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ABSTRACT

The existence and construction of the Drazin inverse of a square matrix over the
ring Z/h is considered. The canonical forms of matrices over this ring are used to
facilitate the computation of this type of generalized inverse.

1. INTRODUCTION

In this note we wish to investigate the existence and construction of the
Drazin inverse of a square matrix over the commutative ring Z/h, that is,
the integers modulo k. The motivation for this investigation comes from the
theory of cryptography, into which the concept of a Drazin inverse has
recently been introduced [8, 12].

The Drazin inverse is the unique solution, if any, to the matrix equations

AFXA=4A%  XAX=X, AX=XA, (1.1)

for some k> 0. The smallest value of k for which a solution exists is called
the index of A. If index(A)<1, A is said to have a group inverse, which
becomes the inverse of A in case index(A)=0. We shall assume familiarity
with the basic definitions and theory of this type of generalized inverse, as
given in [3], (1], [2]. As usual, we shall denote the Drazin inverse of A by A%,
and the group inverse, if any, by A¥. Moreover we shall use M, (R ) or R .,
to denote the ring of nXn matrices over a ring . A ring for which every
element has a Drazin inverse is usually called a strong m-regular ring (smr
ring for short). A matrix A, is called regular if there exists a matrix A~
such that AA”A =A. We shall employ the standard notation of R(-), RS(-),
N(-), and p(-), to denote the range, rowspace, nulspace, and rank (in the
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sense of McCoy [13]), for the matrix (-). Similarity will be indicated by ~,
and isomorphisms by =, while equivalence and row equivalence will be
denoted by ~ and ~ respectively.

On factoring th(raointeger h into its primary factors, h=pT1pJ- - - p™,
with p; distinct primes, it suffices to consider M, (Z/p™) for some prime p
and some integer m > 1. Indeed, it follows that if A=A, (modp™), k=
L...,s,and A=A ,BA,D- - DA, then A?=ABALD - - - DAY, from which
A? may be found using the Chinese remainder theorem [11]. Moreover, it is
easily seen that p(A)=minp(A;) over Z/p™, i=1,2,..., s. Hence from now
on we shall concentrate on M, (R ) where A=2/p™.

Before we embark on the search for A, let us recapitulate some of the
salient features about R=2Z/p™ and M_(R).

First, every element a €R either is a unit or is divisible by p, and may
uniquely be written modulo p™ as polynomial in p:

a=agtaptap®+--- +a, pm ! (1.2)
where 0<a; <p for all i=0,...,m—1. If qy=a;=--- =a,_;=0%aq, and
o #0=a; =+ =a, |, then k is called the degree da of a, while t is

called the order 8(a) of a. Clearly, if §(a)=t¢, then a=up’ for some unit u,
and conversely. Also, a is a unit if and only if §(a)=0, while a=0 exactly
when §(a)=m. Second, R is a local ring, with a unique maximal ideal L,
consisting of all multiples of p. It further follows that R/, =Z/p. Third,
the only regular elements in % are the units together with zero. Fourth,
every matrix in M, (Z/p™) may be considered as a polynomial in p with
matrix coefficients. That is, A€M (Z/p™) implies

A=A(p)=A,+Ap+ApP+--- +A, _pm!, (1.3)

where each A; is unique, and may be thought of as a matrix over the field
F=Z/p. In other words, we may embed M,(Z/p™) into M (F[A]). From
(1.3) a variety of useful facts follow at once. In particular,

(1) A is invertible if and only if A, is invertible,

(2) A is nilpotent if and only if A, is nilpotent,

(3) if A* exists, so does A%,

(4) linearly independent columns (rows) in A will correspond to linearly
independent columns (rows) in A,,

(5) a kXk minor in A is a unit if and only if the corresponding kxk
minor in A, is a unit,

(6) p(A)=p(A,), and both equal the size of the largest unit minor in A
or A,.
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We shall see that to a large extent, the behavior of A is determined by
the character of A, but of course not entirely. In particular for nilpotent A,
the index of nilpotency for A may be as large as mn, as seen from the matrix

_ 0 p
A_{Hp 0]'

We shall further see that the search for A? will involve much of the general
theory of M, (Z/p™), and that a variety of techniques may be used in this
investigation, such as:

(1) perturbation theory,

(2) A-matrix theory,

(3) the theory of block triangular Toeplitz matrices,
(4) the local ring theory.

2. EXISTENCE OF A¢ AND THE FITTING DECOMPOSITION

The existence of A? for any A EM,(Z/p™), is easily established, once one
recalls that the matrix ring M, (R) is finite, with N= p"‘"2 elements. Hence
the chains R(A)DR(A%)DR(A®)D--- and RS(A)DRS(A?)DRS(A%)D---
become stationary, which suffices for A? to exist [7]. Indeed, if A¥*1X=AF
and YA""'=Al then A?=A*X**1=y""1Al=yA*X*=YA'X. We may,
however, say more. Indeed, in the sequence {I, A, A% . AY } there must be
two identical matrices, say A* =A**" with 0<k<k+r<N and 1<r<N.
Hence A* =A**"* for all t > 0, and since 0 < k< N— 1, we get AN 1 = AN 1+7¢,
Now r< N, and thus r divides N!. This means that we may take r£=N! and
AVNT1 = ANTIHNU Tt now follows [7] that A exists and is given by

A = ANVN-D-1 (2.1)

for all AEM, (Z/p™). In other words, this expression gives an a priori bound
on the exponent needed to compute A%, We note in passing that the above
proof and construction work equally well in any finite ring, with a slight
modification needed if the ring has no unity element. The expression (2.1) for
A% is clearly only of theoretical interest because the value of N{(N—1)—1 is
far too large to be of practical use; even if m=n=p=2 we get 256! X255 1.
We shall therefore endeavor in the remaining sections of this paper to
develop more realistic algorithms for computing A? in M, (R).

The foremost theoretical consequence of the existence of A? is that
Fitting’s decomposition is valid.
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Tueorem 2.1. Let R be a ring with 1. Then the following are equiva-
lent:

(i) AEM, (R) implies that

for some invertible matrices Q, U and some nilpotent matrix .
(i) M,(R) is swr, and for every idempotent matrix EEM, (R ) the range
R(E) has a basis.

Proof. (i)=>(ii):

then obviously

0
Now if
gl U 0O({,-1
B-r=q[y o
then U=1 and 7=0, ensuring that
I
Q[o]=91

will form a basis matrix for R(E).

(ii)=>(i): This proof using mappings is identical to the case where R is a
field. A pure matrix proof is the following. Let E=AA?, and let Q,, Q, be
basis matrices for R(E) and R(I—~E) respectively. Then Q=[Q,,Q,] is a
basis matrix for A" and hence is invertible. Now since R(E) and R(I—E) are
invariant, we have AQ, =Q,U, and AQ, =Q,n for some square U and 7.
Hence if k=index(A), then A¥(I—AA?)=0, so that 0=A*Q, =Q,n*, which
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by the independence of the columns in Q, forces 7* =0. Also
(A +1-481[0,,0,]=[ 40, 0, ]

-towei ¢ 5}

But A* +I—E is invertible with inverse (A?)* + I—E, which means that U*
and hence U is invertible. |

The condition that the range of every idempotent EEM, (R) has a basis
is indeed satisfied for the ring R=2Z/p™. This is basically a consequence of
the local ring structure of Z/p™[14, p. 101). A more elementary and
constructive proof is the following,

Lemma 22.  Let R be a ring with 1, such that every nonzero idempotent
matrix EEM,,(R) has a unit entry. Then:

(i) Ez[ ‘(’)r g]. 2.2)

(ii) R(E), RS(E), and N(E) have bases.
(if) For a regular matrix A, all of R(A), RS(A), and N(A) have bases.

Proof. (i): Let E} =E,+0, and consider (I—E,)E,=0. Since I—E, is
idempotent, it has a unit entry. Hence there is a row A'=
[ALAgs-es Ayeney ALl such that A is a unit and ATE=07, Now let
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Then R is a unit and

Consequently

for some unit R;. This gives

RIEIR{1={I:;2 Fz},

where EZ =E, and F, =E,F,. Hence

o 3l Sl

and so

E,

Elm[ 0

ROBERT C. HARTWIG

—1F2}=[% g}

ol

This algorithm may now be repeated with E,, Eg, etc., and will stop only

when we get E; =I. Again, since

o ol

the conclusion follows.
(ii): If

10]
0o o/

Ho.0.=[o.0] b O]

0 0

then Q, will yield a basis for R(E) and Q, a basis for N(E). Indeed, the
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columns of Q, are clearly independent, and if Ex=0, then EQy=0 with
—0) "1y = )41 }
y Q X [ y2 ‘
Hence

Q[(I)]y=0 = y,=0

and thus
0
=0 2 |-

This means that the columns of Q, also span N(E). Similarly for R(E) and
RS(E).

(iii): Let AATA=A. Then AA™ and A™A are idempotents, and R(A)=
R(AA™), RS(A)=RS(A”A), and N(A)=R(I—A"A). Hence all three mod-
ules have bases, by part (ii). [ |

The conditions of Lemma 2.2 are easily seen to hold for Z/p™.

CoroLrary 2.3. If0#AEM,(Z/p™) has a group inverse, then A has a
unit entry.

Proof. 1f not, then A =pX, A™ =0, and hence A=0. In particular, every
nonzero idempotent matrix has a unit entry. |

We may derive several useful results from the Fitting decomposition:

CoroLLARY 2.4. Let A=A,+A;p+- -+ +A,_p" ‘€M (Z/p™),
with A, over Z/p. Let A, and §, =N°(?) denote the characteristic and
minimal polynomials of A, with ky =index(A,). Then

(i) index(A) <kym, (2.3)

(i) [y (A" =[4,4 (A)]"=0.

Proof. (i): Let
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with U=U, + Ujp+ - n=n,+mp+ -, and with U,,m, over Z/p. Then
k, = index(n,)=index(A,) and 7*° =pY for some Y. This gives n*™ =0, and
thus index(A) =index(n) < k,m.

(ii):

Yagvy O }

\I’AO(A)%[ 0 o)

Now y, (U) =y, (Up) +p(?) and \PAo(n):‘PAO(%)‘*'P(?)- But 4 (A4)=0, and
thus ¢, (Up)=0 and y, (n,)=0. Hence p divides y, (A) or [y, (A)]™ =0.
Since Yy, (A)|A4 (N)|A4(A), the remaining identity follows. The latter equal-
ity in (i) may also be seen from the Cayley-Hamilton theorem and the fact
that

A (A)=det(AI—A(p))=det(NI—A, —pB)

=AAO(>‘)+Pf1(}‘)+P2f2(>‘)+"' (2.4)

for some polynomials f{A) over Z/p. |

In general the index of A may be as large as mk,, as seen from

0 p
A=
[1+P 0}’

which has index 2m. Moreover this example shows that the lowest power of
A which will be regular in general is mk,.

3. PRACTICAL METHODS FOR COMPUTING A“

Let us now turn to some practical methods for calculating A”. In general
let us write A=A, +pB=C, + N, +pB, where A=A, mod p™, C, =A% A% is
the core of Ay, and N, =A (I— A,A%) is the nilpotent part of A,. Since we
have two types of nilpotent matrices to contend with, our strategy shall be to
try and eliminate one of them by powering, and then treat the remaining
special case by iteration. The reason for this is that it is difficult to handle Nj
and pB simultaneously.
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Method 1.  The Characteristic-Polynomial Method

This method is similar to the one used for matrices over a field, with one
extra twist added to remove the extra mlpotency present. First compute the
characteristic polynomial A ((A)=A"—¢,A*"! +- - - (—1)"s,, where

{ ( ) kX k principal minors of A] .

Then expand A4(A)=A4, (A)+p-g(A), where A, (A)= - +a, N, with
ay invertible. Then by (2.3), [A, (A)]™=0. We now expand AL (A)™ as
aPA™[1—-Aq(]A)], compute )\""‘q()\)”"‘+1 and reduce it modulo AA(A) This
yields A? as a polynomial in A. In actual practice this method is rather
tedious to do by hand, and is more suitable for machine calculations. It
should be clear that this method works for any annihilating polynomial for
A, that is available. Generally speaking though, A, is the only such
polynomial available, and it is obviously no more work to compute A, than it
is to compute A, (A).

Before we continue with the general case, several preliminary results will
be needed. We shall, in particular, use Roth’s removal rule [15] to handle the
general twofold nilpotency, and we shall consider the special cases where A%
or A exists.

Lemma 3.1. If A is invertible and [‘g ?)] is regular, then D is

regular.

Proof. This is easy, and is left as an exercise. u
CoroLrary 3.2. If A is invertible and [ ‘g pOD ] is regular, then D=0,

Lemma 3.3.  If A is invertible and D is nilpotent, then
(iy AX—XD=C has a unique solution

n—1
X= > A"CD", (3.1)
r=0

(ii) YA— DY =B has a unique solution
n—1

Y= 3 D’BA"L. (3.2)

r=0
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Proof. Tterate X=A"!C+A " 'XDand Y=BA™'+DYA™ . n

ProrosiTioN 3.4. If A is invertible and D is nilpotent of index k, then

k—1
. A C A+XB —XBX . —r=1ppy =
(i) [ ]%[ ] with X= > A~""!CD™",
B D B D—BX = .
3.3
k-1
o A Ccl_[A+CY C , - ~rpa~r—1
(ii) [B D}N[_YCY D—YC]’ with Y EOD BA™ L

Proof. (i): Let X be the solution to AX—-XD=C, as defined in (3.1).

Then form
&5 5le
0 IIlLB DIlLO I 0
(ii): Form
2 8l gl e
~-Y I1lB DIllY I}V
with Y the unique solution to YA —DY =B as given in (3.2). B

CoroLLARY 3.5. If A is invertible and D is nilpotent, then

) [A pc‘z[A' 0 ]
B D | B DJ
y A cl [a” ¢ }
i) A SRy L] 3.4)
A pCTN[Aw 0 ]
(lll) [PB D .‘N 0 Dm ’

where A’, A", A” are invertible and D', D", D" are nilpotent.

Proof. (i): From (3.3) (i), we see that if p divides C, then p divides X.

Hence
[A pC]N{A pz(?)]
B D B D |
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with A invertible and D nilpotent. Repeating this algorithm a sufficient
number of times, we see that

[A pC}z[ A0 ]
B D B DV
with A’ invertible and D’ nilpotent.

(ii): This follows analogously from (3.3) (ii).
(iii): Combine parts (i) and (iv). |

It should be noted that this time XBX and YCY are of order p°, and
hence that the iteration converges to zero much faster. Moreover, part (iii)

yields a Fitting decomposition of the matrix [; pDC , from which the

Drazin inverse may be computed.
It is important to observe that if D is also of order p, then Roth’s removal
rule is not needed. We may then simply use the first terms in the expansions
(3.1) and (3.2), namely X=A"'C and Y=BA™'. This will give
(i) ‘
-1
0 IilpB pDji0 I

p*(D~BA~'C)BA™' | p(D-BA~IC)

A+pA~'CB | p?A~'C(D~BA™'C)
B | p(D-BATIC)

s ol me s ol

(3.5)

Iterating these will again give (3.4). We shall also need the next three results
in one of our algorithms.

Lemma 3.6, Let C,,,, be over Z/p™. Then the following are equivalent:

(i) C has r linearly independent rows,
(i) p(C)=r,
(iii) CC~ =1, for some C ™.

Proof. (i)>(ii): C has r independent rows < C, has r independent rows
< G, has an rXr unit minor < C has an rXr unit minor < p(C)=r.
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(ifj=>(iii): If p(C)=r, then there is a permutation matrix K such that
CK=[C’,C"], with C’ invertible. Hence CL=[I,,0] for some unit L, and

hence CC ~ =], for some C ~. (iii)=>(i): Clear.

Cororrary 3.7. If AEM,(Z/p™), then the following are equivalent:

(i) the columns of A are linearly independent,
(i) p(A)=n,
(i) A™! exists,

(iv) the rows of A are linearly independent.

CoroLLaRrY 3.8. If A€M, (Z/p™) and RS(A) has a basis, then there is

a unit matrix R such that

where C is a basis matrix for RS(A).

Proof. Suppose that the rows of C_, form a basis for RS(A). Then
A=SC and C=QA for some matrices S and Q. Hence (I~ QS)C=0, which
by the independence of the rows of C implies that QS=1I,. Now by the
Lemma 3.6, there is a permutation matrix K such that QK=[Q,, Q;], with

Q, invertible. Hence
T 4,
C=QA=0QKK'A=[0,,0Q,] A, |’
where the rows of A, are n—7r of the rows of A. Then
o ollsle
l: 0 I Ag A2 row 0
as desired.

Method I1. A% Exists
Consider A=A, +pB, and suppose

onel )
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with U, invertible. Then

Up+pLy | pL,

0 'aQ=
pL, pL,

for some L,.

Using (3.5), we may now compute a Fitting decomposition by iteration and
hence compute A%,

Method III. Robert’s Method

If A* exists, then so does A%, and hence Method II applies. An alterna-
tive method is the following. Since A is regular, with p{A)=r, we know that
RS(A) has a basis with r independent rows. Hence by Corollary 3.8, there
exists a unit matrix R such that

in which the rows of C from a basis for RS(A). Hence

G G

RAR‘1=l
0 0

|-a.

Now because (A")* exists, it follows that [10] C;* exists and C,C{*C, =C,.
Consequently,

A’z[ G 0}.
0 O

But p(C;)=r and C; is rXr, which implies that C; ! exists and
A#z[ ctoo ],
o o0

as desired.
Let us now give three methods dealing with the general case.

Method IV. Power Methods
Let A=A, +pB, with A, over Z/p. Since index(A)<mk,, we may
compute A? with g > mk,,. For example, g=mn will do. Then (A7) exists
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and may be computed by Robert’s method. A? is then recovered from
AT71(AT)*. Alternatively we may compute A% =A% +p(?), in which (A%)*
exists. This time ( A**)? may be computed using Method II and A? will then
be given by A% ~}(A%e)9,

In both power methods, as well as in Method I, some powering was used
to eliminate part of the p-dependence. Let us now turn to an algorithm,
which only uses an iteration of elementary operations.

Method V. Roth’s Removal Rule
Consider A=A +pB, and suppose that

Uu, 0
Q—IAOQ=|: 00 Tlo},

with U, invertible and 7, nilpotent. Then

Q—IAQ= U0+le pLS }

pLy Mo +pL,
for some L;. Now since U,+pL, is invertible and 7, +pL, is nilpotent,
Corollary 3.5 applies, and

where U’ is invertible and N’ is nilpotent. It is now clear that

Adz[(m-‘ 0].

0 0

It should be emphasized that the above methods are algorithmic in
nature, and hence will not furnish an explicit expression for A” in terms of
A%, A, etc. The closest we come to an exact formulation is the following.

Method VI. Block Matrix Method
We have seen in (1.3) that we may consider a matrix AEM_ (Z/p™) as a
polynomial in p with matrix entries. We can go one step further and identify
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A(p) with mn Xmn block Toeplitz matrix

AO
A, A, 0
T,=| A €M, (Z/p). (36)
| Am—1 Ap Ag |

The map ¢: A—T, is easily seen to be a ring as well as a vector space
isomorphism, with scalars from Z/p. In particular ¢(p)=J®I, where

J= and J™=0.

Hence all of the properties of T, are inherited by A. In particular [10, p. 18],

(i) A? existse>A% exists (which is the case),

(ii) A is nilpotente>A is nilpotent,

(iti) A¥ existse>A¥ exists and certain consistency conditions hold [10, p.
19],

(iv) A? is again a block triangular Toeplitz matrix, and may be found
recursively [10, p. 18],

(v) A is a polynomial in A.

For example, if m=3, then (A, +A,p+A,p?)? =B, + B, p+ B,p*, where for
k> 3k,,

(i) By =A%,

(i) B;=—ByA,B,+EY"Bs*! +B}*1Y[ME with

k-1
E=I-A A%, YR =3 Abr14,47,

r=0
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and
(iii) B, = — (B,A, + ByA,)By + EY{OBI*1 + BX*1'Y{OE — (A B, +
AoB)YRBEYL + 2+ VY (WE with

k-1 k
Y= AN A,A, +A YD), Z{¢:*V= T Bk"BB.
r=0 r=0

Even though A? has the same Toeplitz structure as A, we may in our
computation of A%, use elementary row and column operations which do not
preserve the Toeplitz structure. These operations have no analogue in
M, (Z/p™) and in essence go outside this ring.

The fact that for a block triangular Toeplitz matrix over Z /p, A% = A¥ for
some k, seems not well known. Of independent interest is the following
related fact.

Lemma 39. If

with E} =E,, then M* =M if and only if M* and (I—-M)* exist.

Proof. Observe that M? — M=N is nilpotent. Hence if M* and (I1—M)*
exist, then (M? — M)™ exists, forcing M2 — M=0. The converse is clear. W

Let us now use the above methods on a specific example.

ExampLE. Let

2 0 4
A={7 5 3|€M,(Z/2°).
7 4 0
Then
6 0 O 0 0 O
A®=l6 5 3| and A®=A=|4 5 7.
12 4 0 0O 4 4

Hence A% = A* = A3, Let us now check this using methods I, II, and V.
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Method 1. Using principal minors we see that o,= —1, 6,=2, 0, =4.
Hence A4(A)=7° + X +2A+4= (N + M) +2(A+2) and A , (\)=A° + X2 The
desired annihilating polynomial now becomes (A* +A%)® = .\6(,\3 +3N +3A +
S 1)=MA[1-A(=A—3A-3)] and so g(A)=—(A®+3X+3). Consequently
A? =A%(A). Next, g*A)=(A+3A+3)2=A"—2X - +2A+1=4r+
5mod A 4(A), and hence g*(A\)=1mod A . From this we get q"(A\)=q*\)=
—(@A+5)(A +3X+3)=322—-3A+1. Now A®=—XN*—-2A+4 and hence
g N)=(—A —2A+4)3N —3A+1)= —X2 —2A +4. This gives A =4I—
2A — A%, which yields the same matrix.

Power Method.
0 0 0 1 0 0
1 1 1(+2{1 0 1(+4

1 0 0 1 0 0

A=

0 0 1
1 1 0f.

1 1 0

Now

o 0o 0] [0 0o o
Ay=|1 1 1{=]0 1 1

1 0 0O 0 0 O

and p(A% )sﬁ p{Ag). Thus A, has no group inverse. We therefore compute
A, (AN)=N(XA—1) using principal minors, and because Ay (A, —1)#0, we
see that Y, =4, and k,=index(A,)=2. Next compute

0O 0 0

A*=|6 5 3

12 4 0
0O 0 0 0 0 O 0 0 0
=011}+2[101}+4110}.
L0 0 0 0 0 0 01 o

Clearly A2 is idempotent. Let us now compute (A%)? by elementary opera-
tions. First we must reduce A% to canonical form using counters. We shall
use two counters, to keep track of the elementary row operations used and
their inverses:

0

o -(o 13

-0 0o
[R——

[
SO
-0 QO
OO -
S O
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(

SO -

(=l =)

~ oo

SO~

~Oo o

o - o

- oo

~ oo

oo

~

oo~

AIOO

(= e =

SO -

~ oo

S =-O

~ oo

AOOO

~o o

o —-O

S O

- oo

S —-o

0
0
0

1
~+1< 0
0

~—~o O

S —Oo

-~ —

oo

[~ =]

2R'| R| R

[

Next, we form

We must now iterate to remove the powers of 2. In this case only a couple of

steps are needed:

(==

(= e )

- oo

(===l

o - O

- oo

N O

o oA

- o ¥

[Ra®R-1] 1| 1]=+4<[

(==

SO

HAOlO w.AO.lO
- oo ~ o
[l SO -
O ~O S~ O
- o ~ o
N O ¥ O K

HAOOQ O_.AOOQ_

!

l
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1 0 01
~+2<oooo
0 2 4|4
+4
N
1 4 0[1 0
~l0 0 00 1
0 2 414 0
~+4<1001
0 0 0|0
0 4] 4
110 0] 1
0/]0 0]0 1
012 414 0

=[srA?R-1s-'| s| s-1].

Hence

. 1 00
(A*)*=R7'S"Y 0 0 o0
0 0 0

SR=

and A¢ =A(A%)?, which in this case reduces to ( Ah?

2
0
1

?

(=2 v}

1
0
4
]

0O 0 0
4 5 7
0 4 4

BN D

S

|

=(A2)d.

223

Removal Rule. First reduce A, to its Fitting decomposition using

elementary operations and counters:

[40] 1] 1]~[Ras| R| B™']

([0 0 0
_1< 1 0 0
~ 1 1 1
0

1 0
0 1
0 0

ht

0
0
1

1

1
0
0

o= o

0
0
1

5

1
N
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']

R R

1

[R,A0R

implies

224

~o o

SO
AOll

(= =)

OO~

~ O O

oS -O

—_o o

S ~O

L B =]

- oo

1/0 0] 2
R R| R
ERE]|
-1 -3 3
-1 4 0

1

-

1
0 o
1 0 0

2

1

Next we compute

RAR™
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Hence
_ _[4 _ _[4 -1
A=1, B [0] C=[2,0], and D [4 2].
Now
- 4 —1},14 2)= 9
X [2’0](”{4 2]+[0 0] [2.2],
and BX=0. Thus
12 2ff1]2 off1] -2 -2 1{0
0|1 0 4‘4 -1 ol 1 0=4‘4 -1
olo 1ilol 4 2]l0 0 1 0l 4
This time
_[4
B=[4
and
= 4 -1 4 21\[4]_[4
Y’(H[ax 2]+[0 0])[0} [0}‘
This gives
1{o off1{o ol[1{0 o 1|0 0
4]1 0 4[4 -1 4‘1 0=0]4 —1
0l o0 1Jlo0) 4 2liol o 1 0l 4 2

Combining all of these we obtain

o o 1)|1] -2
Al=|1 -1 -2 ol 1
0 1 ollo 0
1{o o]f1je 2
><4|1 0 Orl 0

0/ 0 1Jloio0 1
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]
OO
|
o ]
]
[0
| EE——
-

as desired.

4. CANONICAL FORMS

Let us now turn to the question of canonical forms for matrices in
M, (Z/p™). First of all let us restrict ourselves to elementary row operations.
If we embed M, (Z/p™) in the ring of A-matrices over the field Z/p, then we
may use the following [6, p. 135].

Lemma 4.1, Let F be a field, and let A(A)EM, (F[A]). Then A(A) has a
unique A-row echelon form defined by

r0 a,(A)
0 0 0 ayA)
0 0 0 0 0 a,(AN)
a,(A)
L 0 ]
such that

(i) the zero rows are at the bottom,

(ii) the first nonzero entry in each row (called a pivot) is monic and has
zeros below it,

(iii) if i <j, then the row position of a, is above that of a,

(iv) the elements above a, are either absent, zero, or of degree less than
da,.
The uniqueness of this form, except for the case where det A(A) %0, does
not seem to be well known. If we interchange the rows so that the pivots
a, ) fall on the diagonal, then the unique canonical form is called the
Hermite normal form of A(A).
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If we apply the A-row echelon form to a matrix A(p) over Z/p™, then the
outcome is no longer unique due to the ambiguity of the factor p™. For
example if p° =0, then

pop 1| |p p 1+p°
0 p* pl~l0 p2 p |
o 0 of] o o o

both of which are in echelon form. In order to get around this problem, one
might try to row-reduce A(p) using the order of the entries in A(p) in the
obvious manner. In the first nonzero column, select an element of minimal
order. Push this element to the first row and reduce it to the form p*, by
multiplying through by a unit. Then sweep out the rest of column one. Next,
delete row one and repeat. After this process has terminated (either because
there are no more nonzero rows, or because we have reached the last row),
we divide the pivots into the entries above them, ensuring that they have a
degree (as well as an order) which is smaller than that of the pivot below
them. Again this form will not be unique. For example, if p® =0, then

e o
p 1ilo o 0 p|
with again the trouble coming from the term p>. To get around this
difficulty, we may use the Fuller canonical form [5] for A€M, [Z/p™),

which is characterized by the following relationship between a diagonal
entry and its row and column containing it:

[
A~FA= a d b s

row
e

with
(i) d=p* for some k,
(i) 8a>6d, 8b>8d,
(i) ¢=0 or dc<od,
(iv) e=0 or de<ad.

This canonical is unique and may be obtained by selecting a rightmost
element with minimal order, pushing it to the diagonal, reducing it to p¥, and
sweeping out the rest of its column. After deleting the pivot row and column
the process is repeated. When the process terminates, the diagonal pivots
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may then be used to reduce the degrees of all nonzero elements in the
columns of each particular pivot.

For A-matrices over a field F, we may obtain a similar canonical form,
using degrees instead of orders. The main reason for using degrees is that
there is no g.c.d. algorithm which uses orders. Indeed, if A€ M_(F[A]), then

A(?\)~{a d bJ,

e

where

(i) d is monic

(i) 8d> da, 3d>9b,
(iii) c=0 or dc<9d,
(iv) e=0 or de<dd.

This form is unique within ordering of the diagonal entries. That is, two
canonical forms are identical if corresponding diagonal elements have the
same degree. For example, in

[ 1 A2~1H A 0]=[1 Az—l]
A+1 At -1-A* 1 0 A
the last two matrices are in canonical form, but they are not equal.
The reason for considering the Fuller form is that it can be used to give
another algorithm for computing A”. Indeed, we shall now show that if A is

regular, then its Fuller form is idempotent and can be used to construct
bases for R(A) and N(A), exactly as in the field case.

TaeoreM 4.2. Let AEM, (Z/p™). The following are equivalent:
(i) RS(A) has a basis,

(if) Ff=F,,

(iii) A is unit regular,

(iv) A s regular,

(v) R(A) has a basts.

Proof. (i)e(ii): By Corollary 3.7, there is a unit R such that

e[}
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where the rows of C form a basis for RS(A). In particular, the first row of C
is independent and must therefore contain a unit. Selecting the rightmost
unit in row one we see that

in which the new nonzero rows again form a basis. Repeating this argument
with row 2, we see that

[P M T r 7
r - 0 0 0 0 0
0 1 0 . | : :
1 o . :
. 0 0
0 0
1
~ . . o1 -~
rowl - . . fTOW|{ . . Q0 . 0
A S '
N 1
o
. 0 0
0 0 O
I 0o | Lo : : o
l0 0 - Q0 - 0 --- O_J

=F,
where the following facts hold:

(1) On the diagonal there are r pivots of 1 and n—r zeros. That is, f;; =1
ifiel={iy, iy,...,i,} and f;; =0 for i &L

(2) Above and below the unit pivots we have zeros. That is, f;, =0 if j&€ 1
and i7#j.

(3) If £, =0, then the rest of the row is zero.

4) f;=0fori>r.

It is now easily seen that F is indeed in Fuller form and that F2=F. In fact,
fori&l,

(F?)y= %f;’kfkf =0,
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while if i€ 1, then
(F?y= 2 fucfui > fafii= > fucfi =Fij-
kel kel kel

(ii)e>(iii): RA=F?=F=>ARA=A, and A is unit regular.

(iii)=(iv): Clear.

(iv)=(i): Done in (2.2) (iii).

(i)=>(v): Use transposes. |

CoroLLarY 4.3. Let A be regular of rank r. Then

(i) the columns a, in A corresponding to the unit pivots in the Fuller
normal form yield a basis for R(A),

(ii) the nonzero columns in I—F yield a basis for N(A),

(iif) any set of r linearly independent rows (columns) forms a basis for
RS(A) (R(A)).

Proof. (i): Let

with R invertible, and with e; in column i, of F, k=1,2,...,r. Let B=
fa;,-..,a;]. Then

RB=[€)’] and R~ '=[B,?].
Hence
=R lF= -1 C = ? [C]=BC
A=R7'F=R [0] [B,?] p .

This means that A again admits a full-rank factorization and that the
columns of B yield a basis for R(A).

(ii): Since ARA=A, we know that N(A)=R(I—RA)=R(I—F). That is,
the n—r nonzero columns of I—F span N(A). They are also independent,
because if (I—F)x=0 with x;, =0 for i€I={i,,...,i,}, then x=Fx, which
implies that x, =0 for i &1 also. Hence x=0.
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(iii): Let p(A)=r, and suppose that C contains r independent rows of A.
Then

(]

for some unit matrix R. By Lemma 3.5, there is a permutation matrix K such
that

aax=] G G]
?PX
with C, invertible. Thus

rak=[ % G|
0 X

for some unit R. Now because p(A)=r, it follows that X=pY, and since A is
regular, we must have Y =0, Consequently

ra= ()

which shows that the rows of C also span RS(A).

Suppose now that A exists. Then R" =R(A)+ N(A) and hence we may
compute a basis matrix Q=[Q,;, Q,] for R ", where Q, is a basis for R(A)
and Q, is a basis matrix for N(A). Moreover

ool 4

for some unit matrix U, and A* may be computed. In general, this may be
used to replace Robert’s algorithm in the power method. |

Let us conclude with a brief examination of row or column equivalence
over Z/p™. It is well known [4] that there exist invertible R and K such that

I, 0
pL,
RAK = Pl =S, (4.1)

-
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for some 7, > 0. It should be pointed out here that this normal form is really
an immediate consequence of the Smith normal form for A(A). Indeed, if

is the Smith normal form of A(A), then s,(A)=af’ +a{’A+ -+ +ald_ Am~1,
Suppose that af’ =0="--- =af’) | #al). Then s,(p)=p*u, for some unit u,.
This means that for every i=1,2,..., n, s, can be row reduced to p*« for some
k. A final permutation yields the desired normal form.

From S, it is clear that indeed,

(1) A is regular < A~[[I) g}
< R(A) has basis
<> RS(A) has a basis
< A is unit regular,
(2) most of the results derived by Roth [15] dealing with solutions to the
matrix equations A(A)X(A)—Y(A)B(A)=C(A) may be used to derive solu-
tions for the corresponding matrix equations over Z/p™ [4].

Let us close with some open questions:

(1) Are there canonical forms for A€M, (Z/p™) under similarity, other
than the Fitting decomposition?
I

r

(2) If every idempotent matrix E is similar to [ for some r>0,

does this suffice for every nonzero idempotent to have a unit entry?
(3) Can the Souriau-Frame algorithm be modified to M, (Z/p™)?
(4) Can adj(AI—A(p)) be used to compute A%?
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