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Melanoma is a therapy-resistant skin cancer due to
numerous mechanisms supporting cell survival.
Although components of melanoma cytoprotective
mechanisms are overexpressed in many types of
tumors, some of their regulators are characteristic for
melanoma. Several genes mediating pro-survival func-
tions have been identified as direct targets of micro-
phthalmia-associated transcription factor (MITF), a
melanocyte-specific modulator also recognized as a
lineage addiction oncogene in melanoma. BRAFV600E

and other proteins deregulated in melanoma influence
MITF expression and activity, or they are the partners
of MITF in melanoma response to radiotherapy and
chemotherapeutics. In this review, the pro-survival
activity of MITF is discussed.
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INTRODUCTION
Several biological capabilities are acquired during tumor
development, and many of them are integral components of
most tumors (Hanahan and Weinberg, 2011). DNA damage
caused by hyperproliferation and regulatory imbalances
resulting from elevated levels of oncogene signaling is
compensated by the increased survival capacity of cancer
cells. Mechanisms responsible for the enhanced DNA repair
(Curtin, 2012) and resistance to multiple apoptotic signals
(Hellwig et al., 2011) are common for diverse tumors. The
repertoire of other strategies to limit or circumvent cell death
largely depends on the type of cells from which the tumor
arises.

Melanoma derives from pigment-producing melanocytes.
These cells are characterized by pro-survival mechanisms that
counteract damage-causing factors, including UV radiation
and highly reactive intermediates of melanogenesis (Chen
et al., 2014; Denat et al., 2014). These complex mechanisms
of resisting cell death, already active in melanocytes, are
further extended in melanoma cells. Upstream of anti-

apoptotic effectors, a wide range of transcription factors
contributes to the melanoma pro-survival phenotype. Several
of these transcription factors are constitutively active in a
number of tumors. Accordingly, the functional liaison
between signal transducer and activator of transcription 3
and NF-kB has been observed in many types of tumors
including melanoma, and this association results in the
increased expression of anti-apoptotic proteins (Lee et al.,
2009; Hartman and Czyz, 2013).

In contrast to signal transducer and activator of transcription
3 or NF-kB, microphthalmia-associated transcription factor
(MITF) is a transcription factor unique for melanocyte and
melanoma development. It is termed a lineage-addiction
oncogene (Garraway et al., 2005); however, it is also
recognized as a suppressor of melanoma invasion and
metastasis (Pinner et al., 2009; Levy et al., 2010; Shah et al.,
2010; Thurber et al., 2011; Cheli et al., 2012; Bell et al.,
2014). MITF expression varies between melanoma specimens
(Flaherty et al., 2012), and diverse mechanisms contribute to
this phenomenon. Genomic amplification of MITF was
initially found in 15–20% of melanomas (Garraway et al.,
2005); however, targeted-capture deep sequencing has shown
no alteration in MITF copy number in 49 patient-derived
melanoma metastases (Harbst et al., 2014). Diverse somatic
mutations have been found in MITF (Cronin et al., 2009). A
SUMOylation-deficient E318K-mutated MITF has been
identified as a variant present in patients with familial
melanoma (Bertolotto et al., 2011; Yokoyama et al., 2011).
Patients carrying this germline substitution, known as a
medium-penetrance melanoma gene, suffer from multiple
primary melanomas (Sturm et al., 2014). Melanoma-specific
BRAFV600E substantially participates in control of MITF
expression and activity by maintaining a fine balance of
opposing mechanisms (Levy et al., 2006; Goodall et al.,
2008; Pinner et al., 2009; Johanessen et al., 2013) (Figure 1).
As recently reviewed by Hartsough et al. (2014), the response
to RAF inhibitors, e.g., vemurafenib and dabrafenib, is
heterogeneous in melanoma, and the resistance
mechanisms developed during treatment might affect MITF
activity as well. MITF expression might be also affected by
mutations in its transcriptional regulators, e.g., SOX10
(Cronin et al., 2009) and ETV1 (Jane-Valbuena et al., 2010),
or by alterations in the composition of microRNAs negatively
regulating MITF transcript (Bemis et al., 2008; Segura et al.,
2009; Haflidadóttir et al., 2010; Luo et al., 2013).

To link the level of MITF with the phenotype of melanoma
cells, a ‘‘rheostat’’ or ‘‘dynamic epigenetic’’ model was
created (Carreira et al., 2006). This model was profoundly
discussed and extended (Quintana et al., 2010; Bell and Levy,
2011; Giuliano et al., 2011; Eccles et al., 2013; Bell et al.,
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2014). Depending on the expression level and posttrans-
lational modifications of MITF, melanoma cells can either
differentiate or proliferate. High activity of MITF promotes
differentiation preceded by p16- and p21-mediated G1 cell
cycle arrest. Low MITF activity is attributed to the stem cell–
like and invasive phenotype. Finally, prolonged MITF deple-
tion causes melanoma cell senescence. Thus, MITF exempli-
fies a regulator operating in the relevant lineage of normal
cells during development and differentiation, whose activity is
further enhanced by genetic and epigenetic alterations gener-
ated within a tumor. Its expression is also dynamically
regulated by the microenvironment, and intercellular
exchange of microRNAs downregulating MITF transcript via
exosomes might be involved (Xiao et al., 2012; Gajos-
Michniewicz et al., 2014). Thus, MITF can be expressed at
different levels in distinct subpopulations of the heterogeneous
tumor mass. This is supported by a study showing variability in
the MITF-staining intensity within clinical melanoma samples
(Somasundaram et al., 2012). It was suggested that switching
back and forth between low and high MITF-expressing
phenotypes supported melanoma cells to exhibit different
cellular programs (Goding, 2011). Recently, the ‘‘state
switching’’ model of melanoma progression was described

as a double-negative feedback loop, where MITF and MITF-
dependent microRNAs can activate one state while
suppressing another (Bell et al., 2014), activated by PAX3-
BRN2 (Boyle et al., 2011; Eccles et al., 2013). Thus, cellular
context and tumor microenvironment are key factors
influencing MITF expression and activity, and, as a result,
the phenotype of melanoma cells can be dynamically
modulated (Hoek and Goding, 2010; Quintana et al., 2010;
Bell and Levy, 2011; Bell et al., 2014). In line with this, we
have shown recently that even small changes in the
composition of the growth medium can significantly alter
the MITF level and the phenotype of melanoma cells
(Hartman et al., 2014).

Although expression of several genes is regulated by MITF
in melanocytes and malignant melanoma cells, this review is
focused on MITF-dependent expression of proteins promoting
melanoma cell survival.

PRO-SURVIVAL ROLE OF MITF IN MELANOMA
Almost 100 genes encoding proteins with diverse biological
functions were identified as direct targets of MITF in mela-
noma (Hoek et al., 2008; Widmer et al., 2012). MITF is a
critical transcription factor for the development of the
melanocytic lineage (Opdecamp et al., 1997; Levy et al.,
2006) and regulates genes associated with melanogenesis and
cell differentiation, proliferation, and survival (Vachtenheim
et al., 2010; Haq and Fisher, 2011; Koludrovic and Davidson,
2013). Although pigment synthesis regulated by MITF is an
important mechanism protecting the skin against UV
radiation–induced damage (Choi et al., 2010; Haq and
Fisher, 2011), MITF promotes melanocyte and melanoma
cell survival also independently of melanin synthesis.

Several genes encoding anti-apoptotic proteins are direct
MITF targets (Figure 2). A microarray-based study identified
BCL2 (B-cell leukemia/lymphoma 2) as an MITF target gene in
melanocytes (McGill et al., 2002). A functional E-box sequence
at �220 position was found in the BCL2 promoter, and
nearest-neighbor analysis confirmed a tight correlation
between the expression of MITF and BCL2 in a panel of
primary human melanomas (McGill et al., 2002). BCL2 expres-
sion, however, is relatively low in most melanomas compared
with other anti-apoptotic regulators (Placzek et al., 2010).
Histidine triad nucleotide-binding protein 1, which binds to
the chromatin at MITF sites in the BCL2 promoter and forms a
nonfunctional complex with MITF and the transcriptional
repressors, HDAC1 and mSIN3a (Genovese et al., 2012),
might be responsible for the diminished BCL2 level in
melanoma cells compared with melanocytes. Altogether, this
might explain why targeting BCL2 demonstrated poor
apoptosis-inducing efficacy in melanoma (Senft et al., 2012).

Another anti-apoptotic BCL2 family member, BCL2-related
protein A1 (BCL2A1), was identified recently as a direct target
of MITF (Haq et al., 2013). Putative MITF-binding sites (E-
boxes) are present in the BCL2A1 promoter, and high-level
expression of BCL2A1 is restricted to melanoma because of
direct control by MITF. BCL2A1 is essential for survival in
those melanomas in which BCL2A1 or MITF is genomically
amplified. At high levels it promotes melanomagenesis in
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cooperation with BRAFV600E (Haq et al., 2013). Interestingly,
high expression of BCL2A1 is associated with worse clinical
responses to BRAF inhibitors. Suppression of BCL2A1
expression in melanomas harboring amplified BCL2A1 or
MITF significantly enhances apoptosis induced by the BRAF
inhibitor vemurafenib in vitro and decreases tumor
volume in vivo (Haq et al., 2013). Thus, the MITF-BCL2A1
pathway might be an intrinsic mechanism protecting
melanoma cells from drug-induced death, and BCL2A1
might constitute a melanoma-specific therapeutic target. In
this respect, an appropriate in vitro model for drug testing has
to be carefully chosen. We have recently evidenced that
multicellular anchorage-independent melanospheres better
mirror the original tumors regarding BCL2A1 and MITF
expression than do monolayer cultures (Hartman et al., 2014).

Melanoma inhibitor of apoptosis (ML-IAP; livin) can inhibit
both extrinsic and intrinsic apoptotic pathways by the inter-
action with caspases (Vucic et al., 2000). It is encoded by
BIRC7, which contains two functional consensus MITF-
binding sites (�49 and �290). The transcript levels of
MITF and ML-IAP correlate in melanoma samples. The small
interfering RNA–mediated knockdown of MITF in melanoma
cells led to a substantial decrease in ML-IAP expression
(Dynek et al., 2008). ML-IAP is not detected in melanocytes
(Saladi et al., 2013), whereas in melanoma its expression
correlates with diminished patient survival (Lazar et al., 2012).
Recently, the melanoma-specific mechanism underlying
MITF-mediated ML-IAP/livin expression in response to UV
radiation was demonstrated (Saladi et al., 2013). BRG1, a
catalytic subunit of the chromatin-remodeling complex SWI/
SNF, cooperates with MITF to promote a transcriptionally
permissive chromatin structure on the BIRC7 promoter. As an
earlier report demonstrated that BRG1 acted as a cofactor of
MITF in promoting cell differentiation (Keenen et al., 2010), a
study by Saladi et al. (2013) extended its role for pro-survival
activity. However, an MITF-independent pro-survival role of
the BRG1-containing SWI/SNF complex in melanoma was
also delineated (Ondrusova et al., 2013).

Other MITF targets, HIF1A and MET, involved in melanoma
cell survival are regulated by the cAMP pathway. MITF over-
expression is sufficient to increase hypoxia-inducible factor 1a
(HIF1a). Two motifs for MITF binding are present in the HIF1A
promoter. Increased levels of MITF and HIF1a are observed in
melanoma cells exposed to the cAMP-elevating agent for-
skolin (Busca et al., 2005). Forskolin-dependent HIF1a
expression protects melanoma cells from staurosporine-
induced apoptosis; thus, HIF1a exerts a pro-survival function
(Busca et al., 2005). Although HIF1a is rapidly degraded under
normoxic conditions, the analysis of HIF1A expression in
melanoma cell lines representing different tumor stages
confirmed its expression also in normoxia. A splice variant
lacking a moiety promoting oxygen-dependent HIF1a
degradation was detected in some metastatic cell lines (Mills
et al., 2009). Interestingly, MITF downregulation is mediated
by HIF1, through recruitment of the HIF1-inducible diffe-
rentially expressed in chondrocytes protein 1 to the MITF
promoter (Feige et al., 2011). This conclusion is supported by
diminished MITF-dependent expression of differentiation
marker Melan-A/MART-1 after HIF1a induction (Widmer
et al., 2013).

The cAMP/MITF pathway also contributes to the regulation
of c-MET expression. The MET promoter contains three E-box
sequences; however, only one mediates the transactivating
effect of MITF (Beuret et al., 2007). In response to forskolin or
a-melanocyte-stimulating hormone, which is substantially
increased by UV radiation, MITF-dependent c-MET expre-
ssion is observed, both in melanoma cells and melanocytes.
MET transcription can also be regulated by other factors. One
of them, SOX10, mediates transcription of MET but only
synergistically with either MITF or PAX3 (Mascarenhas et al.,
2010). c-MET is also regulated by its ligand, hepatocyte
growth factor (HGF; McGill et al., 2006). Upregulation of
c-MET allows HGF to protect melanocytes and melanoma
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cells from apoptosis. HGF derived from stromal cells in the
tumor microenvironment might be of special importance for
the pro-survival effects (Kankuri et al., 2005) and c-MET-
mediated resistance to RAF inhibitors (Straussman et al.,
2012). In melanoma patients, high serum HGF levels before
vemurafenib treatment is predictive of reduced overall survival
(Wilson et al., 2012). The anti-apoptotic signals maintained by
HGF/c-MET signaling involve the activation of the
extracellular signal–regulated kinase and phosphatidylinositol
3 kinase/AKT pathways (Xiao et al., 2001; Chattopadhyay
et al., 2014). In melanoma cells pretreated with forskolin, the
HGF/c-MET axis protects cells from staurosporine-induced
apoptosis (Beuret et al., 2007). c-MET can also inhibit cell
death independently of HGF by sequestering the Fas receptor,
thus preventing the binding of Fas ligand and initiation of the
extrinsic pathway of apoptosis (Wang et al., 2002).
Accordingly, some melanoma cell lines are particularly
insensitive to Fas ligand–induced apoptosis (Raisova et al.,
2000; Chetoui et al., 2008).

MITF can evoke pro-survival effects not only by positive
regulation of strictly anti-apoptotic genes but also by neutra-
lizing death-inducing signals through diverse mechanisms
(Figure 2). MITF can regulate the expression of CDKN1A
encoding p21 (Carreira et al., 2005), which is endowed with
multiple activities including cell cycle inhibition and pro-
survival protection (Abbas and Dutta, 2009). p21 was also
identified as a CRE-binding protein cofactor promoting MITF
expression in melanoma (Sestakova et al., 2010). This mutual
regulation reinforcing MITF expression may enhance MITF-
dependent survival of melanoma cell under cellular stress.
BRCA1, another MITF target, is engaged in the DNA repair
process that highlights the cytoprotective role of MITF in
response to DNA damage (Beuret et al., 2011). A DNA-
protecting role of MITF was evidenced by a direct regulation
of apurinic/apyrimidinic endonuclease 1 expression, a crucial
redox sensor. Accordingly, melanoma cells with higher levels
of MITF are less vulnerable to ROS (reactive oxygen species)
(Liu et al., 2009).

The cooperation between MITF and other key regulators of
melanoma cell maintenance highlights the complex mechan-
isms of the MITF-dependent support for melanoma cell
survival. b-Catenin, through MITF, promotes melanoma cell
growth and survival, and MITF rescues these processes in
b-catenin-depleted cells (Widlund et al., 2002). MITF can
function as a target, as well as a nuclear effector of Wnt
signaling, because of its interaction with lymphoid enhancer-
binding factor 1 (Yasumoto et al., 2002; Eichhoff et al., 2011).
The direct interaction between b-catenin and MITF can result
in the redistribution of b-catenin from LEF1 target genes to
MITF target genes; thus, MITF can use b-catenin as its own
cofactor in melanoma (Schepsky et al., 2006).

The role of anti-apoptotic MITF targets in apoptosis-unre-
lated processes makes the contribution of MITF to the
melanoma cell phenotype even more complicated. BCL2
promotes angiogenesis through the signal transducer and
activator of transcription 3–mediated (Kaneko et al., 2007)
or HIF1-mediated upregulation of vascular endothelial growth
factor (Trisciuoglio et al., 2011). This cooperation between two

MITF targets involves heat-shock protein 90–dependent stabili-
zation of HIF1 by BCL2 under hypoxic conditions (Trisciuoglio
et al., 2010). ML-IAP/livin inhibits cell migration by direct
repression of CRAF in melanomas bearing mutated NRAS
(Oberoi-Khanuja et al., 2012). An extremely high capacity to
disseminate throughout the body is another way of supporting
melanoma cell survival (Braeuer et al., 2014). In this respect,
MITF contributes to melanoma progression by increasing the
expression of proteins such as endothelin receptor B, HIF1a,
and cyclin-dependent kinase 2 (Mobley et al., 2012).

Although MITF is generally associated with pro-survival
functions in melanocytes and melanoma cells, its apoptosis-
promoting properties were also demonstrated (Larribere et al.,
2005). During TRAIL (tumor necrosis factor–related apoptosis-
inducing ligand)-induced apoptosis, MITF is a substrate for
caspase-mediated cleavage, resulting in the generation of a
small C-terminal moiety with the pro-apoptotic activity. Cells
transfected with a non-cleavable but transcriptionally active
MITF mutant exerted higher resistance to TRAIL-induced
apoptosis. Interestingly, such proteolytically generated pro-
apoptotic moieties from pro-survival molecules were also
identified for MITF targets (Del Bello et al., 2001; Nachmias
et al., 2003; Kucharczak et al., 2005; Yan et al., 2006;
Lefebvre et al., 2013).

FINAL CONCLUSIONS AND PERSPECTIVES
MITF is a master regulator of melanocytes, but it also
constitutes one of the most pivotal contributors to the
melanoma cell phenotype. MITF can operate within a wide
range of activity levels, resulting in the promotion of strikingly
extreme phenotypes. This is supported by the analysis of the
biological functions of MITF target genes that operate within
mutually exclusive processes. These targets involve, e.g.,
cyclin-dependent kinase 2-promoting proliferation versus
p16 and p21 responsible for cell cycle inhibition (Yajima
et al., 2011). MITF and MITF-dependent miR-211 block the
melanoma invasion program (Bell et al., 2014). MITF exerts
pro-survival functions in melanoma cells exposed to radio-
and chemotherapy. MITF at high level protects melanoma
cells from MEK inhibitor cytotoxicity (Smith et al., 2013), and
MITF activity has been linked to the resistance to MAPK
pathway inhibition (Van Allen et al., 2014), in relapsing
tumors as well (Johannessen et al., 2013). Thus, the
reduction of MITF activity may sensitize melanoma cells to
chemotherapeutics, and modalities affecting MITF can be
beneficial for melanoma patients. Different strategies against
anti-apoptotic MITF targets are tested (Hartman and Czyz,
2012; Mohana-Kumaran et al., 2014), but the only
pharmacological approach that suppresses MITF is the use of
HDACi, which shows anti-melanoma efficacy both in vitro
and in xenograft models (Yokoyama et al., 2008). Two histone
deacetylase inhibitors, LBH589 (panobinostat) and valproic
acid (vorinostat), are currently evaluated in clinical trials
(ClinicalTrials.gov). Recently, we have shown that several
natural compounds affecting heterogeneous populations of
melanoma cells either increased or reduced the MITF
transcript level (Sztiller-Sikorska et al., 2014). As MITF can
be widely regulated at the transcriptional level and numerous
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posttranslational modifications influence the MITF protein
level and stability (Figure 1), targeting MITF-related regulatory
pathways, although less specific, seems promising as well.
This approach was demonstrated for the dietary flavonoid
fisetin that efficiently disrupted Wnt/b-catenin signaling and
reduced the MITF level, leading to the inhibition of tumor
development in vivo (Syed et al., 2011). Moreover, particular
elements of MITF-dependent pathways might be employed
against melanoma cells. For example, a high tyrosinase
activity due to methotrexate-mediated MITF upregulation
was used for the activation of the antifolate prodrug, 3-O-
(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (Saez-Ayala et al.,
2013). This combination induced apoptosis in melanoma
cells both in vitro and in vivo. It should be emphasized,
however, that agents increasing the MITF level may favor the
pro-survival phenotype of melanoma cells. This is supported
by experiments showing an upregulation of pro-survival genes
in response to induced MITF overexpression (McGill et al.,
2002; Busca et al., 2005; Beuret et al., 2007; Dynek et al.,
2008). A most recently published study performed in the
BRAFV600E animal model with conditionally controlled
endogenous MITF activity has revealed that obliterating
MITF activity in melanoma is a potent antitumor mechanism
that leads to tumor regression, but low level of wild-type MITF
activity is oncogenic (Lister et al., 2014). The authors suggest
that lowering MITF activity in BRAFV600E melanomas instead
of its full abrogation would rather lead to the enhancement of
oncogenic potential than tumor regression. Thus, even if MITF
is considered as a potential element of targetome in
melanoma, a direct inhibition of MITF might be a difficult
therapeutic strategy (Haq and Fisher, 2013).
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