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SUMMARY

It is commonly thought that clathrin-mediated endo-
cytosis is the rate-limiting step of synaptic transmis-
sion in small CNS boutons with limited capacity for
synaptic vesicles, causing short-term depression
during high rates of synaptic transmission. Here, we
show by analyzing synaptopHluorin fluorescence
that 200 action potentials evoke the same cumulative
amount of vesicle fusion, irrespective of the fre-
quencyof stimulation (5–40Hz), implying the absence
of vesicle reuse, since the method used (alkaline-
trapping) measures only first-round exocytosis. After
blocking all slow or specifically clathrin-mediated
endocytosis, however, the same stimulation patterns
cause a rapid stimulation-frequency-dependent
release depression. This form of depression does
not reflect insufficient vesicle supply, but appears to
be the result of slow clearance of vesicular compo-
nents from the release site. Our findings uncover an
important yet overlooked role of endocytic proteins
for release site clearance in addition to their well-
characterized role in endocytosis itself.
INTRODUCTION

In many types of synapses the level of neurotransmitter release

during ongoing activity may be limited by the availability of

release-ready vesicles and, therefore, depends on the speed

of vesicle recruitment. Surprisingly, many synapses in the central

nervous system can sustain synaptic activity upon high-fre-

quency stimulation (Kopp-Scheinpflug et al., 2008; Kraushaar

and Jonas, 2000; Lorteije et al., 2009; Rancz et al., 2007). In order

to maintain the fidelity of synaptic transmission, synaptic vesi-

cles (SVs) are required to undergo fast recycling to prevent

depletion of the SV pool (Fernández-Alfonso and Ryan, 2004;

Sudhof, 2004). Recently it has been reported that interfering

with the function of endocytic proteins causes a fast, stimula-
tion-frequency-dependent depression of SV exocytosis (Hosoi

et al., 2009; Kawasaki et al., 2000). As obvious explanation for

such findings, the lack of release-ready SVs may be invoked

due to absence of recycled SVs. However, some of these inhib-

itory effects developed so rapidly that they cannot be explained

by the lack of release-ready SVs, since the reservoir of SVs

should well be able to maintain release for longer periods.

In this study we investigated vesicle exocytosis in cultured rat

hippocampal neurons using synaptopHluorin (Miesenböck et al.,

1998; Sankaranarayanan et al., 2000) in the presence of Folimy-

cin, a potent and specific inhibitor of vesicular reacidification,

that does not affect exo-endocytosis (Zhou et al., 2000). We

demonstrate that upon mild stimulation no reuse of SVs occurs

within 40 s and that recruitment of pre-existing SVs is fast

enough to meet the needs of a high release rate. However, under

the influence of the specific endocytosis inhibitor Dynasore

(Macia et al., 2006) or the inhibitor of clathrin-mediated endocy-

tosis Pitstop 2 (von Kleist et al., 2011) we observed a clear stim-

ulation-frequency-dependent release depression. This probably

reflects interference of these inhibitors with the process of rapid

clearance of exocytosed SV components from the synaptic

release sites. This notion was corroborated by the observation

of acute vesicular protein accumulation around the release site

using dual-color STED nanoscopy.

RESULTS

Limited Vesicle Reuse during Mild Stimulation
To reliably measure the level of synaptic release depression, we

quantified the amount of exocytosis upon different stimulation

strengths using synaptopHluorin (spH) in cultured hippocampal

neurons (Miesenböck et al., 1998; Sankaranarayanan et al.,

2000). At presynaptic terminals expressing spH, exocytosis of

SVs evoked by electric field stimulation (via action potentials,

APs) led to dequenching of spHmolecules in neutral extracellular

buffer, resulting in an instantaneous fluorescence increase (Fig-

ure 1A). Under such experimental conditions, the fluorescence

change is proportional to the amount of spH exocytosed. The

absolute amplitude of the signal can differ, however, from cell

to cell due to inhomogeneous expression of the probe and

variation in release probability. Therefore, we developed a
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Figure 1. Normalized Cumulative spH Signal Increases Linearly with the Number of Stimuli

(A) Pseudo-color images of a spH-transfected hippocampal neuron, during rest (left) and after field stimulation with 200 APs at 20 Hz (right). Scale bar, 10 mm. (B)

Representative spH responses to 50 APs at 20 Hz followed by 200 APs at 5 Hz (blue), 100 APs at 10 Hz (cyan), 50 APs at 20 Hz (orange), or 40 Hz (red). Between

stimuli an interval of 60 s was given for recovery. Fluorescence transients are normalized to the response of the calibration stimulus. (C) Time courses of

cumulative release calculated from (B). Decay phases of normalized fluorescence transients in (B) (calibration response) were fit with an exponential function (t =

28.6 ± 0.8 s). Relative release rates of subsequent responses were calculated by deconvolution. Integrating the release rate time course provided a good

estimation of cumulative release for quantitative comparison. (D) Endocytic time constants from synapses challenged with different stimulation protocols.

Fluorescence decays were fit by a single exponential. Time constants are normalized to those of the calibration response. High stimulation rates and prolonged

stimulation led to increased endocytic time constants (right side of the red borderline). Data points on the left side of the borderline have a difference less than 5%.

(E) Schematic experimental design. Green color symbolizes fluorescent spH: during stimulation (arrow) newly exocytosed SVs become fluorescent; when

endocytosed their fluorescence is quenched by reacidification (control) or stays (Folimycin). Under Dynasore they remain fluorescent at the plasma membrane.

(F) Comparison of estimated cumulative release (200 APs, 5 Hz) using three different methods. Experiment in (C) was repeated in presence of 100 mM Dynasore

(gray) or 80 nM Folimycin (black). Comparison of the deconvolved-integrated control signal (red, broken line, norm. release = 4.98 ± 0.30) with that from Folimycin

(norm. release = 4.91 ± 0.19) and Dynasore (norm. release = 4.55 ± 0.33) experiments revealed only a small reduction for Dynasore treatment. See also Figures

S1 and S2.
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normalization procedure (see Supplemental Experimental Pro-

cedures for details). A calibration stimulus of 50 APs at 20 Hz

is followed by a 60 s recovery interval and the test stimulus of in-

terest. Fluorescence transients were normalized to the calibra-

tion response amplitudes, providing a signal that is independent

of initial release probability and spH expression level (Figure 1B).

Since ongoing endocytosis during stimulation counteracts

protein accumulation at the plasma membrane, spH fluores-

cence decreases in between stimuli, causing reduction of peak

values in response to a given number of stimuli at low fre-

quencies (Figure S1A, available online). In order to compensate

for endocytosis and to further characterize the role of stimulation

frequency on release rates, we developed a deconvolution

routine, in which the normalized calibration response was taken

as a replica for the elementary event (ee Supplemental Experi-

mental Procedures for details). To validate this method we per-

formed deconvolution on normalized fluorescence transients in

Figure 1B. This analysis revealed stepwise increases in cumula-

tive release rate during periods of stimulation and cumulative

release was found to increase linearly with the number of APs

for mild stimulation up to 200 APs at 5 Hz (Figure 1C), in agree-

ment with previous studies using alkaline trapping (Ariel and

Ryan, 2010; Li et al., 2005). However, we also observed that
344 Neuron 80, 343–349, October 16, 2013 ª2013 Elsevier Inc.
for stronger and longer-lasting stimulation, time constants of

fluorescence decay upon exocytosis become larger, confirming

earlier results regarding the limited capacity of endocytosis

(Balaji and Ryan, 2007). This compromises the use of deconvo-

lution, in which a time-invariant template is assumed. We, there-

fore, explored the range of constant decay rates (Figure 1D) and

found that for a given number of APs the time constant is

invariant up to a certain firing frequency, which was 5 Hz for

200 APs and 40 Hz for 50 APs (see Supplemental Experimental

Procedures for details).

Despite its narrow range of applicability, the deconvolution

method has an advantage over other methods, which either

block compensatory endocytosis or prevent vesicular reacidifi-

cation (alkaline-trapping), since it directly measures the rate of

exocytosis without any perturbations. When applicable, it pro-

vides a better estimate for exocytosis, since it takes into account

the contributions of reused SVs (Figure S2). In fact, comparing

the results of deconvolution with those of using, e.g., alkaline-

trapping should allow one to estimate the contribution of SV

reuse. To do so, we next performed measurements with Folimy-

cin (V-ATPase inhibitor) and Dynasore (dynamin GTPase

inhibitor). The effects of these two inhibitors are schematically

illustrated in Figure 1E. We found for 200 APs at 5 Hz the



Figure 2. Frequency-Dependent Release Depression in the Pres-

ence of Dynasore, but Not Folimycin

(A) Average spH responses to 50 APs at 20 Hz followed by 200 APs at 5 Hz

(blue), 10 Hz (cyan), 20 Hz (orange), or 40 Hz (red) in the presence of Folimycin

(n = 6 each). Fluorescence transients were normalized to the calibration

stimulus. The signal amplitude was insensitive to stimulus frequency (mean

value of total fluorescence changes: 4.91 ± 0.19 for 5 Hz, 4.89 ± 0.33 for 10 Hz,

4.95 ± 0.17 for 20 Hz, and 4.39 ± 0.19 for 40 Hz). Traces are time shifted for

better visibility. (B) As in (A, but in the presence of Dynasore (n = 5 trials each).

Increased stimulation frequency led to a reduction in the signal amplitude

(mean value of total fluorescence changes: 4.55 ± 0.33 for 5 Hz, 3.84 ± 0.34 for

10 Hz, 3.21 ± 0.10 for 20 Hz, and 2.66 ± 0.13 for 40 Hz). (C) Average cypHer

responses to 50 APs at 20 Hz followed by 200 APs at 5 Hz (blue) or 40 Hz (red)

in the presence of Folimycin (n = 6 each). Transients are normalized to the

calibration stimulus. Similar signal amplitudes were observed (mean value of

total fluorescence changes: 2.96 ± 0.095 for 40 Hz and 3.20 ± 0.15 for 5 Hz).

(D) Same as in (C), but in the presence of Dynasore (n = 6 each). Stimulation at

40 Hz (red, mean value of total fluorescence changes: 2.05 ± 0.14) led to a

reduction compared to 5 Hz (blue, mean value of total fluorescence changes:

2.86 ± 0.12). (E) Average FM1-43 destaining profiles in response to 50 APs at

20 Hz followed by 200 APs at 5 Hz (blue, n = 6, mean value of total fluorescence

changes: 3.07 ± 0.09) or 40 Hz (red, n = 6, mean value of total fluorescence

changes: 3.27 ± 0.12). Synaptic boutons were preloaded with FM dye by

stimulation with 600 APs at 10 Hz. Transients are normalized to calibration

stimulus. (F) Same as in (E), but in the presence of 30 mM pitstop (n = 6 each).

Stimulation at 40 Hz (red, mean value of total fluorescence changes: 2.47 ±

0.13) led to a reduction compared to 5 Hz (blue, mean value of total fluores-

cence changes: 3.14 ± 0.10). All error bars represent SEM. See also Figures

S3 and S4.
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fluorescence response in the presence of 80 nM Folimycin to be

strikingly similar to the deconvolved-integrated signal obtained

in the absence of the proton pump inhibitor. The amplitude

with 100 mM Dynasore treatment was only slightly smaller

(Figure 1F). In agreement with several previous studies (Betz

and Bewick, 1993; Li et al., 2005; Wu and Wu, 2009), these find-

ings demonstrate no major contribution of SV reuse to synaptic

transmission within a 40 s period.

Block of Endocytosis Causes Release Depression
When stimulating at 10–100 Hz, a reduction in synaptic response

(called short-term synaptic depression, STD) is observed in

many types of glutamatergic synapses. Upon sustained stimula-

tion, the rate of synaptic release drops rapidly and reaches a

steady state within 10–20 stimuli, reflecting a balance between

SV usage and recruitment of new SVs. To further examine the

dynamics of SV cycling during stimulation with higher fre-

quencies, we first repeated experiments by stimulating synap-

ses with a fixed number of 200 APs with increasing frequency

and in the presence of Folimycin (Figure 2A). Total fluorescence

increases were found to be similar except for a slight decrease at

40 Hz. The similarity of cumulative amplitudes for 5, 10, and

20 Hz suggests that the same number of vesicles were trapped

in the alkaline state, indicating the absence of significant STD

and vesicle reuse.

Based on this finding we then tested whether STD is apparent

after acute block of dynamin activity in primary neurons, as has

been reported in the Calyx of Held (Hosoi et al., 2009). Indeed, in

the presence of Dynasore the amplitude of fluorescence re-

sponses dropped monotonically with increasing stimulation fre-

quency (Figure 2B). To confirm that this was Dynasore specific,

we examined spH responses to 200 APs at 20 Hz in the presence

of both Dynasore and Folimycin (Figure S3) or Folimycin alone.

We found that addition of Folimycin did not cause similar STD.

Neither did it rescue or enhance the STD caused by Dynasore.

Furthermore, in order to explore the relationship between exo-

cytic load and this type of STD, we reduced release probability

by lowering external Ca2+ concentration from 2 mM to 1 mM.

In the presence of Folimycin, the normalized amplitudes were

as large as for 2 mM Ca2+ (Figure S4A), suggesting the same

relative reduction in release rate during calibration and test stim-

ulation. In the presence of Dynasore, however, similar ampli-

tudes were found for 5 Hz stimulation (Figure S4B), while for

40 Hz the spH response was somewhat reduced, but much

less than at 2 mM (Figure S4C), implying that the effect of

Dynasore becomes weaker, when fewer vesicle components

accumulate at the plasma membrane.

Since overexpression of pHluorin fusion constructs can result

in an excess surface expression (Wienisch and Klingauf, 2006),

which in turn might interfere with release site clearance and

even induce the observed fast STD, we used two independent

approaches not involving overexpression. First, we stained

recycled vesicles with cypHer-labeled antibodies against the

luminal domain of synaptotagmin 1 (aSyt1-cypHer) (Hua et al.,

2011) and examined frequency-dependent STD (Figures 2C

and 2D). Note that aSyt1-cypHer transients are mirror images

of spH transients owing to the inverse pH dependence. In the

presence of Dynasore, again we observed enhanced STD
upon 40 Hz stimulation (Figure 2D). Second, to test whether

the observed STD is specifically dependent on dynamin or

more generally on the block of compensatory endocytosis, we

used the recently described inhibitor of clathrin-mediated endo-

cytosis, Pitstop, in its cell-membrane-permeable variant Pitstop

2 (von Kleist et al., 2011). Initial experiments using pH-switchable
Neuron 80, 343–349, October 16, 2013 ª2013 Elsevier Inc. 345



Figure 3. Recruitment of Reserve Vesicles during Multiple Spaced

Stimuli

(A) Representative spH responses to consecutive stimuli (50 APs at 20 Hz) with

60 s intervals for recovery (gray) plotted together with the calculated release

rate (red solid line) and cumulative release (red broken line). For comparison,

the same experiment was repeated in the presence of Folimycin (black solid

line) or Dynasore (black broken line). Transients were normalized to first

response. Inset: spH transient and calculated release rate during last two

stimuli. (B) Plot of changes in signal amplitudes upon each trial. In control,

evoked responses (red, n = 3) remain almost constant over at least ten trials,

while those of Dynasore (black open cycle) or Folimycin (black closed cycle)

treatment decrease to different extents (38.3% ± 7.2% for Folimycin and

23.9% ± 5.5% for Dynasore, n = 6 each). Error bars represent SEM. See also

Figure S2.
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exo- and endocytosis markers like pHluorins and cypHer uncov-

ered an unspecific side effect of Pitstop 2 on vesicular acidifica-

tion as well as mitochondrial pH (M.K., M. Martineau, and J.K.,

unpublished data), thus precluding their use in conjunction with

Pitstop 2. Therefore we stained SVs with the styryl dye FM1-43

and unloaded boutons with the same paradigm as above (Fig-

ures 2E and 2F). Both sets of experiments (quenching of

cypHer-labeled boutons in the presence of Dynasore and

destaining of FM-stained boutons in the presence of 30 mM

Pitstop 2) yielded near-identical results showing strong STD

at 40 Hz. Compared to spH-labeled boutons, the relative re-

sponses to the test stimulus are smaller, owing to the fact that

aSyt1-cypHer and FM dye inhomogenously label only a fraction

of the recycling and resting pools of SVs (Groemer and Klingauf,

2007; Hua et al., 2010). The data show that overexpression of

spH does not alter STD and that blocking essential components

of compensatory endocytosis causes a prompt and strong STD

during high-frequency stimulation. Note that strong STD occurs

within 5 s, a time span for which we have shown that SV reuse is

negligible.

Recruitment of Reserve SVs during Multiple Spaced
Stimuli
When SVs that carry spH are trapped in the alkaline state after a

first round of exo-endocytosis, during further stimulation fusion

of them will not contribute to the fluorescence increase, which

will lead to a progressive reduction in the evoked fluorescence

response. Such an effect was consistently observed during mul-

tiple rounds of short stimuli in the presence of Folimycin (Li et al.,

2005). Similar progressive reduction in response amplitudes was

also reported in hippocampal cultures treated with Dynasore

(Newton et al., 2006), which was believed to be the consequence

of SV pool depletion during sustained activity in the absence of

dynamin-dependent endocytosis. To test whether fast SV pool

depletion is the cause for fast STD in the presence of Dynasore,

we analyzed responses of synapses expressing spH to multiple

brief stimuli (50 APs at 20 Hz) at 60 s intervals in the presence of

Dynasore, Folimycin, or the delivery vehicle DMSO. Deconvolu-

tion was performed on control responses (with DMSO) and

showed stepwise increases in cumulative release with identical

amplitudes over 10 trials (Figure 3A). When Folimycin was

applied, fluorescence responses decreased gradually to about

40% of the initial response (Figure 3B), indicating an increased

percentage of alkaline-trapped SVs in the readily releasable

pool (RRP). Note that this happens on a timescale much longer

than that of the experiment of Figure 1F. In the presence of

Dynasore, endocytosed vesicles should be absent and one

would expect release sites to be occupied by not yet alkaline-

trapped vesicles from the so-called recycling pool (RP). This

pool provides a reservoir of several RRPs (Harata et al., 2001;

Rizzoli and Betz, 2005). Therefore, response amplitudes similar

to those of the DMSO control experiments were expected,

except for some decrease later in the recording due to depletion

of the RP. Surprisingly, a reduction in response amplitude was

observed early-on, which was even stronger than that in the

presence of Folimycin. This early decrease cannot be explained

by SV depletion, since release sites should be occupied in the

absence of endocytosis at least to the same degree as that
346 Neuron 80, 343–349, October 16, 2013 ª2013 Elsevier Inc.
reported by the acidic SVs in the Folimycin case. Therefore,

our data reveal an effect of Dynasore beyond the one caused

by insufficient SV supply.

Surface Accumulation of Vesicular Components Caused
by Dynasore
Although the major phenotype of genetically impaired dynamin

activity is a reduction in the SV pool size and the appearance

of coated pits and invaginations at stimulated synapses (Fergu-

son et al., 2007; Newton et al., 2006), acute block of dynamin

activity has been shown to result in STD, which is not readily ex-

plained by such long-term effects. Rather, it was postulated that

such block of endocytosis may perturb the clearance of vesicle

components from release sites, thereby interfering with docking

and priming of new SVs (Haucke et al., 2011; Kawasaki et al.,

2000; Neher, 2010). Here we took advantage of STED nano-

scopy to follow the fate of newly exocytosed SV proteins on

the plasma membrane in the presence of Dynasore. Previous

STED nanoscopy (Hua et al., 2011) demonstrated that the sur-

face fraction of the SV protein synaptotagmin 1 (Syt1) is enriched

at the periphery (potential endocytic site) of synapses at rest.

Surface Syt1 is taken up during SV endocytosis and recycled.

We, therefore, developed a staining protocol, which simulta-

neously displays surface-resident and newly exocytosed Syt1

during Dynasore application. We first stained surface Syt1 of

live neurons with an antibody against the short Syt1 ectodomain

coupled to ATTO 647N at 4�C and in the presence of 1 mMTTX to

suppress endocytosis and network activity. We then washed out

TTX at room temperature, applied the same antibody coupled

to ATTO 590, immediately elicited 200 APs at 20 Hz, and incu-

bated for 15 more min on ice before fixation (Figure 4A). Two



Figure 4. Accumulation of Vesicle Compo-

nents in the Presence of Dynasore

(A) Experimental protocol for labeling surface-

stranded and newly exocytosed Syt1 patches. (B)

Representative images of surface-stranded Syt1

(red) and newly exocytosed Syt1 (green) in the

presence (B1 and B1a) or absence of Dynasore

(B2 and B2a). Overviews (B1 and B2) in confocal

mode. Scale bar, 2 mm. STED images at 80 nm

lateral resolution (B1a and B2a). Clear spatial

separation between Syt1 patches was frequently

observed in STED images from experiments per-

formed in the presence of Dynasore (B1a) but not

in those from control experiments (B2a), indicating

that Dynasore disrupts translocation of newly

exocytosed Syt1 toward the RRetP. Scale bar,

400 nm. (C) Pearson coefficients were calculated

for images from experiments performed in the

presence of either Dynasore or DMSO after

background subtraction. A significant reduction

was observed in the Dynasore-treated group

compared to control (Dynasore = 0.31 ± 0.011,

n = 13; WT = 0.59 ± 0.012, n = 8, ***p < 0.001).
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populations of Syt1 could be well distinguished using dual-color

STED nanoscopy. Without Dynasore (DMSO only) both popula-

tions overlapped, indicating proximity between newly exocy-

tosed and pre-existing surface Syt1, which might have been

endocytosed during the stimulation period (Figure 4B). Dynasore

application, however, led to a clear segregation of both surface

pools, with newly exocytosed Syt1 close to release sites (Figures

4B and 4C), suggesting that Dynasore perturbs translocation of

vesicular components toward endocytic sites.

DISCUSSION

We investigated the impact of two endocytosis inhibitors,

Dynasore and Pitstop, on synaptic release in cultured rat hippo-

campal neurons using spH, cypHer-labeled antibodies, and

styryl dyes as reporters. Our results demonstrate a coupling

between endocytosis and exocytosis, such that proper function

of endocytic proteins is required for sustained exocytosis

during high-frequency stimulation. Upon inhibition of endocy-

tosis, the capacity of the synapse to quickly remove material

from the release site, whether actively or passively, seems to

be obstructed as the synapse becomes saturated with vesicular

debris, disrupting the function of the releasemachinery and lead-

ing to STD.

In order to perform quantitative measurements we designed a

normalization and deconvolution strategy of spH responses,

providing estimates of the cumulative release without any phar-

macological perturbations, such as alkaline-trapping. Deconvo-

lution distinguishes itself from alkaline-trapping by counting

contributions of all vesicles, including reused ones, that alka-

line-trapping fails to register. Therefore, it is an excellent tool

for quantifying SV reuse. In fact, we found no preferential reuse

of exocytosed SVs under mild stimulation (up to 200 APs within
40 s; Figures 1F and 2A). The amount of cumulative release upon

200 APs appeared to be insensitive to variations in stimulation

frequency up to 40 Hz, which may be a consequence of the

activity-dependent replenishment of RRP described earlier (Ditt-

man andRegehr, 1998; Stevens andWesseling, 1998;Wang and

Kaczmarek, 1998). We conclude that fast RRP replenishment

from the preexisting RP alone can guarantee a sufficient SV

supply during short periods of physiological stimulation, without

additional contributions of rapidly reused SVs.

The measured cumulative release under a variety of stimula-

tion conditions (Figure 2) allowed probing STD caused by acute

block of dynamin activity. Consistent with previous work at the

Calyx of Held (Hosoi et al., 2009), we found that perturbation of

dynamin function led to a significant reduction in the cumulative

release during high-frequency (40 Hz) stimulation. When the

same number of stimuli was applied at a lower rate, STD was

almost undetectable. It has been postulated that insufficient

SV supply accounts for such STD in Dynasore-treated neurons

(Newton et al., 2006), since depletion of fusion competent SVs

is a direct consequence of impaired endocytosis under inhibi-

tion of dynamin. However, our results challenge this view, since

alkaline-trapping experiments show that even during high-fre-

quency stimulation for up to a few tens of seconds (Figure 2A),

SVs are mainly recruited from the pre-existing SV pool. It

should be noted that in these experiments Dynasore was

applied only 5 min before recording, to avoid chronic changes,

such as depletion of SVs in the synaptic bouton, as reported in

studies, where the protein was genetically ablated (Lou et al.,

2012).

Is it specifically dynamin that figures in a yet unknown step

immediately postfusion to prevent STD, well before its role in

clathrin-coated SV scission? Or does Dynasore nonspecifically

induce STD or else does any form of blocking endocytosis
Neuron 80, 343–349, October 16, 2013 ª2013 Elsevier Inc. 347
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lead to deeper STD?We also targeted another pivotal process in

between exo- and endocytosis, namely, clathrin-mediated pit

formation, with the membrane-permeable variant of Pitstop

(von Kleist et al., 2011) and found that this resulted in the same

fast STD, qualitatively and quantitatively. Thus, two completely

different maneuvers, interfering with early and late steps of

compensatory endocytosis, somehow cause a reduction in

release with a time constant in the same subsecond range,

much shorter than that of SV fission during endocytosis

(5–20 s). This effect manifests itself, once the dynamin or clathrin

activity is abolished. What step could this be? As previously pro-

posed (Haucke et al., 2011; Kawasaki et al., 2000; Neher, 2010),

translocation of synaptic components from sites of exocytosis to

a ‘‘periactive zone’’ (Roos and Kelly, 1999) is a good candidate

for this step. This is supported by findings that perturbations of

dynamin and several interacting proteins enhance STD upon

high-frequency stimulation (Hosoi et al., 2009; Marie et al.,

2004). These studies include intersectin, which interacts with

the actin regulatory proteins neural wiskott-Aldrich syndrome

protein (nwASP) and cell division control protein 42 (CDC42)

(Pechstein et al., 2010). Therefore, perturbing endocytosis,

through inhibition of either dynamin or clathrin, leads to the accu-

mulation of vesicular components around release sites (Figure 4)

due to the lack of free endocytic sites. This prevents previously

used release sites from participating in the recruitment of readily

releasable SVs. Free diffusion of exocytosed SV proteins on the

plasma membrane may account for the slow restoration of

release sites after endocytosis block. Accordingly, less STD

was observed when release probability and surface protein

accumulation, respectively, was artificially reduced by lowering

external calcium concentration (Figure S4). Moreover, it has

been reported that during high-frequency stimulation of mouse

motor nerve terminals, sites of endocytosis were found much

closer to the release sites than during mild stimulation (Gaffield

et al., 2009). If this is also the case for cultured hippocampal

neurons, deeper STD might be expected for high-frequency

stimulation due to protein crowding around release sites. At

physiological temperature, however, the release site clearance

may substantially speed up and thereby STD may not show up

until higher stimulation frequencies are applied.

In conclusion, our study demonstrates that impaired endocy-

tosis leads to a novel form of fast STD, which is not related to

insufficient vesicle supply at the presynaptic bouton, but is a

result of slow clearance of vesicular components from the

release site. This finding implies an important role of endocytic

proteins for sustained synaptic transmission at high rates

beyond their well-established roles in early and late steps of

endocytosis.
EXPERIMENTAL PROCEDURES

Cell Culture

Primary cultures (�5000–7500 cells per coverslip) were prepared from the

CA3-CA1 region of 1-day-old Wistar rats according to the regulations of the

University of Münster/Max-Planck Society and as described (Goslin and

Banker, 1991). Transfection of superecliptic spH was performed at 3 days

in vitro (DIV) by a modified calcium phosphate transfection procedure. All

imaging experiments were carried out at 14–21 DIV at room temperature

(20–25�C).
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Immunofluorescence and FM Staining

CypHer-conjugated Syt1-antibody (mouse monoclonal, 604.2, Synaptic

Systems) was used to label hippocampal neurons. Neurons were incubated

with staining buffer (1:200) at 37�C for 3–4 hr in a bicarbonate buffer con-

taining 120 mM NaCl, 5 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 10 mM glu-

cose, and 18 mM NaHCO3, pH 7.4. The culture was then washed with

antibody-free buffer twice before use. For FM dye staining, cells were

challenged by electric field stimulation (600 APs at 10 Hz) in the presence

of 5 mM FM1-43.

Epifluorescence Microscopy

Coverslips were placed in a perfusion chamber containing a modified Tyrode

solution (in mM: 120 NaCl, 2.5 KCl, 2 CaCl2, 2 MgCl2, 10 Glucose, 10 HEPES,

pH 7.4). For electric field stimulation 1 ms pulses of 50 mA and alternating

polarity, applied by a constant current stimulus isolator (WPI A 385, World

Precision Instruments), were delivered via two platinum electrodes spaced

at 10 mm; 10 mM 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and 50 mM

D, l-2-amino-5-phosphonovaleric acid (AP5) were added to prevent recurrent

activity. Note that for FM destaining experiments 200 mM Advasep was added

to the solution to prevent fast reuptake at high frequencies. Folimycin A (Merck

Chemicals Ltd.), Dynasore (Sigma-Aldrich, Germany), and Pitstop 2 (prepared

by Volker Haucke) were stored frozen in 20 ml aliquots (10003) and diluted

before use to a final concentration of 80 nM, 100 mM, and 30 mM, respectively,

in DMSO.

Fluorophores were excited at 488 nm (spH and FM1-43) or 645 nm (cypHer)

with a computer-controlled monochromator (Polychrom IV, Till Photonics).

Time-lapse images were acquired using an electron-multiplying CCD camera

(iXon+ DU-897E-BV; Andor Technology), which was controlled by iQ software

(Andor Technology) and mounted on an inverted Nikon TE2000 microscope

equipped with a 603, 1.2 numerical aperture water-immersion objective and

an FITC/Cy5 dual-band filter set (AHF analysentechnik AG). Images were

analyzed using a self-written program in Matlab (MathWorks) as previously

described (Hua et al., 2011).

Dual-Color STED Nanoscopy

Dual-color STED images were recorded with a custom-built STED-nanoscope

that combines two pairs of excitation and STED laser beams, all derived from a

single supercontinuum laser source as described (Bückers et al., 2011). STED

images were processed using a linear deconvolution that was performed

according to the Richardson-Lucy algorithm using a regularization parameter

of 10�10 and performing 15 iterations. The point spread function for deconvo-

lution was generated by using a 2D Lorentz function with its half-width and

half-length fitted to the half-width and half-length of each individual image.

Both Syt1 antibodies (mouse monoclonal, 604.2, Synaptic Systems) were

directly labeled with either ATTO 647N or ATTO 590 and diluted (1:200) with

Tyrode solution before use. For surface pool staining, neurons were preincu-

bated in 1 mM TTX at room temperature for 15 min. Antibody stainings were

performed for 15 min on ice to suppress endocytosis. Stimulation in between

stainings, however, had to be performed at room temperature. Cells were

washed twice and fixed for 15 min in 4% PFA.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and can be found with this

article online at http://dx.doi.org/10.1016/j.neuron.2013.08.010.
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Miesenböck, G., De Angelis, D.A., and Rothman, J.E. (1998). Visualizing secre-

tion and synaptic transmission with pH-sensitive green fluorescent proteins.

Nature 394, 192–195.

Neher, E. (2010). What is Rate-Limiting during Sustained Synaptic Activity:

Vesicle Supply or the Availability of Release Sites. Front Synaptic Neurosci

2, 144.

Newton, A.J., Kirchhausen, T., and Murthy, V.N. (2006). Inhibition of dynamin

completely blocks compensatory synaptic vesicle endocytosis. Proc. Natl.

Acad. Sci. USA 103, 17955–17960.

Pechstein, A., Shupliakov, O., and Haucke, V. (2010). Intersectin 1: a versatile

actor in the synaptic vesicle cycle. Biochem. Soc. Trans. 38, 181–186.

Rancz, E.A., Ishikawa, T., Duguid, I., Chadderton, P., Mahon, S., and Häusser,
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