
Ωper

σ #(v(x) − s(x)
)
dx � liminf

k→∞

mk∑
j=1

γ k
j

∫
Ωper

σ #(vn(j)(x) − sn(j)(x)
)
dx � λ. (2.15)

Note that for any φ ∈ C∞
0 (Rd)

∫
Rd

〈
s(x),−∇φ(x)

〉
Rd dx = lim

k→∞

mk∑
j=1

γ k
j

∫
Rd

〈
sn(j)(x),−∇φ(x)

〉
Rd dx

= lim
k→∞

mk∑
j=1

γ k
j

∫
Rd

(−�per)
−1un(j)(x) · φ(x) dx

=
∫
Rd

(−�per)
−1u(x) · φ(x) dx,

which means that

div s = (−�per)
−1u. (2.16)

By combining (2.15), (2.16) with (2.11) we arrive at S((u,v)) � λ, which concludes that S is
lower semi-continuous.

Since S : H−1
ave (T

d) × Lp/(p−1)(Td ;Rd) → R ∪ {∞} is convex, lower semi-continuous and
not identically ∞, we can apply Lemma 2.1(2) to deduce that

(
S∗)∗

((u,v)) = S((u,v)), ∀(u,v) ∈ H−1
ave

(
T

d
) × Lp/(p−1)

(
T

d ;Rd
)
. (2.17)
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In order to characterize S∗ (: (H−1
ave (T

d)×Lp/(p−1)(Td ;Rd))∗ →R∪{∞}), take any (f,g) ∈
H−1

ave (T
d) × Lp(Td ;Rd). Recalling (2.10), we observe that

S∗(Φp((f,g))
)

= sup
(u,v)∈H−1

ave (Td )×Lp/(p−1)(Td ;Rd )

{〈
Φp((f,g)), (u,v)

〉 − S((u,v))
}

= sup
(u,v)∈H−1

ave (Td )×Lp/(p−1)(Td ;Rd )

sup
(r,s)∈H−1

ave (Td )×Lp/(p−1)(Td ;Rd )

· {〈Φp((f,g)), (u,v)
〉 − Q∗(Φp/(p−1)

(
(u,v) − (r, s)

)) − R∗(Φp/(p−1)((r, s))
)}

= sup
(r,s)∈H−1

ave (Td )×Lp/(p−1)(Td ;Rd )

sup
(u,v)∈H−1

ave (Td )×Lp/(p−1)(Td ;Rd )

· {〈Φp((f,g)), (u,v) − (r, s)
〉 − Q∗(Φp/(p−1)

(
(u,v) − (r, s)

))
+ 〈

Φp((f,g)), (r, s)
〉 − R∗(Φp/(p−1)((r, s))

)}
= (

Q∗)∗
((f,g)) + (

R∗)∗
((f,g))

= Q((f,g)) + R((f,g)). (2.18)

To derive the last equality of (2.18) we applied Lemma 2.1(2) to Q, R. Moreover, by using (2.18)
one can verify that for (u,v) ∈ H−1

ave (T
d) × Lp/(p−1)(Td ;Rd)

(
S∗)∗

((u,v)) = sup
(f,g)∈H−1

ave (Td )×Lp(Td ;Rd )

{〈
(u,v),Φp((f,g))

〉 − S∗(Φp((f,g))
)}

= sup
(f,g)∈H−1

ave (Td )×Lp(Td ;Rd )

{〈
Φp/(p−1)((u,v)), (f,g)

〉 − (Q + R)((f,g))
}

= (Q + R)∗
(
Φp/(p−1)((u,v))

)
. (2.19)

Combining (2.19) with (2.17) yields

S((u,v)) = (Q + R)∗
(
Φp/(p−1)(u,v)

)
, ∀(u,v) ∈ H−1

ave

(
T

d
) × Lp/(p−1)

(
T

d ;Rd
)
.

Finally remark that the argument leading to (2.14) essentially showed that ‘inf’ in (2.11) can
be replaced by ‘min’, which results in the desired equality. �

Lemmas 2.4 and 2.9 complete the characterization of F #
per.

Lemma 2.11. For any u ∈ H−1
ave (T

d)

F #
per(u) =

{
mins∈Yper(−u)

∫
Ωper

σ #(s(x)) dx if Yper(−u) �= ∅,

∞ otherwise.

All the preparations have been done to prove Theorem 1.4.

Proof of Theorem 1.4. Assume that ∂Fper(f ) �= ∅ throughout the proof. If u ∈ ∂Fper(f ), ac-
cording to Lemma 2.2 we equivalently have that
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Fper(f ) + F #
per(u) = 〈f,u〉

H−1
ave (Td )

,

or by Lemma 2.11 that

Fper(f ) + min
s∈Yper(−u)

∫
Ωper

σ #(s(x)
)
dx = 〈f,u〉

H−1
ave (Td )

.

Let g ∈ Yper(−u) be a minimizer. We have −div g = (−�per)
−1u and

Fper(f ) +
∫

Ωper

σ #(g(x)
)
dx = 〈f,u〉

H−1
ave (Td )

,

which lead to

∫
Ωper

(
σ
(∇f̃ (x)

) + σ #(g(x)
))

dx = 〈f,−div g〉. (2.20)

By Lemma 2.7 we can choose a sequence {gn}∞n=1 (⊂ C∞(Td ;Rd)) so that as n → ∞

gn → g in Lp/(p−1)
(
T

d ;Rd
)
,

div gn → div g in H 1
ave

(
T

d
)
.

Then by using Lemma 2.6 we see that

〈f,−div g〉 = − lim
n→∞

∫
Ωper

f̃ (x)div gn(x) dx = lim
n→∞

∫
Ωper

〈∇f̃ (x),gn(x)
〉
Rd dx

=
∫

Ωper

〈∇f̃ (x),g(x)
〉
Rd dx.

Therefore, we can deduce from (2.20) that

∫
Ωper

(
σ
(∇f̃ (x)

) + σ #(g(x)
) − 〈∇f̃ (x),g(x)

〉
Rd

)
dx = 0.

Since the integrand of the integral above is non-negative, we obtain

σ
(∇f̃ (x)

) + σ #(g(x)
) − 〈∇f̃ (x),g(x)

〉
Rd = 0 a.e. x ∈ R

d,

or equivalently g(x) ∈ ∂σ (∇f̃ (x)) a.e. x ∈ R
d by Lemma 2.2. Since u = −(−�per) · div g, we

have proved the inclusion ‘⊂’ of the claim of Theorem 1.4.
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To show the opposite inclusion ‘⊃’, take any u ∈ H−1
ave (T

d) for which there is g ∈
Lp/(p−1)(Td ;Rd) such that div g ∈ H 1

ave(T
d), u = −(−�per)div g and g(x) ∈ ∂σ (∇f̃ (x)) a.e.

x ∈ R
d . Then by exactly following the argument above the other way round we can reach

Fper(f ) +
∫

Ωper

σ #(g(x)
)
dx = 〈f,u〉

H−1
ave (Td )

.

By taking infimum over such gs and by Lemma 2.11 one has

Fper(f ) + F #
per(u) � 〈f,u〉

H−1
ave (Td )

,

which is equivalent to the inclusion u ∈ ∂Fper(f ) by the definition of F #
per and Lemma 2.2. We

have proved the inclusion ‘⊃’ as well. �
2.2. Proof for the Dirichlet problem

The major part of the proof for Theorem 1.5 can be constructed by straightforwardly trans-
lating the proof for Theorem 1.4 into the context with the Dirichlet boundary condition. Let us,
therefore, explain only different parts from the periodic problem and be brief about the parallel
parts.

To characterize the conjugate functional F #
D (: H−1(Ω) → R∪{∞}) we introduce functionals

QD,RD : H−1(Ω) × Lp(Ω;Rd) →R∪ {∞} by

QD((f,g)) :=
∫
Ω

σ
(
g(x)

)
dx,

RD((f,g)) :=
{

0 if f ∈ XD and g = ∇f̃ ,

∞ otherwise,

where H−1(Ω)×Lp(Ω;Rd) is the real Banach space with the norm ‖(f,g)‖D := ‖f ‖H−1(Ω) +
‖g‖Lp(Ω;Rd ). The functionals QD, RD are convex, lower semi-continuous and not identical-
ly ∞.

The difference from the periodic problem mainly lies in a lack of a density property like
Lemma 2.7, which worked conveniently in the periodic case. Consequently in the Dirichlet prob-
lem the characterization of R∗

D, F #
D and ∂FD inherits an additional constraint, which is to require

a function w (∈ Lp/(p−1)(Ω;Rd)) satisfying div w ∈ H 1
0 (Ω) to obey

〈div w, h〉 +
∫
Ω

〈
w(x),∇h̃(x)

〉
Rd dx = 0, ∀h ∈ XD. (2.21)

The first difference appears in the characterization of R∗
D (: (H−1(Ω) × Lp(Ω;Rd))∗ → R∪

{∞}), while the characterization of Q∗
D can be carried out in the same way as in Lemma 2.5.

Using the isomorphism Ψp/(p−1) : H−1(Ω) × Lp/(p−1)(Ω;Rd) → (H−1(Ω) × Lp(Ω;Rd))∗
defined by
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〈
Ψp/(p−1)((u,v)), (f,g)

〉 := 〈u,f 〉H−1(Ω) +
∫
Ω

〈
v(x),g(x)

〉
Rd dx,

∀(u,v) ∈ H−1(Ω) × Lp/(p−1)
(
Ω;Rd

)
, ∀(f,g) ∈ H−1(Ω) × Lp

(
Ω;Rd

)
,

we have

Lemma 2.12. For any (u,v) ∈ H−1(Ω) × Lp/(p−1)(Ω;Rd)

R∗
D

(
Ψp/(p−1)((u,v))

) =
{

0 if v satisfies (2.21) and div v = (−�D)−1u,

∞ otherwise.

Proof. Take any (u,v) ∈ H−1(Ω) × Lp/(p−1)(Ω;Rd).

R∗
D

(
Ψp/(p−1)((u,v))

) = sup
f ∈XD

{
〈u,f 〉H−1(Ω) +

∫
Ω

〈
v(x),∇f̃ (x)

〉
Rd dx

}

� sup
φ∈C∞

0 (Ω)

∫
Ω

(
(−�D)−1u(x) · φ(x) + 〈

v(x),∇φ(x)
〉
Rd

)
dx

=
{

0 if div v = (−�D)−1u,

∞ otherwise.

On the assumption that div v = (−�D)−1u we have that

R∗
D

(
Ψp/(p−1)((u,v))

) = sup
f ∈XD

{
〈div v, f 〉 +

∫
Ω

〈
v(x),∇f̃ (x)

〉
Rd dx

}

=
{0 if v satisfies (2.21),

∞ otherwise.
�

For any u ∈ H−1(Ω) let us define a subset YD(u) of Lp/(p−1)(Ω;Rd) by

YD(u) := {
s ∈ Lp/(p−1)

(
Ω;Rd

) ∣∣ div s = (−�D)−1u, s satisfies (2.21)
}
.

By noting that YD(u) is convex and closed in Lp/(p−1)(Ω;Rd) for any u ∈ H−1(Ω) with
YD(u) �= ∅, we can straightforwardly modify the proof of Lemma 2.9 to conclude the follow-
ing.

Lemma 2.13. For any (u,v) ∈ H−1(Ω) × Lp/(p−1)(Ω;Rd)

(QD + RD)∗
(
Ψp/(p−1)((u,v))

) =
{

mins∈YD(u)

∫
Ω

σ #(v(x) − s(x)) dx if YD(u) �= ∅,

∞ otherwise.

Since the Dirichlet analogue of Lemma 2.4 holds naturally, we obtain from Lemma 2.13
that
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Lemma 2.14. For any u ∈ H−1(Ω)

F #
D(u) =

{
mins∈YD(−u)

∫
Ω

σ #(s(x)) dx if YD(−u) �= ∅,

∞ otherwise.

On these preparations we can prove Theorem 1.5.

Proof of Theorem 1.5. Assume that ∂FD(f ) �= ∅. By Lemmas 2.2 and 2.14 the inclusion u ∈
∂FD(f ) is equivalent to the equality

FD(f ) + min
s∈YD(−u)

∫
Ω

σ #(s(x)
)
dx = 〈f,u〉H−1(Ω). (2.22)

If g (∈ YD(−u)) is a minimizer, u = −(−�D)div g and the equality (2.22) coupled with (2.21)
leads to ∫

Ω

σ
(∇f̃ (x)

)
dx +

∫
Ω

σ #(g(x)
)
dx =

∫
Ω

〈
g(x),∇f̃ (x)

〉
Rd dx,

which is equivalent to the inclusion that g(x) ∈ ∂σ (∇f̃ (x)) a.e. x ∈ Ω by Lemma 2.2. We have
proved the inclusion ‘⊂’ of Theorem 1.5. The opposite inclusion ‘⊃’ can be shown by arguing
the other way around. �
Proof of Corollary 1.6. We show that

• the bilinear form (f, g) �→
∫
Ω

f (x)g(x) dx is well defined on W
1,p

0 (Ω) × H 1
0 (Ω),

• f �→
∫
Ω

f (x)g(x) dx is continuous in W
1,p

0 (Ω)
(∀g ∈ H 1

0 (Ω)
)
,

• g �→
∫
Ω

f (x)g(x) dx is continuous in H 1
0 (Ω)

(∀f ∈ W
1,p

0 (Ω)
)
, (2.23)

in the assumed circumstance by means of the Sobolev embedding theorem. Note that if (2.23)
holds, the constraint (2.21) is trivial by the density property of C∞

0 (Ω) in H 1
0 (Ω) and W

1,p

0 (Ω).
If d � 2, H 1

0 (Ω) ⊂ Lp/(p−1)(Ω), thus (2.23) is true.

If p � d , W
1,p

0 (Ω) ⊂ L2(Ω). Therefore (2.23) holds.

If d � 3 and 1 < p < d , H 1
0 (Ω) ⊂ L2d/(d−2)(Ω) and W

1,p

0 (Ω) ⊂ Ldp/(d−p)(Ω). From this
we see that the inequality

2d

d − 2
� dp/(d − p)

dp/(d − p) − 1

is sufficient to guarantee (2.23). This inequality is equivalent to p � 2d/(d + 4).
By summing up, the condition (1.6) is seen to be sufficient for (2.23) to be true. �
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3. Canonical restriction for a spherically symmetric surface

In this section we will find the smallest element in ∂FD(f ) with respect to the norm ‖·‖H−1(Ω)

by giving a spherically symmetric surface f̃ . Let us write the smallest element called canonical
restriction as ∂F c

D(f ). It is known (see e.g. [5]) that the solution to the initial value problem

⎧⎨
⎩

d

dt
fD(t) ∈ −∂FD

(
fD(t)

)
a.e.t > 0,

fD(0) = fD,0 (∈ XD)

satisfies

d+

dt
fD(t) = −∂F c

D

(
fD(t)

)
all t > 0,

where d+/dt means the right derivative. Hence, the canonical restriction provides useful in-
formation on the time evolution of the crystalline surface as already discussed for 1-dimensional
problems in [10, Section 4], [12, Chapter 3]. Here we argue a general dimensional problem under
the constraint (1.6).

We fix f ∈ XD whose f̃ (∈ W
1,p

0 (Ω)) satisfies that ∇f̃ (x) = 0 a.e. x ∈ Ω0 and ∇f̃ (x) �= 0
a.e. x ∈ Ω\Ω0 with an open set Ω0 satisfying Ω0 ⊂ Ω .

Using this f̃ , we define a function u
f̃

: Ω\Ω0 →R
d by

u
f̃
(x) := ∣∣∇f̃ (x)

∣∣−1∇f̃ (x) + μ
∣∣∇f̃ (x)

∣∣p−2∇f̃ (x).

For any functions g : Ω0 → R
m, h : Ω\Ω0 →R

m (m ∈ N), let (g|h) : Ω →R
m be defined by

(g|h)(x) :=
{

g(x) if x ∈ Ω0,

h(x) if x ∈ Ω\Ω0.

The following lemma tells us a way to find ∂F c
D(f ).

Lemma 3.1. Assume that the condition (1.6) holds and that g (∈ Lp/(p−1)(Ω0;Rd)) and u
f̃

(∈
Lp/(p−1)(Ω\Ω0;Rd)) satisfy the following conditions.

(i) there exists ψ ∈ C∞
0 (Ω;Rd) such that ψ |Ω0 = g.

(ii) ∇�div g(x) = 0, ∀x ∈ Ω0.
(iii) |g(x)| � 1, ∀x ∈ Ω0.
(iv) div(g|u

f̃
) ∈ H 1

0 (Ω).

Then, ∂F c
D(f ) = −(−�D)div(g|u

f̃
).

Proof. By the conditions (iii), (iv) and Corollary 1.6, −(−�D)div(g|u
f̃
) ∈ ∂FD(f ). Since

∂FD(f ) is a non-empty, closed convex set in H−1(Ω), the canonical restriction ∂F c (f ) uniquely
D
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exists. By Corollary 1.6 we may write ∂F c
D(f ) = −(−�D)div G with some G ∈ Lp/(p−1)(Ω;

R
d) satisfying G|Ω\Ω0

= u
f̃

. By convexity of ∂FD(f ) and minimality of ‖−�D div G‖H−1(Ω)

we have that

lim
ε↘0

d

dε

∥∥(1 − ε)(−�D)div G + ε(−�D)div(g|u
f̃
)
∥∥2

H−1(Ω)

= 2
∫
Ω0

〈∇ div g(x) − ∇ div G(x),∇ div G(x)
〉
Rd dx � 0. (3.1)

On the other hand, we can derive the equality that for any ψ ∈ C∞
0 (Ω;Rd)

∫
Ω0

〈∇ div g(x) − ∇ div G(x),ψ(x)
〉
Rd dx =

∫
Ω0

〈
g(x) − G(x),∇ divψ(x)

〉
Rd dx.

Then by the assumptions (i), (ii)

∫
Ω0

〈∇ div g(x) − ∇ div G(x),∇ div g(x)
〉
Rd dx = 0. (3.2)

Combining (3.1) with (3.2) gives

∫
Ω0

∣∣∇ div g(x) − ∇ div G(x)
∣∣2

dx � 0,

or −�D div(g|u
f̃
) = −�D div G. �

3.1. A spherically symmetric surface

Let us apply Lemma 3.1 to find the canonical restriction ∂F c
D(f ) under assumptions that both

Ω0 and Ω are spherical domains and f̃ : Ω → R is spherically symmetric. More precisely we
assume that

Ω0 = {
x ∈R

d
∣∣ |x| < r0

}
, Ω = {

x ∈R
d

∣∣ |x| < r
}

with 0 < r0 < r and f̃ (x) := h(|x|) with h ∈ C1([0, r]) satisfying

h(r) = 0, h(1)(s) = 0
(∀s ∈ [0, r0]

)
and h(1)(s) < 0

(∀s ∈ (r0, r)
)
.

Here and below let the notation u ∈ Cl([a, b]) (l ∈ N∪ {0}, a < b) mean that u ∈ Cl((a, b)) and
u(k) ∈ C([a, b]) (k ∈ {0,1, . . . , l}). The corresponding f (∈ H−1(Ω)) to this f̃ (∈ W

1,p

0 (Ω)) is
characterized by

〈f,φ〉 =
∫

f̃ (x)φ(x) dx, ∀φ ∈ H 1
0 (Ω).
Ω
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To organize the calculation of the canonical restriction ∂F c
D(f ) below, we define a function

H : [r0, r] →R by

H(s) := −1 + μ
∣∣h(1)(s)

∣∣p−2
h(1)(s), ∀s ∈ [r0, r].

Theorem 3.2. Assume that H ∈ C3([r0, r]),

H(1)(r) + d − 1

r
H(r) = 0, (3.3)

H(1)(r0) ∈ [−9/r0,0]. (3.4)

Then for all φ ∈ H 1
0 (Ω)

〈
∂F c

D(f ),φ
〉 = d(d + 2)

r2
0

(
H(1)(r0) + 1

r0

)∫
Ω0

φ(x) dx

+
∫

Ω\Ω0

(
H(3)

(|x|) + 2(d − 1)

|x| H(2)
(|x|) + (d − 1)(d − 3)

|x|2 H(1)
(|x|)

− (d − 1)(d − 3)

|x|3 H
(|x|))φ(x) dx

+
(

H(2)(r0) − 3

r0
H(1)(r0) − 3

r2
0

) ∫
∂Ω0

φ(x) dS, (3.5)

where dS denotes the surface measure.

Remark 3.3. The surface integral over ∂Ω0 in (3.5) corresponds to the appearance of delta
functions in 1-dimensional case [10, Theorem 4.1]. The surface integral disappears and the
canonical restriction can be identified with a function being constant on the facet Ω0 if
H(2)(r0) − 3/r0H

(1)(r0) − 3/r2
0 = 0. This remark was missed in the conclusion of [10] and

was properly taken into account in [12, Chapter 3] during its derivation of the free boundary
value problem.

Proof of Theorem 3.2. First note that u
f̃
(x) = H(|x|)x/|x| (∀x ∈ Ω\Ω0) and by the assumption

(3.3)

div u
f̃
(x) = 0, ∀x ∈ ∂Ω. (3.6)

Next let us find g : Ω0 → R
d satisfying (i), (ii), (iv) of Lemma 3.1. Postulate that g(x) =

η(|x|)x/|x| with a function η : [0, r0] → R. Then we have that

∇�div g(x) = (|x|4η(4)
(|x|) + 2(d − 1)|x|3η(3)

(|x|) + (d − 1)(d − 5)|x|2η(2)
(|x|)

− 3(d − 1)(d − 3)|x|η(1)
(|x|) + 3(d − 1)(d − 3)η

(|x|)) x
5
.
|x|
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The general solution to the ODE

s4η(4)(s) + 2(d − 1)s3η(3)(s) + (d − 1)(d − 5)s2η(2)(s)

− 3(d − 1)(d − 3)sη(1)(s) + 3(d − 1)(d − 3)η(s) = 0 (s > 0)

is given by

η(s) = C1s + C2s
3 + C3s

−(d−1) + C4

{
s log s if d = 2,

s−(d−3) if d �= 2,
∀Ci ∈R (i = 1,2,3,4).

Since we are looking for g ∈ C∞(Ω0;Rd), C3 = C4 = 0. Therefore,

g(x) = (
C1|x| + C2|x|3) x

|x| , ∀x ∈ Ω0.

To determine C1, C2 we use the continuity conditions on ∂Ω0. Since div(g|u
f̃
) ∈ L2(Ω),

〈g(x),x/|x|〉Rd = 〈u
f̃
(x),x/|x|〉Rd (∀x ∈ ∂Ω0), or η(r0) = H(r0). Coupling this with the fact

h(1)(r0) = 0 yields

C1r0 + C2r
3
0 = −1. (3.7)

Moreover, since (div g|div u
f̃
) ∈ H 1

0 (Ω), div g(x) = div u
f̃
(x) (∀x ∈ ∂Ω0), which implies that

η(1)(r0)+(d−1)η(r0)/r0 = H(1)(r0)+(d−1)H(r0)/r0, or by using the equality η(r0) = H(r0),

C1 + 3C2r
2
0 = H(1)(r0). (3.8)

By solving (3.7)–(3.8) we have

g(x) =
(

1

2r2
0

(
H(1)(r0) + 1

r0

)
|x|3 − 1

2

(
H(1)(r0) + 3

r0

)
|x|

)
x
|x| ,

which is seen to satisfy (i), (ii), (iv) of Lemma 3.1 by its construction and (3.6).
An elementary argument shows that this g obeys (iii) of Lemma 3.1 if and only if (3.4) holds.
We have checked that all the requirements of Lemma 3.1 are fulfilled, and thus obtain

∂F c
D(f ) = −(−�D)div(g|u

f̃
). Then by direct calculation we can deduce (3.5). �

Example 3.4. Assume that r = 2r0, p = 2 and μ = 1. In this setting let us give a surface f̃

realizing all the assumptions of Theorem 3.2 plus

H(2)(r0) − 3

r0
H(1)(r0) − 3

r2
0

= 0, (3.9)

so not having the surface integral over ∂Ω0 in (3.5). Note that now the condition (1.6) holds and

H(s) = −1 + h(1)(s), ∀s ∈ [r0,2r0].
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We can summarize the assumptions of Theorem 3.2 and (3.9) in terms of h as follows.

h ∈ C1([0,2r0]
) ∩ C4([r0,2r0]

)
,

h(2r0) = 0,

h(1)(s) = 0, ∀s ∈ [0, r0],
h(1)(s) < 0, ∀s ∈ (r0,2r0),

h(2)(2r0) + d − 1

2r0

(−1 + h(1)(2r0)
) = 0,

h(2)(r0) ∈ [−9/r0,0],
h(3)(r0) − 3

r0
h(2)(r0) − 3

r2
0

= 0.

Define h : [0,2r0] →R by

h(s) :=
⎧⎨
⎩

∫ r0
2r0

(− 3
5r3

0
(t − r0)(t − 2r0)

2 + d−1
2r4

0
(t − r0)

3(t − 2r0)) dt if s ∈ [0, r0],∫ s

2r0
(− 3

5r3
0
(t − r0)(t − 2r0)

2 + d−1
2r4

0
(t − r0)

3(t − 2r0)) dt if s ∈ (r0,2r0].

Then, h obeys all the constraints listed above. With this h, define f̃ (x) := h(|x|) (∀x ∈ Ω). By
Theorem 3.2, ∂F c

D(f ) ∈ L∞(Ω) and

∂F c
D(f )(x) = 2d(d + 2)

5r3
0

1x∈Ω0

+
(

h(4)
(|x|) + 2(d − 1)

|x| h(3)
(|x|) + (d − 1)(d − 3)

|x|2 h(2)
(|x|)

− (d − 1)(d − 3)

|x|3 h(1)
(|x|) + (d − 1)(d − 3)

|x|3
)

1x∈Ω\Ω0
.
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