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ABSTRACT 

The existence and construction of the Drazin inverse of a square matrix over the 
ring Z/h is considered. The canonical forms of matrices over this ring are used to 
facilitate the computation of this type of generalized inverse. 

1. INTRODUCTION 

In this note we wish to investigate the existence and construction of the 
Drazin inverse of a square matrix over the commutative ring Z/h, that is, 
the integers module h. The motivation for this investigation comes from the 
theory of cryptography, into which the concept of a Drazin inverse has 
recently been introduced [8, 121. 

The Drazin inverse is the unique solution, if any, to the matrix equations 

AkXA =Ak, XAx=x, AX=XA, (1.1) 

for some k > 0. The smallest value of k for which a solution exists is called 
the index of A. If index(A) < 1, A is said to have a group inverse, which 
becomes the inverse of A in case index(A) = 0. We shall assume familiarity 
with the basic definitions and theory of this type of generalized inverse, as 
given in [3], [l], [2]. A s usual, we shall denote the Drazin inverse of A by Ad, 
and the group inverse, if any, by A#. Moreover we shall use M,(a) or 5Lt,,, 

to denote the ring of n x n matrices over a ring 9%. A ring for which every 

element has a Drazin inverse is usually called a strong r-regular ring (s7rr 

ring for short). A matrix A,,, is called regular if there exists a matrix A- 
such that AA-A =A. We shall employ the standard notation of R(e), RS( e), 
N( .), and p( .), to denote the range, rowspace, n&pace, and rank (in the 
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sense of McCoy [13]), for the matrix (e). Similarity will be indicated by W, 
and isomorphisms by s, while equivalence and row equivalence will be 
denoted by - and - respectively. 

row 
On factoring the integer h into its primary factors, h =p;llprz. - . p?, 

with pi distinct primes, it suffices to consider M,(Z/p”) for some prime p 
and some integer m > 1. Indeed, it follows that if A E-A, (mod p”“), k = 
1 ,...,s,andA=A,63A2~... G3A,,thenAd=Ad,@Ai@*.* @Ad,,fromwhich 
Ad may be found using the Chinese remainder theorem [ll]. Moreover, it is 
easily seen that p(A) = min p( A i) over Z/$‘s, i = 1,2,. . . , s. Hence from now 
on we shall concentrate on M,,( %) where a= Z/p”‘. 

Before we embark on the search for Ad, let us recapitulate some of the 
salient features about %= Z/p* and M,(‘%). 

First, every element a ER either is a unit or is divisible by p, and may 
uniquely be written modulo p”’ as polynomial in p: 

a=ao +“1p+cxzp2 + . . * +(Y,_Ipm--I (1.2) 

where O<ai<p for all i=O,...,m-1. If Q=(Y~=... =a(t_l=O#~t and 
(Yk#O=ak+i=... =(Y”_r, then k is called the degree au of a, while t is 
called the order S(a) of a. Clearly, if 6(u) = t, then a = upt for some unit u, 
and conversely. Also, a is a unit if and only if 6(a) =O, while a = 0 exactly 
when 6(a) =m. Second, % is a local ring, with a unique maximal ideal Ir,, 
consisting of all multiples of p. It further follows that %/IP =Z/p. Third, 
the only regular elements in % are the units together with zero. Fourth, 
every matrix in M,(Z/p”) may be considered as a polynomial in p with 
matrix coefficients. That is, A E M,( Z/p”) implies 

A=A(p)=AO +A,p+A,p2 +. . . +A,&“-‘, (1.3) 

where each Ai is unique, and may be thought of as a matrix over the field 
IF = Z/p. In other words, we may embed M,( Z/p”) into M,(lF[A]). From 
(1.3) a variety of useful facts follow at once. In particular, 

(1) A is invertible if and only if A, is invertible, 
(2) A is nilpotent if and only if A, is nilpotent, 
(3) if A* exists, so does AZ, 
(4) linearly independent columns (rows) in A will correspond to linearly 

independent columns (rows) in A,, 
(5) a kX k minor in A is a unit if and only if the corresponding kx k 

minor in A, is a unit, 
(6) o(A) =p(A,), and both equal the size of the largest unit minor in A 

or A,. 
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We shall see that to a large extent, the behavior of A is determined by 
the character of A,, but of course not entirely. In particular for nilpotent A,, 
the index of nilpotency for A may be as large as mn, as seen from the matrix 

A= 0 P 
[ 1 1+p 0 * 

We shall further see that the search for Ad will involve much of the general 

theory of M,(Z/p”), and that a variety of techniques may be used in this 
investigation, such as: 

(1) perturbation theory, 
(2) X-matrix theory, 
(3) the theory of block triangular Toeplitz matrices, 
(4) the local ring theory. 

2. EXISTENCE OF Ad AND THE FITTING DECOMPOSITION 

The existence of Ad for any A E M,(Z/p”‘), is easily established, once one 
recalls that the matrix ring M,(a) is finite, with N=p”‘“’ elements. Hence 
the chains R(A)zR(A2)>R(A3)> * *. and RS(A)>RS(A2)_>RS(A3)>. . * 
become stationary, which suffices for Ad to exist [7]. Indeed, if Ak+ 'X = A’ 
and YA’+I =A’, then Ad =AkXki’ = Y’+‘A’ = YAkXk = Y’A’X. We may, 
however, say more. Indeed, in the sequence {I, A, A2,. . . , AN} there must be 
two identical matrices, say Ak=Ak+’ with O<k<k+r<N and l<r<N. 
Hence Ak = Ak+rt forallt>O,andsinceO<k<N-l,wegetAN-l=AN-l+rr. 
Now r < N, and thus r divides N!. This means that we may take rt= N! and 
AN- 1 =AN-l+N!. It now follows [7] that Ad exists and is given by 

Ad ,AN’(N-1)-l 
(2.1) 

for all A E M,( Z/p”). In other words, this expression gives an a priori bound 
on the exponent needed to compute Ad. We note in passing that the above 
proof and construction work equally well in any finite ring, with a slight 
modification needed if the ring has no unity element. The expression (2.1) for 
Ad is clearly only of theoretical interest because the value of N!( N- 1) - 1 is 
far too large to be of practical use; even if m = n = p = 2 we get 256! X 255 - 1. 
We shall therefore endeavor in the remaining sections of this paper to 
develop more realistic algorithms for computing Ad in M,(q). 

The foremost theoretical consequence of the existence of Ad is that 
Fitting’s decomposition is valid. 
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THEOREM 2.1. Let % be a ring with 1. Then the following are equiva- 

lent: 

(i) A EM,(%) implies that 

A=Q ; ; Q-’ 
[ 1 

for some invertible matrices Q, U and some nilpotent matrix q. 
(ii) M,(a) is sm, and for every id.empotent matrix EEM,(%) the range 

R(E) has a basis. 

Proof. (i)*(ii): 

IfA=Q ; ; Q-‘, 
i 1 

then obviously 

Ad=Q[ u;l ;]Q-? 

Now if 

E%E=Q ; ; Q-‘, 
[ I 

then U= I and n = 0, ensuring that 

will form a basis matrix for R(E). 
(ii)*(i): This p roo using mappings is identical to the case where 9% is a f 

field. A pure matrix proof is the following. Let E = AAd, and let Qr, Qs be 

basis matrices for R(E) and R( I- E) respectively. Then Q=[Qr, Qs] is a 

basis matrix for 3” and hence is invertible. Now since R(E) and R( Z - E) are 
invariant, we have AQ, = QrU, and AQs =Qar~ for some square U and n. 

Hence if k=index(A), then Ak(Z-AAd)=O, so that O=AkQz =Q2qk, which 
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by the independence of the columns in Q2 forces qk -0. Also 

=[Q,~P,I[ yk 

invertible with inverse ( Ad)k + I- E, which means that Uk 
and hence U is invertible. n 

The condition that the range of every idempotent E EM,,(%) has a basis 
is indeed satisfied for the ring CiL=Z/p”. This is basically a consequence of 
the local ring structure of Z/pT[l4, p. 1011. A more elementary and 
constructive proof is the following. 

LEMMA 2.2. Let % be a ring with 1, such that evey nonzzro idempotent 

matrix E E M,(q) has a unit entry. Then: 

(4 E% ‘r ’ 
[ 1 0 0’ (2.2) 

(ii) R(E), RS( E), and N(E) have bases. 

(ii) For a regular matrix A, all of R(A), RS(A), and N(A) have bases. 

Proof. (i): Let EF =E, #O, and consider (I-E,)E, =O. Since Z-E, is 

idempotent, it has a unit entry. Hence there is a row XT = 
[h,, A,,..., A, ,..., A,], such that h, is a unit and XTE=OT. Now let 
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RE,-[, ..- i . . . +. 

Consequently 

RIEl=[O .T. (J 
for some unit R,. This gives 

where Ei =E, and F, =E,F,. Hence 

and so 

E,w E2 ’ . 
[ 1 0 0 

This algorithm may now be repeated with E,, E,, etc., and will stop only 
when we get E, = I. Again, since 

the conclusion follows. 
(ii): If 

then Q1 will yield a basis for R(E) and Q2 a basis for N(E). Indeed, the 
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columns of Qs are clearly independent, and if Ex = 0, then EQy = 0 with 

y=Q-1x- ; . 

[ 1 

Hence 

QC I ; y-o * yl=o 

and thus 

x=Q 
[ 1 

; =QZYZ. 

This means that the columns of Qa also span N(E). Similarly for R(E) and 
RS( E). 

(iii): Let AA-A =A. Then AA- and A-A are idempotents, and R(A) = 
R(AA-), RS(A)=RS(A-A), and N(A)=R(Z-A-A). Hence all three mod- 
ules have bases, by part (ii). n 

The conditions of Lemma 2.2 are easily seen to hold for Z/p*. 

COROLLARY 2.3. Zf O#A E M,( Z/p”) has a group inverse, then A bus a 
unit entry. 

Proof. If not, then A =pX, A” = 0, and hence A =O. In particular, every 
nonzero idempotent matrix has a unit entry. n 

We may derive several useful results from the Fitting decomposition: 

COROLLARY 2.4. Let A =A, +A,p+ . . . +A,_,p”-’ EM,(Z/p*), 
with Ai over Z/p. Let AA0 and #AcIA, = Ako(?) denote the characteddic and 
minimal polynomials of A,, with k, =index(A,). l%en 

(i) index(A) < k,m, (2.3) 

Proof. (i): Let 
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with ~=~,+~,p+...?1=l)~+9~pt..., andwith Ui,qi over Z/p. Then 

k, = index( qr,) = in&x( A,) and $0 = pY for some Y. This gives qko”’ =O, and 

thus index(A) = index(n) < k,m. 

(ii): 

NOW +AJu)=4Acl,,(V,)+p(?) and ~JAJT)=#A,(~~)+P(?)* But ~AA,(Ao)=Q and 
thus $A/A,(UO)=O and $AjA,(qO)=O. Hence p divides GA/A,(A) or [$J~JA)]“=O. 

Since +AJh)lA,o(h)lAA(h), th e remaining identity follows. The latter equal- 

ity in (ii) may also be seen from the Cayley-Hamilton theorem and the fact 

that 

A,(x)=det(hZ-A(p))=det(XI-A,-pB) 

='A,jX) +Pf#) +pzji’(x) + ’ . ’ 

for some polynomials J(h) over Z/p. 

In general the index of A may be as large as mk,, as seen from 

(2.4) 

n 

A= 

which has index 2m. Moreover this example shows that the lowest power of 

A which will be regular in general is mk,. 

3. PRACTICAL METHODS FOR COMPUTING Ad 

Let us now turn to some practical methods for calculating Ad. In general 

letuswriteA=A,+pB=C,+N,+pB,whereA~Aomodpm,C,=A2,Ad,is 

the core of A,, and N, =A,(Z-A,Ad,) is the nilpotent purt of A,,. Since we 

have two types of nilpotent matrices to contend with, our strategy shall be to 

try and eliminate one of them by powering, and then treat the remaining 

special case by iteration. The reason for this is that it is difficult to handle Na 

and pB simultaneously. 
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Method 1. The Characteristic-Polynomial Method 
This method is similar to the one used for matrices over a field, with one 

extra twist added to remove the extra nilpotency present. First compute the 
characteristic polynomial A,(h) = A” - a, A*- ’ + * . . ( - l)%,, where 

a,=C all ; 
[ 0 k x k principal minors of A 

I 
. 

Then expand A,(h)=A,o(h)+p.g(X), where A,o(x)=x”+. . . +a,Ak, with 
ak invertible. Then by (2..3), [A*,(h)]* =O. We now expand A,o(h)” as 
arhmk[l-hq(X)], compute hmkq(h)mk+l, and reduce it modulo A,(x). This 
yields Ad as a polynomial in A. In actual practice this method is rather 
tedious to do by hand, and is more suitable for machine calculations. It 
should be clear that this method works for any annihilating polynomial for 
A, that is available. Generally speaking though, AA0 is the only such 
polynomial available, and it is obviously no more work to compute AA than it 
is to compute A,o(x). 

Before we continue with the general case, several preliminary results will 
be needed. We shall, in particular, use Roth’s removal rule [15] to handle the 
general twofold nilpotency, and we shall consider the special cases where AZ 
or A* exists. 

LEMMA 3.1. Zf A is invertible and A ’ 
[ 1 B D 

is regular, then D is 

regular. 

Proof. This is easy, and is left as an exercise. n 

COROLLARY 3.2. Zf A is invertible and A ’ 
[ 1 B PD 

i.s regulur, then D=O. 

LEMMA 3.3. Zf A is invertible and D is nilpotent, then 

(i) AX - XD = C has a unique solution 

n-1 
X- 2 A-‘-%D’, 

r-0 

(ii) YA - DY = B has a unique solution 

(34 

n-l 

Y- z D’BA-‘-I. 
r=o 

(3.2) 
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Proof. Iterate X=A-‘C+A-‘XD and Y=BA-’ +DYA-‘. n 

PROPOSITION 3.4. If A is invertible and D is nilpotent of index k, then 

(i) [$ gl_i”+B”” -“], 
D-BX 

Proof. (i): Let X be the solution 
Then form 

k-l 

with X= 2 A-‘-%D-‘, 
r-0 

k-l 
(3.3) 

with Y= x D-‘BA-‘-I. 
r-0 

to AX-XD=C, as defined in (3.1). 

(ii): Form 

with Y the unique solution to YA - DY = B as given in (3.2). 

(i) 

(ii) 

(iii) 

COROLLARY 3.5. Zf A is invertible and D is nilpotent, then 

where A’, A”, A” are invertible and D’, D”, D” are nilpotent. 

n 

(34 

Proof. (i): From (3.3) ( ), i we see that if p divides C, then p divides X. 
Hence 
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with A invertible and D nilpotent. Repeating this algorithm a sufficient 
number of times, we see that 

with A’ invertible and D’ nilpotent. 
(ii): This follows analogously from (3.3) (ii). 
(iii): Combine parts (i) and (iv). n 

It should be noted that this time XBX and YCY are of order p3, and 
hence that the iteration converges to zero much faster. Moreover, part (iii) 

yields a Fitting decomposition of the matrix A PC 
[ 1 PB D 

, from which the 

Drazin inverse may be computed. 
It is important to observe that if L) is akro of order p, then Roth’s removal 

rule is not needed. We may then simply use the first terms in the expansions 
(3.1) and (3.2), namely X=A-‘C and k=BA-‘.wThis will give - 

i 

‘;; ;][ A@ ;I[:, -;I-[ A+pCBA-’ c 

p2(D-BA-‘C)BA-’ p(D-BA-‘C) 

I;‘: ;][; ;;I[; g=[=]. 

(3.5) 

Iterating these will again give (3.4). We shall also need the next three results 
in one of our algorithms. 

LEMMA 3.6. Let C,, n be over Z/pm. Then the following are equivalent: 

(i) C has r linearly independent rows, 
(ii) p(C)=r, 
(iii) CC- =Z,for some C-. 

Proof. (i)+ii): C has r independent rows ts C,, has r independent rows 
e C,, has an rxr unit minor e C has an rxr unit minor H p(C)=r. 
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@*(iii): If p(C)- -T, then there is a permutation matrix K such that 
CK = [C’, C”], with C’ invertible. Hence CL = [ I,, 0] for some unit L, and 
hence CC - = I, for some C -. (iii)*(i): Clear. n 

COROLLARY 3.7. Zf A E M,( Z/p”), then the following are equivalent: 

(i) the columns of A are linearly independent, 
(ii) p(A)=n, 
(iii) A-’ exists, 
(iv) the rows of A are linearly imkpendmt. 

COROLLARY 3.8. Zf AEM,(Z/p”) and RS( A) has a basis, then there is 
a unit matrix R such that 

where C is a basis matrix for RS( A). 

Proof. Suppose that the rows of C,.,, form a basis for RS( A). Then 
A = SC and C= QA for some matrices S and Q. Hence (I - QS)C = 0, which 
by the independence of the rows of C implies that QS=Z,. Now by the 
Lemma 3.6, there is a permutation matrix K such that QK = [Q1, Qs], with 
Qi invertible. Hence 

C=QA=QKKTA=[Q,,Q,] 

where the rows of A, are n-r of the rows of A. Then 

as desired. 

Method ZZ. A: Exists 
Consider A =A, + pB, and suppose 

Q-‘A,Q= ‘0 ’ 
[ 1 0 0 
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with V,, invertible. Then 

for some I,~. 

Using (3.5), we may now compute a Fitting decomposition by iteration and 
hence compute Ad. 

Method III. Robert’s Method 

If A” exists, then so does AZ, and hence Method II applies. An altema- 
tive method is the following. Since A is regular, with p(A) =r, we know that 
RS(A) has a basis with r independent rows. Hence by Corollary 3.8, there 
exists a unit matrix R such that 

RA= ;, 
[ I 

in which the rows of C from a basis for RS(A). Hence 

mR-l= Cl G 
[ 1 

=A’. 
0 0 

Now because (A’)* exists, it follows that [lo] CT exists and C,C,“C, = C,. 
Consequently, 

A’% ‘1 ’ 
[ 1 0 0’ 

But p(C,) =r and C, is rXr, which implies that Ci-’ exists and 

as desired. 
Let us now give three methods dealing with the general case. 

Method IV. Power Methods 
Let A =A,, +pB, with A, over Z/p. Since index(A) < mk,, we may 

compute As with q > mk,. For example, q =mn will do. Then ( Aq)* exists 
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and may be computed by Robert’s method. Ad is then recovered from 
A”-‘(AQ)“. Alternatively we may compute Ako ==A’;,0 +p(?), in which (Ak,o)# 
exists. This time ( Ako)d may be computed using Method II and Ad will then 
be given by AkO-l(Ako)d. 

In both power methods, as well as in Method I, some powering was used 
to eliminate part of the p-dependence. Let us now turn to an algorithm, 
which only uses an iteration of elementary operations. 

Method V. Roth’s Removal Rule 
Consider A = A ,, + pB, and suppose that 

with U, invertible and q. nilpotent. Then 

PL, 

go + PL, I 

for some L,. Now since U. + pL, is invertible and q. +pL, is nilpotent, 
Corollary 3.5 applies, and 

where u’ is invertible and N’ is nilpotent. It is now clear that 

It should be emphasized that the above methods are al orithmic 
8 

in 
nature, and hence will not furnish an explicit expression for A in terms of 
Ad,, A,, etc. The closest we come to an exact formulation is the following. 

Method VI. Block Matrix Method 
We have seen in (1.3) that we may consider a matrix A E M,,( Z/p”) as a 

polynomial in p with matrix entries. We can go one step further and identify 
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A(p) with mn X mn block Toeplitz matrix 

43 

Al A, 0 

TA= A2 

A,_, . . . . A, A, 

219 

The map $: A+T, is easily seen to be a ring as well as a vector space 
isomorphism, with scalars from Z/p. In particular +(p) =J@I, where 

Hence all of the properties of TA are inherited by A. In particular [lo, p. 181, 

(i) Ad exists-Ad, exists (which is the case), 
(ii) A is nilpotent*A, is nilpotent, 
(iii) A# exists-AZ exists and certain consistency conditions hold [lo, p. 

191, 
(iv) Ad is again a block triangular Toeplitz matrix, and may be found 

recursively [lo, p. 181, 
(v) Ad is a polynomial in A. 

For example, ifm=3, then (A, +A,~+A,P~)~ =B,, +Blp+B,p2, where for 
k > 3k,, 

(i) B0 =A$,, 
(ii) B, = -BoAIBo+EY,k)B,k+‘+B;+‘Y{k)E with 

k-l 

E=Z-A,Ad,, Y,ck) = x A;-‘-lAIA’o, 
r-0 
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and 
(iii) B, = - (B,A, + B,,Az)B,, 

AoB1)Y~%,k+’ +Zik+‘)Y,(k)E with 
+ EY,%,k+’ + B;+lYi(k)E - (A,&, + 

k-l 

YJk’ = x A;-‘-‘( A,A; +A,Yir)), 
r=O 

@+I) = f: B,k-‘B,B;. 
t-0 

Even though Ad has the same Toeplitz structure as A, we may in our 
computation of Ad, use elementary row and colwnn operations which do not 
preserve the Toeplitz structure. These operations have no analogue in 
M,(Z/p”) and in essence go outside this ring. 

The fact that for a block triangular Toeplitz matrix over Z/p, Ad =Ak for 
some k, seems not well known. Of independent interest is the following 
related fact. 

LEMMA 3.9. Zf 

E, 

E2 0 
M= 

? Ek _ 

with E,? =Ei, then M2 =M if and only if M* and (Z-M)* exist. 

Proof. Observe that M2 - M= N is nilpotent. Hence if M# and (I- M)# 
exist, then ( M2 - M)# exists, forcing M2 - M=O. The converse is clear. n 

Let us now use the above methods on a specific example. 

EXAMPLE. Let 

2 0 4 
A= I 7 5 3 1 EM&W3). 

7 4 0 

Then 

0 0 0 
A2= i 6 5 3 1 and A3 

2 4 0 

Hence Ad =A4 =A3. Let us now check this using methods I, II, and V. 
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Method 1. Using principal minors we see that ur = - 1, u2 =2, u, -4. 
HenceAA(A)=X3+h2+2h+4-(A3+h2)+2(h+2),dA,o(x)=~3++2.The 
desired annihilating polynomial now becomes (X3 + A2)” =X6( h3 +3h2 +3A + 
1) = A* [ 1 - A( - X2 - 3h - 3)] and so q(X) = - ( A2 + 3h + 3). Consequently 
Ad=A6q(A)?. Next, 42(X)=(X2+3h+3)2=A4-2h3-X2+2X+1~4X+ 
SmodA,(A), and hence q4(X)=lmodA,. From this we get 47(A)zq3(X)r 

-(4X+5)(X2 +3X+3)=3h2 -3h+l. Now A’= -h2-22h+4 and hence 
Ae9’(A)r(--h2 -2A+4)(3A2 -3X+1)= --X2 -2X+4. This gives Ad =4Z- 
2A -A’, which yields the same matrix. 

Power Method. 

Now 

and p( Ai)#p( A,). Thus A,, has no group inverse. We therefore compute 
A,o(h)=h’(X-1) using principal minors, and because A,(A, - Z)#O, we 
see that qIA, = AA0 and k, = index( A,) = 2. Next compute 

0 0 0 

A2 e i 6 5 3 2 4 0 1 

Clearly Ai is idempotent. Let us now compute (A2)d by elementary opera- 
tions. First we must reduce At to canonical form using counters. We shall 
use two counters, to keep track of the elementary row operations used and 
their inverses: 
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1 0 0 
-+l (i 0 0 0 

0 0 0 

11 0 010 

I 0 0 1 0 0 1 0 0 1 I 01 

0 
1 0 -1 
00 1 I 

1101 0 
-0 0 0 10 0 10 -1 

L I 1 00000100 1 

Next, we form 

=[ R&R-l 1 R 1 R-l]. 

1 =o H-1 1 0 0 2 0. 
4 2 4 

We must now iterate to remove the powers of 2. In this case only a couple of 
steps are needed: 
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1 0 0 1 
-+2 (I 0 0 0 I 0 

0 2 4 4 

: 
1 4 

-0 [ 0 

0 

I 
1 0 

0 0 1 
0 2 4 4 0 

-+4 CL 1 0 0 1 
0 0 0 

1 

0 
0 2 4 4 

0 0 1 0 -2 
1001 0 

I I 0140 1 

+4 

2 ;a -2 
001 0 

I I 140 1 

0 2 1 4 -2 
1001 0 

I I 0140 1 

Hence 

=lI SRA2R-‘S-’ I s I s-q. 

and Ad =A(A2)d, which in this case reduces to (Ad)2 =(A2)d. 

Removal Rule. First reduce A, to its Fitting decomposition using 
elementary operations and counters: 
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implies 

‘i 0 0 1 

I 
0 0 1 0 1 

= 2 1 0 0 1 -1 1 1 0 0 0 0 1 0 0 I 1 0 0 I 

1 0 0 0 1 (1 1 
-10 01 

-+2 00100 11 

1 I 

-1 0 
00010 00 10 

-Ii_1 ii 4 p 61 ;cp k/ 

~+qj-j--j ; i y 1 -y -8 

=[ RA,R-’ 1 R 1 R-l]. 

Next we compute 
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Hence 

C=[Z,O], and II= 

Now 

x= [2,0]( z+ $ -;]+["o 3)=[2,21, 

and BX=O. Thus 

Ill2 2 rt- 0 1 0 
0 0 1 

This time 

B= 4 
[ 1 0 

and 

This gives 

Combining all of these we obtain 
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as desired. 

4. CANONICAL FORMS 

Let us now turn to the question of canonical forms for matrices in 
M,(Z/p”). First of all let us restrict ourselves to elementary row operations. 
If we embed M,( Z/p”) in th e ring of h-matrices over the field Z/p, then we 
may use the following [S, p. 1351. 

LEMMA 4.1. Let IF be a field, and let A(A) EM,(F[/\]). Then A(X) has a 

unique h-row echelon form defined by 

il fP i3 1. 

0 4) 
0 0 *-. 0 “?L!(Y 
0 0 . . . 0 0 . . . 0 %(W 

1 
such that 

0 

(i) the zero rows are at the bottom, 
(ii) the first nonzero entry in each row (called a pivot) is manic and bus 

zeros below it, 
(iii) if i < j, then the row position of a, is above thut of a i, 

(iv) the elements above a, are either absent, zero, or of degree less than 

aai. 
The uniqueness of this form, except for the case where det A(h) #O, does 

not seem to be well known. If we interchange the rows so that the pivots 
a,(X) fall on the diagonal, then the unique canonical form is called the 
Hermite normal form of A(X). 
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If we apply the X-row echelon form to a matrix A(p) over Z/p”‘, then the 
outcome is no longer unique due to the ambiguity of the factor p”. For 
example if p3 = 0, then 

PPl PP 

i 11 

1+p2 

0 P2 P - 0 p2 p 
000 00 0 

both of which are in echelon form. In order to get around this problem, one 
might try to row-reduce A(p) using the order of the entries in A(p) in the 
obvious manner. In the first nonzero column, select an element of minimal 
order. Push this element to the first row and reduce it to the form pk, by 
multiplying through by a unit. Then sweep out the rest of column one. Next, 
delete row one and repeat. After this process has terminated (either because 
there are no more nonzero rows, or because we have reached the last row), 
we divide the pivots into the entries above them, ensuring that they have a 
degree (as well as an order) which is smaller than that of the pivot below 
them. Again this form will not be unique. For example, if p3 -0, then 

with again the trouble coming from the term p3. To get around this 
difficulty, we may use the Fuller canonical form [5] for A EM,[Z/pm), 
which is characterized by the following relationship between a diagonal 
entry and its row and column containing it: 

A 

with 

(i) d=pk for some k, 
(ii) 6a > Sd, Sb>Gd, 
(iii) c =0 or i3c < ad, 
(iv) e=O or &cad. 

This canonical is unique and may be obtained by selecting a rightmost 
element with minimal order, pushing it to the diagonal, reducing it to pk, and 
sweeping out the rest of its column. After deleting the pivot row and column 
the process is repeated. When the process terminates, the diagonal pivots 
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may then be used to reduce the degrees of all nonzero elements in the 
columns of each particular pivot. 

For h-matrices over a field IF, we may obtain a similar canonical form, 
using degrees instead of orders. The main reason for using degrees is that 
there is no g.c.d. algorithm which uses orders. Indeed, if A EM,((F[A]), then 

where 

6) d is monk 
(ii) ad> aa, ad>ab, 

;; ; =0 or ac<ad, 
=O or ae<ad. 

This form is unique within ordering of the diagonal entries. That is, two 
canonical forms are identical if corresponding diagonal elements have the 
same degree. For example, in 

[ 

1 P -1 x4 
h2 + 1 A4 I[ I+[; $11 

-l-h2 1 

the last two matrices are in canonical form, but they are not equal. 
The reason for considering the Fuller form is that it can be used to give 

another algorithm for computing A*. Indeed, we shall now show that if A is 
regular, then its Fuller form is idempotent and can be used to construct 
bases for R(A) and N(A), exactly as in the field case. 

THEOREM 4.2. Let A E M,(Z/p”). The following are equivaknt: 

(i) RS(A) has a basis, 

(ii) Fj = FA, 

(iii) A is unit regular, 

(iv) A is regular, 

(v) R(A) has a basis. 

Proof. (i)w(ii): By C orollary 3.7, there is a unit R such that 
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where the rows of C form a basis for RS(A). In particular, the first row of C 
is independent and must therefore contain a unit. Selecting the rightmost 
unit in row one we see that 

1 
? 0 ? 

A- 0 
r, row 

0 

in which the new nonzero rows again form a basis. Repeating this argument 
with row 2, we see that 

A- 
row 

r 

i2 i, il i3 

0 0 1 0 

1 : 0 : 

0 : : 0 . . 

. . . . . . 1 # . . 

. . . . . . 0 . . . 

: 0 : : 

0 1 0 6 

0 

=F, 

t row 

0 0 . . . 0 . . . 0 

: 1 

: 0 . . 0 

. . . . 1 . . 

. . . . 0 ‘. 0 . * 

. . 

. . 1 

. . 

. I 

. . 0 

. . 

. . 

# . 

;, ;, . . . ;, . . . ;, 

. . . . . . 0 

0 

. . 
. . 

. . . . . . 0 

where the following facts hold: 

(1) On the diagonal there are r pivots of 1 and rr - r zeros. That is, Ji = 1 
if iEI={i,,i,,..., i,} and hi = 0 for i @ 2. 

(2) Above and below the unit pivots we have zeros. That is, ji = 0 if i E I 
and i#j. 

(3) If Ai =O, then the rest of the row is zero. 
(4) ii =0 for i>r. 

It is now easily seen that F is indeed in Fuller form and that F2 = F. In fact, 
for i@Z, 

k 
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while if i E I, then 

(ii)+iii): RA = F2 = F+ARA =A, and A is unit regular. 
(iii)*(iv): Clear. 
(iv)+(i): Done in (2.2) (in). 
(i)*(v): Use transposes. n 

COROLLARY 4.3. Let A be regular of rank T. Then 

(i) the columns ai, in A corresponding to the unit pivots in the Fuller 
normal form yield a basis for R(A), 

(ii) the nonzero columns in Z-F yield a basis for N(A), 
(iii) any set of r linearly independent rows (columns) forms a basis for 

WA) (R(A)). 

Proof. (i): Let 

with R invertible, and with ek in column i, of F, k= 1,2,. . . , r. Let B= 

[ai,,-.., a,,]. Then 

and R-‘=[B,?]. 

Hence 

AzR-~F=R-’ c [ ,]=[B,?][ ~]=Bc. 

This means that A again admits a full-rank factorization and that the 
columns of B yield a basis for R(A). 

(ii): Since ARA=A, we know that N(A)=R(Z-ZU)=R(Z-F). That is, 
the n - r nonzero columns of Z-F span N(A). They are also independent, 
because if (I-F)x=O with xi=0 for iEZ={ir,...,i,}, then x=Fx, which 
implies that xi =0 for i4Z also. Hence x-0. 
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(iii): Let p(A) = r, and suppose that C contains r independent rows of A. 
Then 

for some unit matrix R. By Lemma 3.5, there is a permutation matrix K such 
that 

R,AK-_ ‘1 G 
[ 1 ? x 

with C, invertible. Thus 

for some unit R. Now because p(A) = r, it follows that X=pY, and since A is 
regular, we must have Y = 0. Consequently 

which shows that the rows of C also span RS( A). 
Suppose now that A# exists. Then DB” =R(A) /N(A) and hence we may 

compute a basis matrix Q= [Qi, QJ for ‘%“, where Q1 is a basis for R(A) 
and Q2 is a basis matrix for N( A ). Moreover 

for some unit matrix U, and A# may be computed. In general, this may be 
used to replace Robert’s algorithm in the power method. n 

Let us conclude with a brief examination of row or column equivalence 
over Z/pm. It is well known [4] that there exist invertible R and K such that 

RAK- =s, (4.1) 



232 ROBERT C. HAFUWIG 

for some q > 0. It should be pointed out here that this normal form is really 
an immediate consequence of the Smith normal form for A( A). Indeed, if 

is the Smith normal form of A(h), then si(A)=crf)+a’,‘)A+ *. . +cx~_,A”‘-~. 

~so~~a~y-h~~;o~ zv=,, z _ 1 ‘z . =ai_--l#ar). Then s,(p)=pkui for some unit ui. 
.- , >..‘, n, si can be row reduced to pk( for some 

ki. A final permutation yields the desired normal form. 
From S, it is clear that indeed, 

(1) A is regular ti A- 

ti R(A) has basis 
CJ RS(A) has a basis 
w A is unit regular, 

(2) most of the results derived by Roth [15] dealing with solutions to the 
matrix equations A(X)X(X) - Y(X)B(X) = C(X) may be used to derive solu- 
tions for the corresponding matrix equations over Z/pm [4]. 

Let us close with some open questions: 

(1) Are there canonical forms for A EM,( Z/p”) under similarity, other 
than the Fitting decomposition? 

(2) If every idempotent matrix E is similar to ” ’ 
[ I 

for some T > 0, 

does this suffice for every nonzero idempotent to hav!! a $rit entry? 
(3) Can the Souriau-Frame algorithm be modified to M,,(Z/pm)? 
(4) Can adj(XZ-A(p)) be used to compute Ad? 

REFERENCES 

A. Ben Israel and T. N. E. Greville, Generalized Inverses, Theory and Applica- 
tion~, Wiley, New York, 1974. 
S. L. Campbell and C. D. Meyer, Generalized 1nverse.s of Linear Transfbma- 

tiun.s, Pitman, New York, 1979. 
M. P. Drazin, Pseudo-inverses in Associated Rings and Semigroups, Amer. Math. 

Monthly 65506-514 (1958). 



DRAZIN INVERSES AND CANONICAL FORMS 233 

4 T. P. Donovan, Certain Matrix Congruences mod p”, Ann. Mat. Pura Appl. IV 

65:193-214 (1977). 
5 L. E. Fuller, A canonical set of matrices over a principal ideal ring module m, 

Canad. J. Math. 754-58 (1955). 
6 F. R. Gantmacher, The Theory of Matrices, Vol. 1, CheIsea, New York, 1960. 
7 R. E. Hartwig, A note on periodic matrices, J. Zn&.~trioZ Sot. 27, part 1:51-55. 

(1977). 
8 R. E. Harhvig, Drazin inverses in cryptography, submitted for publication. 
9 R. E. Hartwig, From Schur to Jordan, to appear. 

10 R. E. Hartwig and J. Shoaf, Group inverses and Drazin inverses of bidiagonal 
and triangular Toeplitz matrices, Z. Au&al. Math. .Soc. Ser. A 24:10-34 (1977). 

11 I. Kaplansky, Fields and Rings, 2nd ed., Univ. of Chicago Press, Chicago, 1965. 
12 J. Levine and R. E. Hartwig, Applications of the Drazin inverse to the Hill 

cryptographic system, I, Cryptorogia 4:71-83 (1980). 
13 N. H. McCoy, Rings and Ideals, Cams Monograph No. 8, Buffalo, 1948. 
14 B. R. McDonald, Finite Rings with Identity, M. Dekker, New York, 1974. 
15 W. E. Roth, The equations AX - YB- C and AX - XB- C in Matrices, Pm. 

Amer. Math. Sot. 3:392-396 (1952). 

Received 7 April 1980; reoised I7 June 1980 


