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In order to obtain accurate genomic breeding values a large number of reference animals
with both phenotype and genotype data are needed. This poses a challenge for breeds
with small reference populations. One option to overcome this obstacle is to use a multi-
breed reference population. However, combining populations across breeds is not
straightforward due to differences in linkage disequilibrium structure and weak relation-
ships between breeds. This study offers a review of the available literature on the use of
reference populations compiled from different cattle breeds. Results show that the effect
of multi-breed reference populations on the accuracy of genomic prediction is highly
affected by the genetic distance between breeds. When combining populations of the
same breeds from different countries, large increases in accuracy are seen, whereas for
admixed populations with some exchange of sires, substantial but smaller gains are found.
Little or no benefit is found when combining distantly related breeds such as Holstein and
Jersey and using the widely used genomic BLUP model. By using more sophisticated
Bayesian variable selection models that put more focus on genomic markers in strong
linkage disequilibriumwith causative variants in combination with denser markers sets or
functional subsets of markers, it is however possible to utilize information across distantly
related breeds to increase the accuracy of genomic prediction. The further development of
multi-breed genomic prediction models offers not only increases in the accuracy of
genomic breeding values for small breeds, but will also give a stronger persistence of the
accuracy over generations within larger breeds.
& 2014 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

A key factor for a successful genomic selection scheme is
the ability to accurately predict genomic breeding values
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(GEBV). This requires a reference population from which
marker effects can be estimated precisely. The accuracy of
the resulting GEBV relies heavily on the number of individuals
in the reference population (Goddard, 2009).

Small dairy cattle populations are often restricted by small
reference populations of progeny tested bulls. These popula-
tions, therefore, have low reliabilities of GEBV (Thomasen
et al., 2012). This poses a challenge for their future genetic
gain relative to breeds with large reference populations.
Thomasen et al. (2014) showed that low reliabilities of
genomic prediction are the single most important factor
limiting genetic gain in smaller populations with more
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intensive use of young bulls without a progeny test. There-
fore, an important objective for smaller dairy cattle breeds in
order to stay competitive should be to increase reliabilities of
GEBVs. Joining two or more populations from the same or
different breeds into a common reference population is an
obvious way to achieve this, as it is expected to increase the
accuracies of GEBV without adding extra costs for genotyping
and phenotyping.

Studies such as Goddard (2009) that describe the
effectiveness of genomic prediction, typically assume a
panmictic population. However, many populations are
structured to some degree. Population structure can
appear at a number of levels. At one end of the scale
national or regional populations of cattle belonging to the
same breed often have close genetic ties and are effectively
nearly panmictic. An example of this would be the Hol-
stein breed of dairy cattle, where extensive global
exchange of genetic material occurs. However, even within
what is nominally the same breed such as the Jersey
population of Denmark and North America, Thomasen
et al. (2012) observed differences in linkage disequilibrium
(LD) despite extensive use particularly of North American
genetic material in the Danish Jersey population. Popula-
tions belonging to different breeds of cattle are an extra
step away from truly panmictic. Here genetic similarities
are determined by the time since separation of the breeds
and the extent of subsequent exchange of genetic material
between the breeds. In particular, if genetic exchange has
been limited between the breeds, then similarities in LD
between the populations will be due to conserved LD from
the shared ancestral population. As a consequence, the
formula describing the effectiveness of genomic prediction
(Goddard, 2009) cannot be used directly in the multi-
breed context.

When predicting GEBV, the basic assumption is that all
causal variants are in LD with genomic markers. Linkage
disequilibrium can arise in a number of ways: mutations
are born in LD, through genetic drift (Hill and Robertson,
1968; Sved, 1971), selection can generate LD between
alleles both affecting a trait (Felsenstein, 1965; Bulmer,
1971) and through admixture, migration or introgression
between populations with different allele frequencies.

New mutations are effectively unique by nature. A
mutation arises in one particular genome – in LD with
all the alleles in that genome – regardless of linkage
distance. However, LD rapidly dissipates except within
short distances for which LD can persist for very long
time. In an infinite randomly mated population the LD
parameter shrinks by a factor (1-R) in each generation,
where R is the recombination rate between the loci
involved. Effectively only LD between fairly closely linked
loci persists for more than a few generations.

In livestock populations genetic drift constantly gener-
ates large LD (also termed ‘linkage’), and by strong selec-
tion and high usage of individuals selected for breeding
this linkage may dominate the genomic structure of the
populations. Consequently, the genomic markers will pre-
dict the family structure and multiple co-segregating
causative variants. The LD generated will in most cases
be weak for each pair of alleles, but as it is generated for all
pairs of alleles regardless of whether they are linked or
not, it is generated for a large number of pairs of alleles.
However, as much of this LD is between unlinked or
loosely linked alleles, it dissipates very quickly.

Figure 3 in Habier et al. (2010) illustrates these differ-
ences. As one moves away from the population with the
phenotypic information the ability of genomic prediction
declines first steeply due to loss of loose linkage (relation-
ship). Later it declines in a nearly linear (on the number of
generations) fashion even into another population reflect-
ing slow decay of LD between more tightly linked markers.
In contrast, the accuracy of conventional pedigree based
BLUP declines much more quickly. Therefore, many recent
findings show that the accuracy of GEBV depends heavily
on family relationships between the reference and test
populations (Habier et al., 2010; Daetwyler et al., 2012;
Wientjes et al., 2013; De Los Campos et al., 2013).When
reference and test individuals are from different popula-
tions, relationships may be relatively weak. Assuming that
we know the causal variants and use them to estimate
genomic relationships, the phenotypes in one population
will contribute to the accuracy of GEBV in the other
population (De Los Campos et al., 2013). However, because
we calculate genomic relationships using markers in
imperfect LD with causal variants, there is a loss of
information. With close relationships the loss is small
but for weak relationships the loss is considerable (De
Los Campos et al., 2013). Therefore, the increase in accu-
racy of GEBV when combining populations into a single
reference, will depend on how genetically related the
populations are, what proportion of the LD information
in genomic predictions originates from tightly linked
markers and from relationship information. The former is
to some degree shared between related breeds making
composite reference populations usable. The latter is not,
as information on individuals from one breed will not be
useful to predict relationship information in another
breed. The magnitude of LD is largely dictated by historic
effective population size. For tightly linked loci, Sved
(1971), Eqn. 7, using an argument akin to a coalescent
argument, found that for small recombination rates, R, the
expected squared correlation between pairs of markers is

Eðr2Þ ¼ 1=ð1þ4NeRÞ;

where Ne is the long-term effective population size.
On the other hand the amount of information due to

relationship largely depends on recent effective popula-
tions. For unlinked loci Sved's equation predicts E(r2)¼1/
(1þ12Ne). The effective population sizes now are much
smaller than historic effective population sizes (e.g. Hayes
et al., 2003). This tends to increase the significance of
relationship information relative to LD information.

Two conclusions arise from this argument: First of all,
the use of a composite reference population will only be
successful if either an appreciable fraction of the informa-
tion explained by the markers arises from tight linkage
between markers and causative variants or the breeds
making up the composite reference have relatively recent
genetic exchange between them. Second, method devel-
opment (including choice of marker panels) for prediction
based on composite reference populations needs to pay
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special attention to exploiting information from markers
tightly linked to the causative variants.

2. Statistical models

2.1. Single-trait GBLUP

The most straightforward approach for multi-breed pre-
diction is to apply regular single-trait GBLUP (VanRaden,
2008). This approach will mainly be sensible when popula-
tions are relatively close, e.g., subpopulations of the same
breed. The prerequisite for GBLUP to function well is to have
many recent relationships, i.e. use of a significant amount of
common sires or grandsires. A limitation of GBLUP for pooling
across breed data is that relationships across breeds are
typically small. When these relationships get very small the
correlation between genomic relationships at causal loci and
genomic relationships calculated from genome wide markers
becomes very low (De Los Campos et al., 2013). Consequently,
they essentially become “noise” and can cause estimation
problems.

2.2. Multi-trait GBLUP

Multi-trait GBLUP models can be used when the
phenotypes measured in different breeds are considered
different traits (Olson et al., 2012; Zhou et al., 2013). This
approach can accommodate for phenotypes not being
measured in exactly the same way, for possible SNP by
population (genetic background) interactions and SNP by
environment interactions. The multi-trait GBLUP model is
straightforwardly developed from a classical pedigree-
based multi-trait model where the pedigree relationship
matrix is replaced by a genomic relationship matrix. An
equivalent model to the multi-trait GBLUP model is a
multi-breed SNP-BLUP model which has uniform variance
across the genome for SNP effects within traits and uni-
form covariance across the genome for SNP effects
between traits. Sørensen et al. (2012) used such a multi-
trait SNP-BLUP implementation on mastitis related traits
in Danish Holstein cows and showed that such a model
allows for the genomic correlation to locally deviate some-
what from the overall SNP correlation. In general, how-
ever, a limitation of this multi-trait GBLUP/SNP-BLUP
model remains that the covariance across the genome is
assumed uniform.

2.3. Bayesian approaches

Application of Bayesian variable selection methods has
the potential to improve multi-breed evaluations in two
ways. Firstly, as Bayesian variable selection methods allo-
cate more genomic variance to markers that show a high
association to phenotypes, they may be able to better
separate the linkage and LD contributions in genomic
predictions. Consequently predictors are more based on
LD, which is expected to improve the sharing of informa-
tion across populations or breeds. Secondly, Bayesian
approaches can alleviate the strong assumptions in GBLUP
approaches that SNP variances and covariances are uni-
form across the genome. This will be a great advantage
when the LD phase between markers and causative
variants are different in the combined breeds or a causa-
tive variant is only segregating in one of the breeds.

The rationale that Bayesian methods construct predic-
tors more based on LD can be verified in situations where
relationships get weaker. Habier et al. (2013) demon-
strated in a simulation study that the Bayesian methods
have better ‘persistency’ to predict several generations
ahead, and this effect must be based on stronger capturing
of LD instead of linkage. Also in real data this has been
shown, for instance, Gao et al. (2013) obtained improved
predictions from Bayesian mixture models for animals that
had no parents with information in the reference data. The
LD between markers and causative variants can be further
increased by using haplotypes of linked markers close to
the causative variant.

Some work has been done on multi-trait Bayesian
genomic models. Calus and Veerkamp (2011) presented
multi-trait mixture models, which are variations of BayesB
and BayesCπ, and applied them to simulated single breed
data; however the covariance for SNPs across the genome
in their models is the same and based on a prior pedigree
based multi-trait BLUP analysis of the genetic (genomic)
covariance of the traits. So far, no work has been done to
alleviate these assumptions of constant variance and
covariance, and to apply such multi-trait models to the
case of multi-breed evaluation.

3. Results on joining populations into a common
reference population

3.1. Dairy cattle breeds

A number of studies have compared the predictive
ability of genomic models trained in a joint reference
population by combining populations of the same breed
or populations of different breeds. Table 1 presents the
results from genomic predictions by combining different
dairy cattle populations. From the results it is clear that
joining populations of the same breed increases the
accuracies of GEBVs. This is particularly clear in the cases
where the exchange of genetic material between popula-
tions is large as for Holstein Friesian (HF). Here large
improvements are realized when combining populations
in North America (Schenkel et al., 2009; Vanraden et al.,
2012) and in the EuroGenomics collaboration (Lund et al.,
2010). Similarly, genomic predictions for Chinese HF using
a joint reference with Nordic HF increases accuracies
substantially (Zhou et al., 2013). This could be regarded
as more surprising since environmental and management
factors are very different between Chinese and Nordic
Holstein populations.

Another category of results are from joining breeds that
are more distinct but admixed in the sense that bulls to
some degree have been used across the breeds. This is
particularly clear for the Nordic red breeds: Danish Red
(DR), Swedish Red (SR), Finnish Ayrshire (FA), and Norwe-
gian Red (NR). In these breeds principle components
analysis clearly shows the consequence of a high exchange
of genetic material between SR and FA as well as the use of
SR bulls in DR (Kadri, 2014). As a consequence SR and FA



Table 1
Increase in accuracy/reliability when using joint dairy reference compared to a single reference population for milk-, protein and fat yield, fertility and Somatic Cell Score (SCS). All studies are performed using
54 k genotype data. Ref1 is the breed and country of origin for the single reference population, and Ref2 is the breeds and countries of origin for the joint reference. Reference sizes are given as number of bulls
(þnumber of cows). R or R2 in column five states whether the original paper uses the correlation or squared correlation to measure the validation accuracy. Breed codes: HF¼Holstein-Friesian, JE¼ Jersey,
BS¼Brown-Swiss, DR¼Danish Red, SR¼Swedish Red, FA¼Finnish Ayrshire, NR¼Norwegian Red, VR¼Danish/Swedish/Finnish Red, MB¼Montbéliarde, NM, Normande. Country Codes: US¼United States,
IT¼ Italy, CA¼Canada, UK¼United Kingdom, CH¼ Czech Republic, AT¼Austria, DE¼Germany, NL¼Netherlands, FR¼France, CI¼China, NO¼Nordic, AS¼Australia. Trait codes: NRR¼ Non Return Rate,
CR¼Calving Rate, UHI¼Udder Health Index, DPR¼Daughter Pregnancy Rate, IFC¼ Interval between Calving and First insemination, FC¼Fat Content.

Ref1 Ref2 Ref1 size Ref2 Size Milk Protein Fat Fertility SCS Method Citation

HF (US) HF (USþ ITþCAþUK) 10,534þ22800 18,508þ22800 R2 2.1 2.3 2.3 3.8DPR 3.5 GBLUP Vanraden et al. (2012)
BS (US) BS (CHþDEþAT) 812þ374 1682 þ374 R2 5.3 2.7 1.1 �3DPR 0.8 GBLUP Vanraden et al. (2012)
HF (CA) HF (US) 1097 4127 R2 9 8 12 3 10 GBLUP Schenkel et al. (2009)
HF (NO) HF (NOþDEþFRþNL) 3077 10,880 R2 13 5NRR 13 GBLUP Lund et al., (2011)
HF (DE) HF (NOþDEþFRþNL) 3676 14,479 R2 2 10NRR 15 GBLUP Lund et al., (2011)
HF (FR) HF (NOþDEþFRþNL) 3071 12,078 R2 4 10CR 8 QTL-BLUP Lund et al., (2011)
HF (NL) HF (NOþDEþFRþNL) 3472 9618 R2 5 3IFC 8 Bayesian 2-mixture Lund et al., (2011)
HF (CI) HF (CIþNO) 13þ1572 4411þ1572 R2 29 32 25 Multitrait GBLUP Zhou et al. (2013)
HF (CI) cows HF (CIþNO) 80þ1572 4478þ1572 R2 11 5 5 Multitrait GBLUP (Zhou et al., 2013)
DR VR 929 3735 R2 2 4 1 �3NRR 2UHI Bayesian Brøndum et al. (2011)
SR VR 1551 3735 R2 9 18 7 9NRR 6UHI Bayesian Brøndum et al. (2011)
FA VR 1562 3735 R2 12 13 6 5NRR 10UHI Bayesian Brøndum et al. (2011)
VR VRþNR 3367 5717 R 1 1 2 0NRR 2UHI GBLUP Zhou et al. (2014a)
NR VRþNR 2076 5433 R 5 8 5 2NRR GBLUP Zhou et al. (2014a)
VR VRþHF (NO) 3437 6552 R 1.4 1.1 1.0 0.4NRR 0.4 GBLUP Zhou et al. (2014b)
DR VRþHF (NO) 3437 6552 R 5 3 2 2NRR 1 GBLUP Zhou et al. (2014b)
SR VRþHF (NO) 3437 6552 R 2 2 2 0NRR 0 GBLUP Zhou et al. (2014b)
FA VRþHF (NO) 3437 6552 R 1 0 0 0NRR 0 GBLUP Zhou et al. (2014b)
HF(NO) VRþHF (NO) 3115 6552 R 0.6 0 0.4 �0.4NRR 0.4 GBLUP Zhou et al. (2014b)
MB MBþNMþHF (FR) 950 4896 R2 2 6FC 0CR GBLUP Karoui et al. (2012)
NM MBþNMþHF (FR) 970 4896 R2 2 0FC 0CR GBLUP Karoui et al. (2012)
HF (FR) MBþNMþHF (FR) 2976 4896 R2 1 1FC 0CR GBLUP Karoui et al. (2012)
BS (US) BSþ JEþHF (US) 506 7168 R2 4 3 4 �1DPR �1 Non-linear GBLUP Olson et al. (2012)
JE(US) BSþ JEþHF (US) 1361 7168 R2 �3 �2 �4 0DPR 0 Non-linear GBLUP Olson et al. (2012)
HF(US) BSþ JEþHF (US) 5331 7168 R2 �4 �3 �3 0DPR 0 Non-linear GBLUP Olson et al. (2012)
HF (AS) HFþ JE (AS) 1897 2351 R �1 0 0 GBLUP Erbe et al. (2012)
JE (AS) HFþ JE (AS) 454 2351 R �3 �2 �3 GBLUP Erbe et al. (2012)

M
.S.Lund

et
al./

Livestock
Science

166
(2014)

101
–110

104



M.S. Lund et al. / Livestock Science 166 (2014) 101–110 105
largely overlap in a plot of the first and second principal
components, while there is a smaller overlap between DR
and SR. A similar situation is present in NR, which has
frequent exchange of genetic material with SR. This struc-
ture is clearly favorable for an increase in reliabilities in
GEBVs when going from a single breed reference to a joint
reference. Generally, the increases when combining these
related breeds are substantial, but smaller than combining
populations of the same breed. For FA and SR large
increases in reliabilities were observed when their refer-
ence populations were combined, while the added effect on
the reliability for these two breeds by including DR as well
was negligible. On the contrary DR had the smallest
increase in accuracy when using a multi-breed reference
of DR, SR and FA (Brøndum et al., 2011). Similarly, the
accuracies for GEBVs in NR increased substantially when
Danish, Swedish and Finnish Red (VR) animals were added
to the reference (Heringstad et al., 2011; Zhou et al., 2014a).

A third group of studies attempt to join populations of
more distantly related breeds. One study combined the
three French populations of Holstein, Normande, and Mon-
tbéliard (Karoui et al., 2012). This study found a slight
increase in reliabilities for production traits of the breed
with the smallest population size. However, no increase was
found for fertility, where the genetic correlation between
the trait-performances measured in different breeds was
low. Zhou et al. (2014b) investigated genomic prediction
across the Nordic HF and VR populations, and reported that
the joint reference population slightly increased the relia-
bility in DSF, but differences were negligible in HF. Among
the three sub-populations of VR, accuracies increased more
for DR than for SR and FA, because of closer genetic
relationships between DR and Nordic HF.

A number of studies (Hayes et al., 2009; Pryce et al.,
2011; Olson et al., 2012; Erbe et al., 2012) report on the
effect of combining HF with Jersey. Here the relationships
across breeds are weak although probably higher for the
Australian HF and Jersey, since the Australian Jersey is
upgraded to Australian HF by systematic crossing with HF
(Pryce et al., 2011). Generally, no improvements are
observed in the accuracies of GEBV for HF when Jersey
animals are added to the reference population, and for
Jersey animals results are similar or worse when using
54 k data and GBLUP methods (Hayes et al., 2009; Erbe
et al., 2012). However, when using denser SNP panels,
functional subsets of markers or Bayesian methods,
increases in accuracy for the Jersey animals have been
observed when adding HF to the reference (Erbe et al.,
2012). Olson et al. (2012) studied the effect on reliabilities
when combining Brown Swiss (BS), Jersey, and HF and
using a single trait GBLUP model (GBLUPST), assuming that
all data are from one uniform population or a multi-trait
GBLUP (GBLUPMT), in which SNP effects in different breeds
were correlated. Using GBLUPST, the GEBV reliabilities on
average increased slightly for BS but decreased for Jersey
and HF when the reference populations were combined.
When GBLUPMT was used for prediction of protein yield,
the negative effects of combining reference populations
were not observed and a small positive effect was
observed for BS and Holstein while there was no benefit
for Jersey.
3.2. Beef cattle breeds

In general, beef cattle have more breeds, but smaller
populations than dairy cattle within a country. Therefore,
a combined reference population of various breeds to
increase the size of the reference population is usually
used for genomic prediction. Weber et al. (2012) investi-
gated the accuracy of genomic predictions for six growth
and carcass traits for populations including many breeds.
Genomic breeding values were predicted using a univari-
ate BayesCπ (Habier et al., 2011) model, and using a dataset
comprising purebred animals (2000_BULL) and a dataset
comprising crossed animals (USMARC_GPE). Cross-
validation was performed by taking one dataset (or a
subset) as reference population and the other (or a subset)
as test population. The study reported that genomic
predictions using multi-breed reference populations were
more accurate than those obtained using a single-breed
reference population. For example, the accuracies, on
average over 5 traits (birth weight, weaning weight,
yearling weight, rib eye area and marbling score), were
0.30 for both crossed animals with breed proportion of
Angus larger than 0.25 (AN25) and those with breed
proportion of Hereford larger than 0.25 (H25) when using
the whole 2000_BULL reference population, while the
accuracies were 0.17 for AN25 and 0.24 for H25 when
using Angus or Hereford single-breed reference population
(subset of the 2000_BULL). However, in another study on
genomic prediction of weaning weight and yearling
weight for purebred animals in the US beef cattle popula-
tion, based on the purebred data from US 2000 bull project
implementing a univariate BayesC or BayesCπ model,
Kachman et al. (2013) reported that, for breeds in the
reference data, genomic predictions from multi-breed and
single-breed reference populations had similar accuracies.

Chen et al. (2013) studied genomic predictions for
residual feed intake in Canadian Angus and Charolais beef
cattle populations, applying a univariate GBLUP model and
a univariate BayesB model. In the first validation scenario
where the data was split into reference and test datasets
by birth year of the animals (relatively strong relationship
between test and reference animals), the combined refer-
ence data did not lead to a higher accuracy of genomic
prediction than a single-breed reference. However, using
an alternative cross-validation where the data was split
into reference and test datasets according to sire families
(weak relationship between test and reference animals),
the combined reference data increased accuracies of 1–2%
points in Angus and 3–4% points in Charolais. Bolormaa
et al. (2013) assessed the accuracy of genomic predictions
for 19 traits including feed efficiency, growth, and carcass
and meat quality traits in Australian beef cattle popula-
tions, using a GBLUP model and a BayesR model. This
study showed that a combined reference population
performed better than a single-breed reference popula-
tion. Using the GBLUP model, the gain in accuracy by
moving from the single-breed reference population to the
combined reference population was 4% points, averaged
over traits and breeds (the paper did not present the
improvement from a combined reference population when
using BayesR).
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3.3. Gain in accuracy relative to own and joint reference size

Gains in accuracy when combining reference data for
admixed or distantly related animals depend on the size of
the within breed reference populations. When combining
Australian HF and Jersey animals little or no gains are seen
for HF (Hayes et al., 2009; Erbe et al., 2012) whereas with
increased marker density or Bayesian methods gains are
seen for the Jersey animals (Erbe et al., 2012). When
combining DR, SR and FA with NR the largest gains were
seen for NR which had the smallest within breed reference
size (Zhou et al., 2014a), and when combining North
American BS, Jersey and HF animals the largest gain was
also seen for the smallest breed, i.e. BS. Hozé et al. (2014)
investigated the effect of own reference size in a study on
French Normande animals, which were used in a multi-
breed genomic prediction scheme with varying sizes of
within breed reference data. Results showed that for small
numbers of Normande animals (N¼200,400) the benefit of
adding Holstein and Montbéliarde animals to the reference
was larger (3% vs 0.5%) than when a large within breed
reference was available (n¼1600).

Results from Hozé et al. (2014) also showed that the gain
in accuracy from the multi-breed reference was much larger
for animals without their sire in the reference (12–16% vs
1–2%) showing that the benefit of multi-breed references
depends on the relationship between reference and test
Table 2
Increase in accuracy/reliability when using joint dairy reference compared to a
somatic cell score (SCS). Results from different methods as well as different ma
single reference population, and Ref2 is the breeds and countries of origin for the
uses the correlation or squared correlation to measure the validation accu
NR¼Norwegian Red, VR¼Danish/Swedish/Finnish Red. Country Codes: US¼Unit
Health Index.

Ref1 Ref2 Milk Protein Fa

54 K
HF (AS) HFþ JE (AS) R �1 0 0
HF (AS) HFþ JE (AS) R �1 1 1
JER (AS) HFþ JE (AS) R �3 �2 �
JER (AS) HFþ JE (AS) R �4 1 2
HF (AS) HFþ JE (AS) R 0 0 1
HF (AS) HFþ JE (AS) R �4 0 0
JE (AS) HFþ JE (AS) R �7 0 1
JE (AS) HFþ JE (AS) R 4 �1 14
VR NR R 1 1 2
VR NR R 2 2 0
NR VR R 5 8 5
NR VR R 9 13 6
BS (US) BSþ JEþHF (US) R2 3
JE(US) BSþ JEþHF (US) R2 �2
HF(US) BSþ JEþHF (US) R2 �3
BS (US) BSþ JEþHF (US) R2 2
JE(US) BSþ JEþHF (US) R2 0
HF(US) BSþ JEþHF (US) R2 1
800 K
HF (AS) HFþ JE (AS) R 0 0 1
HF (AS) HFþ JE (AS) R �1 0 1
JE (AS) HFþ JE (AS) R �1 1 1
JE (AS) HFþ JE (AS) R 3 5 3
TRANSCRIBED MARKERS
HF (AS) HFþ JE (AS) R 0 0 0
HF (AS) HFþ JE (AS) R �1 1 1
JE (AS) HFþ JE (AS) R 6 6 �
JE (AS) HFþ JE (AS) R 4 10 �
animals, as was also observed in the study on beef cattle
by Chen et al. (2013). According to the results from the above
studies, the superiority of combined reference population
over single-breed reference population is large if the rela-
tionship between the test animals and the within-breed
reference animals is weak, and vice versa.

4. Using different genomic models and marker densities

It is clear from the results that with increased genetic
distance between the populations being combined into a
joint reference population, the increase in accuracy of GEBV is
smaller. This is because the LD between markers and causa-
tive mutations within populations does not persist across
populations. However, conditional on the same causative
variants being present and segregating in the combined
populations, it should be possible to estimate the effects
across populations and thereby increase the accuracy. To
achieve this in distantly related breeds at least two technical
requirements must be fulfilled. First, the marker density used
has to be sufficient to achieve consistent LD between
causative variants and markers across breeds. Second, geno-
mic prediction models must allocate more genomic variance
to markers in strong LD with the causative variantion.

A few studies compared the accuracy of different statis-
tical models for genomic prediction. Results from these are
shown in Table 2. Olson et al. (2012) compared the accuracy
single reference population for milk-, protein and fat yield, fertility and
rker densities are shown. Ref1 is the breed and country of origin for the
joint reference. R or R2 in column three states whether the original paper
racy. Breed codes: HF¼Holstein-Friesian, JE¼ Jersey, BS¼Brown-Swiss,
ed States, AS¼Australia. Trait codes: NRR¼ Non Return Rate, UHI¼Udder

t Fertility SCS Method Citation

GBLUP Erbe et al. (2012)
BayesR Erbe et al. (2012)

3 GBLUP Erbe et al. (2012)
BayesR Erbe et al. (2012)
GBLUP Hayes et al. (2009)
BayesA Hayes et al. (2009)
GBLUP Hayes et al. (2009)
BayesA Hayes et al. (2009)

0NRR 2UHI GBLUP Zhou et al. (2014a)
1NRR �7UHI Bayesian 4-mixture Zhou et al. (2014a)
2NRR GBLUP Zhou et al. (2014a)
3NRR Bayesian 4-mixture Zhou et al. (2014a)

GBLUP Olson et al. (2012)
GBLUP Olson et al. (2012)
GBLUP Olson et al. (2012)
Multitrait GBLUP Olson et al. (2012)
Multitrait GBLUP Olson et al. (2012)
Multitrait GBLUP Olson et al. (2012)

GBLUP Erbe et al., (2012)
BayesR Erbe et al. (2012)
GBLUP Erbe et al. (2012)
BayesR Erbe et al. (2012)

GBLUP Erbe et al. (2012)
BayesR Erbe et al. (2012)

3 GBLUP Erbe et al. (2012)
2 BayesR Erbe et al. (2012)
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of a single- versus multi-trait GBLUP in a combined popula-
tion of American HF, Jersey and BS. Although the observed
accuracy for the Brown-Swiss animals was higher in the
single trait model, looking across the three breeds, the multi-
trait model performed the best. However, as this was tested
only for protein yield, further studies are needed. Zhou et al.
(2014a) found that a Bayesian model gave higher accuracies
for NR animals than GBLUP when NR and VR animals were
combined. Prediction accuracies were not increased for VR
animals in general, but only for DR. In a study by Hayes et al.
(2009) where Australian HF and Jerseys were combined,
larger increases in accuracy for the Jersey animals were found
when using a Bayesian method than when using a GBLUP
method, and the largest gain was observed for fat yield,
which might be explained by a better ability to estimate the
effect of the DGAT1 mutation (Grisart et al., 2002) in the
combined dataset. Results confirm that more advanced
models, putting more emphasis on strong LD between
markers and causative variants performs better for multi-
breed prediction.

Another vein of models attempt to include information
on breed proportions in admixed populations. In a study
on the Danish Jersey which is an admixed population of
Danish and American Jersey, Thomasen et al. (2013)
investigated the implications of including inferred breed
proportions from pedigree or genomic data in a random
regression model. Although structures were observed in
the population, no increase in the accuracy of genomic
predictions was found when including these in the model.
In the admixed VR red cattle population Makgahlela et al.
(2012) showed that accounting for interactions between
breed of origin and marker effects in the prediction model
could improve the reliability of genomic prediction by
2–3% for protein and milk yield.

4.1. Marker density

In dairy cattle it has been estimated that 300 k markers
are necessary to achieve a LD phase persistence sufficiently
high for multi-breed genomic prediction (De Roos et al.,
2008). This level can be achieved by using the Illumina
Bovine High Density (HD) chip (Illumina, Inc., San Diego,
CA) with 777 k SNP markers. Generally a subset of the
reference population is genotyped with the Bovine HD chip
and subsequently individuals genotyped with a lower density
array are imputed to the HD level. This procedure is relatively
reliable and can provide imputed HD genotypes with less
than 1% error rate (Ma et al., 2013; Brøndum et al., 2012a;
Berry et al., 2013; Hozé et al., 2013; Vanraden et al., 2013)
with an appropriate reference population. Using a Bayesian
prediction model Hozé et al. (2014) reported that when
combining a small population of Normande cattle (No500)
with Holstein and Montbéliarde the increase in accuracy
from the multi-breed reference population was 2% higher
when using the HD panel compared to using the 54 k panel.
Similar results were observed in Erbe et al. (2012) where 3%
higher accuracies were found for the Bayesian multi-breed
prediction using an HD panel compared to using the
54 k panel.

Currently, cost effective whole genome sequencing
(WGS) data are becoming available. From now on marker
density will no longer be a limiting factor as all SNP
(including causative variants) of sequenced individuals
in principle can be imputed in all genotyped individuals.
The 1000 bulls genome project (Daetwyler et al., 2014)
provides a panel of sequenced bulls that can be used as a
reference to impute WGS variants in all genotyped indivi-
duals. Initial results on imputation from HD to sequence
data show a mean accuracy (correlation of true and
imputed genotype) of 0.8 within the Holstein breed which
has the largest number of sequenced animals. This is lower
than previous results on imputation from 50 k to HD data
where accuracies are typically larger than 0.95 (Brøndum
et al., 2012a; Berry et al., 2013). It is however clear that for
rare variants (which dominate the WGS data) the imputa-
tion accuracy is very low, i.e. for loci with MAF less than
0.05 the imputation accuracy is below 0.5 (Daetwyler et
al., 2014). For numerically smaller breeds sequence impu-
tation accuracies are lower than for the Holsteins, results
however suggest that they can be increased by including
other breeds in the reference (Daetwyler et al., 2014), and
for both small and large breeds imputation accuracies are
expected to increase as the number of animals in the 1000
Bull genomes database increases.

4.2. Prior information

Further prospects to improve across breed predictions
could be to use biological information, such as information
on genes and pathways. Although experimental data has
shown that QTL replicate poorly in different genetic back-
grounds, expression patterns and gene-networks associated
to traits remain much more consistent (Huang et al., 2012).
In human genetics it is observed that although different
(sub)populations may show different mutations to affect a
trait, these mutations may cluster in the same genes, and
that, therefore, the gene-trait association remains relatively
consistent. In the same line of thought, variances explained
by genes or genomic regions may be relatively consistent
between breeds or populations. Brøndum et al. (2012b)
developed an approach somewhat along these lines by
assuming that the number of important markers in geno-
mic regions could be consistent across breeds. Here poster-
ior proportions of mixture distributions estimated in
chromosomal regions in one populationwere used as priors
for the breed of interest in a mixture model with four
Normal distributions. The study showed an increase in
accuracy of up to 3.5% for the Jersey population when using
priors derived from Australian HF, compared to a model
without location specific priors. However, for most traits,
the increases in accuracy were lower than those for
prediction using combined reference populations. The small
gain in accuracy of genomic predictions suggests that the
priors from other breeds were too vague to efficiently
utilize information across breeds.

As realized or imputed WGS data are becoming avail-
able on a large scale, it is becoming increasingly important
to use any prior information available on the probability of
particular SNP to be functional elements. In Erbe et al.
(2012) a subset of markers on the Bovine HD chip in or
within a distance of 1 kB to transcribed genomic regions
was used to calculate GEBV. Genomic models were trained
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in a reference population of Jersey bulls, HF bulls, or a
combination. Results showed large increases for the pre-
diction accuracy in the Jersey in the multi-breed scenario
using both GBLUP and BayesR. This suggests that when
using transcribed markers the relationship modeled with
the G matrix is closer to the true functional relationship
than when using 54 k or HD markers.

5. Perspectives

From results presented it is clear that combining
reference populations of the same or closely related breeds
is an efficient way to increase accuracies of GEBV. For
distantly related breeds it is crucial that markers are in
close LD with causative variants and that prediction
methods attempt to focus the predictions on those mar-
kers. Although few results exist so far, indications are that
Bayesian variable selection models which allocate a large
part of the genomic variance to markers in strong LD with
causative variants are beneficial when predicting GEBV
across breeds. Methods based on haplotype sharing
between breeds can potentially improve predictions
further, as haplotypes of linked markers may exist that
are in higher LD with the causative variants than any
individual SNP. Mapping results using haplotype sharing
across breeds has sometimes obtained very precise loca-
lization of causative mutations (Grisart et al., 2002).

These models need to be developed in a multi-trait
framework. Although Calus and Veerkamp (2011) have
shown some work on multi-trait Bayesian genomic models,
the covariance for SNPs across the genome in their models is
the same and based on a prior pedigree based multi-trait
BLUP analysis of the genetic (genomic) covariance of the
traits. Models need to be developed that alleviate the
assumption of equal covariance across the traits for each SNP.

With the availability of WGS data the requirement of
using markers in strong LD with causative variants can be
achieved by sequencing a subset of individuals and imput-
ing all SNP to all genotyped individuals. This generates
more than 20 million SNPs to handle in genomic predic-
tions, which is a technical challenge for Bayesian variable
selection models in large populations. Another limitation
in this approach is, that the accuracy of imputation for rare
variants is very poor (Daetwyler et al., 2014). If the
complex traits in the breeding goal are regulated by rare
variants, the imputed sequence will provide limited extra
information. To overcome this limitation a substantially
larger number of individuals could be sequenced. If focus
on rare variants is needed, sequencing many more animals
may be required. This could call for alternative cost
effective sequencing strategies to complement the current
medium coverage sequences available. Alternative strate-
gies could be sequencing a large numbers of individuals
with low coverage (Li et al., 2011), exome sequencing, or
genotyping by sequencing approaches. Another alternative
is to retrieve the potentially most efficient markers for
across breed predictions from mining the sequence data
and add these SNP to genotyping chips that are used to
screen a large number of individuals. These SNP could be
selected as those SNP from sequence based genome-wide
association studies (GWAS) that show the highest
association to the most important traits or that explain
genetic covariance across breeds. Alternatively, SNP could
be selected that are most likely to be functional when
assessing the annotation information. This approach has
the advantage that sequence variants which are inaccu-
rately imputed in all genotyped individuals, could be
genotyped accurately in phenotyped individuals. Conse-
quently the associations may reach their full potential to
improve genomic predictions.

Using information across breeds will only be efficient
for the fraction of the genetic variance caused by causative
variants that segregate in both breeds. It is unclear how
large the shared variance across breeds is. Generally, QTL
studies are not consistent in finding the same regions
across different breeds. This is likely due to a lack of power
to identify QTL in smaller breeds but also indicates that
part of the genetic variance is likely to be private to
specific breeds. With continuously more detailed genetic
information from genotyping and sequencing, it would be
useful to perform a powerful analysis to assess to which
extend genetic variance is private within breeds or shared
among breeds. Another reason for the lack of consistency
across breeds could be epistatic interactions among genes.
In this case the effect of a particular QTN depends on the
frequency of genes it interacts with (e.g. Carlborg et al.,
2003, Huang et al., 2012)). As these could be different
among breeds it results in breed specific effects. It would
be useful to study if the lack of shared genetic variance
among breeds is caused by such epistatic interactions. This
could probably most efficiently be carried out in large
datasets of genotyped and phenotyped individuals, where
markers in LD with potentially interacting QTL can be
observed for the same individuals as the phenotypes. Such
large datasets are presently becoming available in dairy
cattle. Accommodating for gene-background interactions
can remain a bottleneck in across breed prediction and
may not be trivial. Including marker by breed interactions
in multi-breed models will essentially disconnect the
marker effects between breeds, and therefore fall back to
a within-breed analysis. Thus, relatively sophisticated
models should be developed, for instance, to separate
markers in those that are consistent between breeds and
those that are not consistent between breeds or to allow
marker effects to be partitioned into shared and breed
specific components.

An expected added value of predicting GEBVs across
breeds is an increased persistency of the predictive ability
of GEBV within breeds, because prediction models focus
more on SNP close to causative variants. This becomes
increasingly important as more generations of genotyped
individuals are available in the reference populations.
In addition, as genomic predictions are becoming the
primary information when ranking selection candidates,
younger animals without parents or even grandparents in
the reference population are selected for breeding. With
this increased genetic distance to the reference population
it becomes increasingly important to increase the persis-
tency of genomic predictions. This is a factor that is largely
ignored when studies evaluate the accuracies of genomic
predictions, which generally evaluate the predictive ability
one generation away from the reference population.
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