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A  discrete  element  model  (DEM)  combined  with  computational  fluid  dynamics  (CFD)  was  developed  to
model particle  and  fluid  behaviour  in 3D  cylindrical  fluidized  beds.  Novel  techniques  were developed  to
(1)  keep  fluid  cells,  defined  in cylindrical  coordinates,  at a constant  volume  in order  to ensure  the  condi-
tions  for  validity  of the  volume-averaged  fluid  equations  were  satisfied  and  (2)  smoothly  and  accurately
measure  voidage  in arbitrarily  shaped  fluid  cells.  The  new  technique  for calculating  voidage  was  more  sta-
ble than  traditional  techniques,  also examined  in  the  paper,  whilst  remaining  computationally-effective.
iscrete element model
omputation fluid mechanics
luidization
oidage
ranular material

The model  was  validated  by quantitative  comparison  with  experimental  results  from  the  magnetic  res-
onance  imaging  of  a fluidised  bed  analysed  to  give  time-averaged  particle  velocities.  Comparisons  were
also made  between  theoretical  determinations  of  slug  rise velocity  in  a  tall  bed.  It was  concluded  that
the  DEM-CFD  model  is  able  to investigate  aspects  of  the  underlying  physics  of  fluidisation  not  readily
investigated  by  experiment.

©  2014  The  Authors.  Published  by Elsevier  Ltd. This  is an open  access  article  under  the  CC BY  license
. Introduction

Fluidized beds are widely used in industry for applications
anging from fluidized catalytic cracking to drying to gasification.
dditionally, fluidized beds show promise for use in chemical loop-

ng combustion of carbonaceous fuels to improve the efficiency
f carbon capture. Despite the widespread industrial use, and the
romise to play an important role in the supply of clean energy, the
undamental physics underpinning fluidized beds is still not fully
nderstood.

Computational modelling provides a promising method of
nderstanding the fundamentals of fluidisation. Currently, two
orms of models predominate: discrete element modelling with
omputational fluid dynamics (DEM-CFD) (Hoomans, Kuipers,
riels, & Van Swaaij, 1996; Tsuji, Kawaguchi, & Tanaka, 1993)
nd two-fluid modelling (TFM) (Ding & Gidaspow, 1990; Kuipers,
an Duin, Van Beckum, & Van Swaaij, 1993). The main difference
etween DEM-CFD and TFM is that DEM-CFD treats particles as

ndividual objects governed by Newtonian physics, while TFM con-

iders the particles as a continuous phase governed by continuum
echanics. The main advantage of TFM over DEM-CFD is that it

an model larger beds. However, DEM-CFD gives more detailed

∗ Corresponding author. Tel.: +44 07753297389.
E-mail address: cmb206@cam.ac.uk (C.M. Boyce).
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098-1354/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article u
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and accurate results since aspects of individual particles, such as
location and velocity, can be monitored; also DEM-CFD does not
require the introduction of parameters such as particle “viscos-
ity” and “pressure”. A direct comparison of DEM-CFD and TFM
modelling of bubble rise in a fluidized bed, highlighting the accu-
racy of DEM-CFD is provided by Chiesa, Mathiesen, Melheim, and
Halvorsen (2005). The paper presented here describes the develop-
ment and validation of a 3D cylindrical DEM-CFD model intended to
examine particular aspects of fluidization, namely pressure oscilla-
tions, particle and fluid velocity and bubble rise. Comparisons are
drawn with experimental observations.

The main problem in DEM-CFD is that it does not resolve fluid
flow on the sub-particle level, because the computational expense
of doing so would be excessive: thus it requires a drag law to
describe the fluid–particle interaction forces needed to close the
equations of momentum for both phases. To account for the pres-
ence of particles in the flow field of the fluid, DEM-CFD uses a
volume-averaged version of the Navier–Stokes equations for the
motion of the fluid (Anderson & Jackson, 1967). These volume-
averaged equations allow for the fact that a proportion of the
volume of many fluid cells will be occupied by particles. The deriva-
tion of the volume-averaged equations assumes that the length

scale over which the averaging takes place, equivalent to the length
scale of a fluid cell, is greater than the average distance separating
the centres of two neighbouring particles, but less than a distance
over which macroscopic change is observed in fluid properties

nder the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Anderson & Jackson, 1967). Thus, DEM-CFD cannot resolve fluid
ow on a sub-particle length scale. Direct numerical simulation
DNS) could, in principle, resolve fluid flow on a sub-particle level,
nd thus use the no-slip boundary condition instead of a drag law to
odel fluid–particle interaction more accurately. However, DNS is

oo computationally expensive, requiring supercomputing to sim-
late systems of reasonable size (Xiong et al., 2012).

DEM-CFD has been a powerful tool for understanding physical
henomena in gas–solid flows. Since DEM-CFD models individ-
al particles, it has been used to calculate particle velocity and
ranular temperature (He et al., 2012; Müller et al., 2008) as
ell as particle mixing (Bokkers, van Sint Annaland, & Kuipers,

004; Liu, Xiao, Chen, & Bu, 2012). Additionally, since discrete
lement modelling can account for a variety of particle sizes,
EM-CFD has been used to model two phase granular flow in poly-
isperse systems of particles (Beetstra, van der Hoef, & Kuipers,
007b; Tagami, Mujumdar, & Horio, 2009; Zeilstra, van der Hoef,

 Kuipers, 2008). Since DEM-CFD can also model the flow of
ither liquid or gas through fluidized beds, DEM-CFD has also
een able to provide insight on the differences, and transition,
etween homogeneous and bubbling fluidisation (Di Renzo & Di
aio, 2007).
Originally, almost all DEM-CFD simulations were limited to

odelling essentially 2D fluidized beds with rectangular fluid grids,
wing to computational limitations (Bokkers et al., 2004; Di Renzo

 Di Maio, 2007; He et al., 2012; Liu et al., 2012; Müller et al., 2008,
009; Tagami et al., 2009; Zeilstra et al., 2008). Since most fluidized
eds used in experiments and industry have cylindrical or more
omplicated geometries, new DEM-CFD models for simulating beds
ith these geometries have recently emerged (e.g. Chu & Yu, 2008;
uo, Wu,  & Thornton, 2013; Liu, Bu, & Chen, 2013). Fluidized beds
ith complicated geometries have been directly modelled using

ne of two techniques: (1) a rectangular fluid grid with immersed
oundaries (Guo et al., 2013) or (2) an unstructured fluid grid, typ-

cally generated by a commercial CFD package (Chu & Yu, 2008). A
ifficulty associated with both these techniques is that it is impos-
ible to keep the fluid cells similar in size and shape. Since the
olume-averaged fluid equations (Anderson & Jackson, 1967) used
n DEM-CFD models require the fluid cells to cover regions which

ould not change in macroscopic physical properties if slightly
hanged in size (Crowe, Sommerfeld, & Tsuji, 1998), having cells too
mall or with oblong shapes could cause these equations to break
own, thereby corrupting the results. Conversely, having fluid cells
oo large will cause the simulation to miss important features of
he flow.

Additionally, techniques involving unstructured grids require a
eans to determine, accurately, stably and efficiently, the void frac-

ion in arbitrarily shaped cells. The voidage in fluid cells is defined
deally as

cell = 1 −
∑

Vparticles

Vcell
. (1)

here, for the cell, εcell is the voidage,
∑

Vparticles the total vol-
me  of all the particles and Vcell is the volume. It is very important
or this calculation to be accurate and stable because of the heavy
ependence of certain terms in the fluid equations on voidage,
specially the drag law. The calculation of voidage is complicated by
he fact that particles often lie in multiple cells and it is too expen-
ive computationally to calculate exactly the fractional particle
olume lying in each cell. Mathematical equations for exactly divid-
ng spherical particles among rectangular cells have been obtained
sing calculus (Freireich, Kodam, & Wassgren, 2010); however,

his methodology involves expensive calculations with trigono-

etric functions for each particle at every time step and cannot
e applied directly to fluid cells with arbitrary shapes. Wu,  Zhan,
i, Lam, & Berrouk (2009) derived a complicated set of equations to
ical Engineering 65 (2014) 18–27 19

calculate voidage exactly on unstructured grids, which have tetra-
hedral, wedge-shaped and hexahedral fluid cells. However, the
method is computationally very expensive, requiring evaluations
of trigonometric functions at every time step. Additionally, there
is the possibility of the volume of a particle to be divided between
more than ten different fluid cells, adding to the computational
expense. To alleviate this computational burden, Wu  et al. (2009)
made a “look-up” table to solve for the volume fraction of a particle
in 8 × 106 different potential positions relative to the boundaries of
a fluid cell, such that the trigonometric calculations would not have
to be made each time step. However, this only made a slight reduc-
tion in the computation necessary for voidage calculations, because
determining the position of a particle relative to the boundaries of a
fluid cell dominated the computational cost as compared to making
the trigonometric calculations.

A crude method for determining voidage in any type of fluid
cell, henceforth referred to as the “direct method” (also known as
the “point approximation method”), would be to assume the entire
volume of a particle lies in a particular fluid cell if the centre of the
particle lies in that cell:

εcell = 1 −
i=Np∑
i=1

Vp,i

Vcell
(2)

where Np is the number of particles with centres residing in the
fluid cell of interest. This calculation is obviously inexact, since a
significant fraction of the volume of a particle can lie in cells other
than the cell in which its centre is located. Additionally, this method
could lead to instabilities because, during an individual time step,
a significant fluctuation in voidage could occur if the centre of a
particle moves into or out of the cell. While the direct method is
the most inexpensive method computationally for structured fluid
grids, in unstructured fluid grids, it can be expensive to locate the
fluid cell in which the centre of each particle is located at each time
step (Kuang, Yu, & Zou, 2008).

To address the issues of the direct method, a variety of other
methodologies for determining voidage have been developed
(Fries, Antonyuk, Heinrich, & Palzer, 2011; Khawaja, Scott, Virk, &
Moatamedi, 2012; Lim, Wang, & Yu, 2006). A methodology devel-
oped by Lim et al. (2006), henceforth referred to as the “grouping
method”, involves calculating the voidage for a fluid cell grouped
together with its surrounding cells via the direct method:

εcell = 1 −
∑Ns+1

j=1

∑Np,j

i=1 Vp,i∑Ns+1
j=1 Vcell,j

(3)

where Ns is the number of cells surrounding the cell of interest
and Np,j is the number of particles with centres which lie in fluid
cell j. By including the particle volumes lying in the surrounding
cells, rather than just the particle volumes in the cell of interest,
this method adds stability, as large jumps in voidage do not occur
when the centre of a particle moves from the cell of interest to a
neighbouring cell. However, this technique adds a large amount of
spatial smoothing to the averaging procedure because quantities
such as velocity and pressure are calculated for individual cells,
yet voidage is effectively calculated on a larger volume scale. This
method of calculating voidage can also be inaccurate if the true
voidage in a cell of interest is vastly different from the true voidage
fractions in the surrounding cells, as can happen with bubbles pass-
ing through fluidized beds.

A commonly used method for calculating voidage on rectangular
grids, described in full by Khawaja et al. (2012), involves treating

each particle as if it is encapsulated by a cube, with side length
equal to the diameter of the particle. The fraction of the volume of
the cube which lies in different fluid cells is then calculated, and the
corresponding fraction of the particle’s volume is assigned to the
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Table 1
Physical parameters used to model particle contacts.

Parameter Value

Coefficient of sliding friction 0.1
Young’s modulus 1.2 × 108 Pa
Poisson’s ratio 0.33
Normal damping coefficient 0.02
0 C.M. Boyce et al. / Computers and

uid cells which contain a portion of the volume of the encapsulat-
ng cube. This methodology, referred to here as the cuboid method,
s imprecise in dividing particles, adding a small amount of spatial
moothing as compared to the exact equations of Freireich et al.
2010). However, the cuboid method is less computationally expen-
ive than the exact equations. The technique also adds stability,
ompared with the direct method, without introducing the same
mount of spatial smoothing as the grouping method. To estimate
he spatial smoothing in the cuboid method, Khawaja et al. (2012)
ivided a single particle in every way possible around the exterior
f a rectangular fluid cell and compared the volume fraction of the
article in the cell as calculated by the cuboid method and the exact
ethod. They found that the cuboid method assigned at most 20%
ore of the volume of a particle to the fluid cell than the exact
ethod. However, the cuboid method is not directly applicable to

rbitrarily shaped fluid cells, because, although it is very easy to
easure the fraction of a cube’s volume in a rectangular fluid cell,

t is very difficult in a cell with an arbitrary shape.
For fluid cells of arbitrary shape, Fries et al. (2011) represented

 spherical particle as being composed of 10–20 cubes for voidage
alculations and determined the voidage in a given fluid cell accord-
ng to

cell = 1 −
∑

Vcube

Vcell
. (4)

ere
∑

Vcube is the total volume of cubes from various particles in
he cell, and the entire volume of a cube is considered within a cell if
he centre of the cube is located in that cell. While this model com-
utes voidage relatively accurately, it is computationally expensive
o locate the centres of all the cubes in fluid cells every time
tep, especially given the computational difficulties associated with
ocating individual points in unstructured fluid cells (Kuang et al.,
008).

To address the issues surrounding the calculation of voidage
nd the construction of fluid cells of valid volume and shape in
on-rectangular fluid grids, a new methodology for modelling a
ylindrical fluidized bed is presented here. In this model, fluid cells
re all equal in volume and constructed in a cylindrical structured
rid to ensure the cells have the proper volume and shape to pro-
uce an accurate fluid solution. Additionally, a novel method of
alculating voidage in arbitrarily shaped fluid cells was developed
iving accurate and stable predictions at low computational cost.
he voidage technique is applicable to arbitrarily shaped fluid cells
ith only minor restrictions.

. Theory: cylindrical fluidised bed model

Fluidization is modelled in this paper using a technique orig-
nally developed by Tsuji et al. (1993), which, as noted earlier,
ombines a discrete element model (DEM) (Cundall & Strack,
979) to simulate particle motion with computational fluid dynam-

cs of the volume-averaged Navier–Stokes equations derived by
nderson and Jackson (1967). The technique was adapted to model

 cylindrical fluidized bed: the fluid dynamics was modelled in
ylindrical coordinates while the motion of the particles was simu-
ated in rectangular coordinates. Care was taken (i) to keep the fluid
ells in cylindrical coordinates at a constant volume for volume-
veraging purposes, and (ii) to ensure voidage was  calculated
ccurately and without sudden changes between successive time-

teps. Additionally, the CFD code was written for compressible flow
nd stepped forward in time using an explicit scheme, as only an
xplicit scheme with compressible fluid allows the prediction of
ressure waves travelling through the system.
Tangential damping coefficient 0.0001
Time step 1.25 × 10−6 s

2.1. Discrete element model

The motion of each particle in the fluidized bed was governed
by a discrete element model, developed from that of Müller et al.
(2009). Similar to this model, the linear and angular momenta of
each particle were updated each time step using a force balance
and Newton’s second law. The normal contact force on each par-
ticle was determined using a Hertzian model, while the tangential
contact force was  determined using the model of Tsuji, Tanaka, and
Ishida (1992), in which Coulomb’s law is introduced to account for
sliding. Contact parameters used for the DEM model are given in
Table 1. Distinct from the discrete element model used in Müller
et al. (2009), particles were confined by a tubular wall since a cylin-
drical fluidized bed was modelled instead of a rectangular one.
Both particle and fluid motion were stepped forward explicitly in
time using the 3rd order Adams–Bashforth scheme. The 3rd order
Adams–Bashforth scheme was  used to increase simulation accu-
racy and stability as compared with first- and second-order time
stepping techniques.

2.2. Computational fluid dynamics

The fluid motion was  modelled using computational fluid
dynamics on a cylindrical grid, invoking volume-averaged
Navier–Stokes equations (Anderson & Jackson, 1967) to account for
portions of fluid cells being occupied by particles. The conservative
form of the volume-averaged Navier–Stokes equations in cylindri-
cal coordinates (given in Appendix A) were applied to cylindrical
fluid control volumes using the finite volume method for discreti-
sation. In order for all the fluid control volumes to have the same
volume, the grid size in the radial direction was  kept constant, but
the angle subtended by control volumes decreased with increasing
radial distance. The grid sizing in the vertical direction was  constant
throughout. An example of a horizontal cross section of a fluid grid
used in this model is shown in Fig. 1, in which different colours
show different fluid cells and each number indicates the angular
index of a cell in its annulus. A mapping system was developed
to ensure that the interfaces between all fluid cells received the
appropriate dissipative, convective and mass fluxes, according to
the finite volume method. In this mapping system, the fluid cells
in the positive and negative radial directions, adjacent to the fluid
cell under consideration, were identified, as well as the fraction of
radial interfacial area these cells occupied. These identified fluid
cells and fractions of radial interfacial area were then used in flux
calculations.

To increase accuracy and stability in the fluid solution, the
convective momentum fluxes in the axial (z) direction were deter-
mined using the 3rd order QUICK upwinding scheme (Leonard,
1979) with the SMART flux limiter (Gaskell & Lau, 1988). The con-
vective fluxes in the radial and angular directions were determined
using central differencing, as there were an insufficient number

of cells in these directions to use high-order upwinding effec-
tively. Using central differencing for discretisation in the radial
and angular directions may  have added instabilities, as compared
to the QUICK upwinding scheme, but the model produced stable
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Fig. 1. Horizontal cross section of novel CFD grid. Different colours denote different
CFD cells and the numbers indicate the angular index of a cell in its annulus. More
CFD cells are used in the annuli further from the centre, such that the fluid cells
have a constant volume to ensure the same accuracy in the volume-averaged fluid
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quations.

imulations, indicating that there was sufficient numerical dissipa-
ion to prevent instabilities.

The boundary conditions and other conditions used in the CFD
odel are summarised in Table 2. Full-slip boundary conditions
ere used at the cylindrical walls, because the volume-averaged
avier–Stokes equations did not allow a grid fine enough to discern

he boundary layer characteristic of no-slip boundary conditions
Müller et al., 2009). At the axis of the cylinder, the velocity of
he fluid was interpolated from the radial and angular velocities
n the cells in the central annulus by converting these velocities
nto rectangular (x and y) coordinates and averaging them. At the
istributor, i.e. the inlet for the fluid, the radial and angular veloci-
ies were set to zero. The density in these inlet cells located just
elow the distributor was extrapolated from the corresponding
ells in the next layer up, and the inlet velocity was  uniform to
atch that of a porous or perforated distributor with a sufficient

ressure drop. At the start of the simulation, the vertical velocity
f the gas at the inlet was ramped from zero to the desired value
or the particular simulation over a 240 ms  time period. The ramp
ime was chosen to be long enough to avoid long-lasting start-up
ffects, yet short enough to minimise simulation time. At the outlet
rom the bed, a three-dimensional characteristic outlet condition
or isothermal flow in cylindrical coordinates was derived using
he guidelines of Chung (2010), invoked as a non-reflecting bound-
ry condition on the rate of density change at the outlet to ensure
able 2
oundary and other simulation conditions used to model fluid motion.

Aspect of Simulation Condition Imposed

Fluid–particle interaction Beetstra, van der Hoef, and Kuipers (2007a,
2007b) Correlation

Fluid type Compressible
Time stepping scheme Explicit 3rd order Adams–Bashforth
Inlet voidage 0.4
Outlet condition 3D cylindrical characteristic outlet
Boundary velocity Full-slip
ical Engineering 65 (2014) 18–27 21

pressure waves would not be reflected back into the system. The
characteristic outlet condition for change in fluid density was:

��
∣∣
Nz

= �1�2

�3
�(�Uz)

∣∣
Nz

(5)

where ��
∣∣
Nz

and �(�Uz)
∣∣
Nz

are the change in fluid density and

vertical momentum over a time step in a cell located at the outlet,
Nz, and the derived constants are:

�1 = U5
z + U4

z a − 2U3
z a2 − 2U2

z a3 + Uza4 + a5

�2 = U5
z − U4

z a − 2U3
z a2 + 2U2

z a3 + Uza4 − a5

�3 = �2�5 + �6�5

�5 = U6
z − 3U4

z a2 + 2U2
z a4 − a6

�6 = 2U4
z a − 4U2

z a3 + 2a5

(6)

where Uz is the vertical velocity in a fluid cell at the outlet and a
is the isothermal speed of sound in the fluid. To complete the non-
reflecting boundary condition, the changes in fluid momentum in
all three directions at the outlet were extrapolated from the cell
below:

�(�Ur)
∣∣
Nz

= �(�Ur)
∣∣
Nz−1

�(�U�)
∣∣
Nz

= �(�U�)
∣∣
Nz−1

�(�Uz)
∣∣
Nz

= �(�Uz)
∣∣
Nz−1

(7)

2.3. Linkage between fluid and particles

The linkage between fluid and particles was accounted for (1)
in the calculation of voidage for each fluid control volume and (2)
in the fluid–particle interaction force. Determining voidage in each
cylindrical fluid cell requires a balance between smoothness and
accuracy to achieve an accurate and stable simulation. Therefore, a
technique, referred to as the “square grid method”, was developed
for determining voidage in arbitrarily-shaped fluid cells. Here, the
distribution of particle volume on a square grid was  calculated and
mapped on to the cylindrical control volumes to calculate voidage,
as depicted in Fig. 2. To do this, firstly the geometric fraction of
the volume of each of the box-shaped cells which lies in each of
the cylindrical control volumes was  calculated. During every time
step, the volume of particles in each box-shaped cell was calculated,
utilising the cuboid approximation described earlier for smoothly
determining the volume fraction of particles which lie in multi-
ple rectangular cells (Khawaja et al., 2012). These particle volumes
were then translated to the cylindrical control volumes using the
pre-calculated geometric fractions to calculate the volume of par-
ticles in each fluid control volume. This calculation is summarised
in Eq. (8):

Vp,tot,cylindrical(r, �) =
∑

l

∑
m

(VolFrac(l, m, r, �)

·Vp,tot,Cartesian(l, m)). (8)

in which Vp,tot,Cartesian(l, m)  is the volume of particles in box (l, m),
Vp,tot,cylindrical(r, �) is the volume of particles in the cylindrical fluid
control volume (r, �) and VolFrac(l, m,  r, �) is the fraction of volume
of box (l, m)  taken up by control volume (r, �). Finally these volumes
of particles were used to calculate the voidage, ε(r, �), in each fluid
control volume, using

ε(r, �) = 1 − Vp,tot,cylindrical(r, �)
. (9)
Vcell

where Vcell is the volume of the cylindrical control volume. The
square grid method has an obvious source of inaccuracy in that a
fraction of the volume of a particle can be registered as being in a
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Fig. 2. Voidage calculation method. The particle depicted lies in two  box cells, so its
volume is divided between both of them using the cuboid approximation (Khawaja,
S
v
b

c
i
d
t
“
a
t
a
s
b
b
m
c
c
m
e
t
p
t
r

u
l
t
m
h
a
2
a
c
i
i
d
o
T
c
d
d
t

Fig. 3. Comparison of voidage calculation methods for packed bed flow. Comparison
cott, Virk, & Moatamedi, 2012). Since box cell outlined in red has portions of its
olume in fluid cells “1”, “2” and “3”, a portion of the particle’s volume is counted as
eing fluid cell “3”, even though none of its actual volume is in this cell.

ontrol volume in which the particle is not located. This can be seen
n Fig. 2, where a particle, shown as a black circle, has its volume
ivided between an upper and lower square box. The volume of
he upper box is divided between the fluid cells denoted “1” and
2”, and the volume of the lower box, highlighted in red, is divided
mong cells “1”, “2” and “3”. Thus, a small portion of the volume of
he particle is assigned to cell “3”, even though none of its volume
ctually lies in cell “3”. Hence, the square grid method involves
ome of the spatial smoothing inherent in the grouping method,
ut to a lesser extent. This technique, however, provides stability
y taking advantage of the stability inherent in the cuboid approxi-
ation developed for rectangular grids. Additionally, this method is

omputationally efficient because the computationally-expensive
alculations only take place during initialisation. The square grid
ethod would thus provide a distinct advantage in computational

fficiency when applied to unstructured grids, because the unstruc-
ured fluid cell in which particle centres, or cube fractions of
articles (given by Eq. (4)), lie would not have to be identified every
ime step. To provide a comparison, the cylindrical model was  also
un with the direct and grouping voidage calculation techniques.

The interaction force between fluid and particles was modelled
sing the drag law developed by Beetstra et al. (2007b). This drag

aw was chosen because it matched experimental results better
han other drag laws when used in a previous discrete element

odel of a fluidized bed (Müller et al., 2009); however, recent work
as suggested that further improvements may  be required for an
ccurate model of drag force (Kriebitzsch, van der Hoef, & Kuipers,
013). In order to obtain the relative velocity between the fluid
nd particles, the radial and angular velocities of the fluid were
onverted to rectangular velocities at the position of the particle of
nterest. After the interaction force was calculated for a particle
n rectangular coordinates, this force was converted into cylin-
rical coordinates and added to the cumulative interaction force
n the fluid cell in which the centre of the particle was located.
he fluid–particle interaction force was not divided between fluid

ells, since this would require much more computational time than
ividing the particle volume between fluid cells. Additionally, since
rag force is not imparted equally on a particle by fluid in all direc-
ions relative to the centre of the particle, it was expected that
of  the square grid, grouping and direct calculation methods for voidage (top) and
vertical fluid velocity (bottom) measurements in packed bed flow. The fluid grid
used is described in Setup 2 in Table 3.

having the interaction force based on the velocity of fluid in the
cell where the centre of the particle was  located would model the
interaction force relatively well.

3. Results

3.1. Comparison of voidage calculation techniques

Fig. 3 compares the three techniques for voidage calculation for
simulating steady flow of gas through a packed bed. All techniques
give approximately the same overall voidage, although that given
by the direct method appears to be the least smoothed spatially.
The square grid and grouping methods give very similar patterns
of vertical flow of fluid, with the highest velocities in the packed bed
region and lowest velocities in the freeboard. The direct method,
however, gives non-physical results for vertical velocity, showing
extreme, non-physical jumps in velocity between adjacent fluid
cells; indeed, the result for the direct method was so unstable that
the simulation failed to reach a final solution during the modelling
of steady flow in a packed bed. Fig. 3 demonstrates that a tech-
nique for calculating voidage must have a smooth transition in the
voidage calculated for a particular cell as the centres of particles
move into and out of that cell. In packed bed flow, particles barely
move, yet even small motions are capable of providing non-physical
fluid flow results in the direct method. Thus, the direct method was
not considered for modelling fluidized beds. The stability provided
by spatial smoothing for the grouping method, and division of par-
ticles among square cells in the square grid method, allows these
two techniques to give stable results for flow of fluid in a packed
bed.

Fig. 4 compares techniques for calculating voidage when sim-
ulating bubbling fluidization. The instantaneous vertical fluid
velocity and voidage predicted by the square grid and grouping

methods are compared for a situation in which a bubble is reaching
the top of the bed. Additionally, Fig. 4 compares the time-averaged
voidage and vertical fluid velocity predicted by both techniques,
averaged over a period of 2.1 s. Both techniques give similar results
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Fig. 4. Comparison of voidage calculation methods for modelling a bubbling flu-
idized bed. This figure provides a comparison of the square grid and grouping
voidage calculation methods on the basis of voidage and vertical fluid velocity for
instantaneous (top) and time-averaged (bottom) flow. For instantaneous flow, a
characteristic image of flow as a bubble reaches the surface of the bed is shown.
For time-averaged flow, the voidage and vertical fluid velocity were averaged over
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.1 s, during which time 17 bubbles passed through the system. The fluid grid used
s  described in Setup 2 in Table 3.

or instantaneous and time-averaged voidage. However, the group-
ng method does providing more spatial smoothing, as can be seen
y the lesser contrast predicted between the voidage in the inte-
ior of the bubble and the voidage at the edges of the bubble. For
nstantaneous predictions of the velocity of the fluid, the square
rid method gives the expected result for bubbling fluidization. It
ould be expected that nearly all fluid flow is directed through the

ubble with almost no flow around the sides of the bubble, due
o the low resistance to fluid flow due to drag force in the bubble.

ith a superficial gas velocity of 0.60 m/s  and the horizontal cross
ection of the bubble taking up approximately 40% of the bed, the
ow through the bubble could be expected to be roughly 1.5 m/s.

n Fig. 4a, fluid is moving fastest through the bubble, at roughly
.5 m/s, and much slower, nearly zero, around the outskirts of the
ubble. The grouping method, however, produces non-physical

nstantaneous fluid velocity results, with large changes in fluid
elocity between adjacent fluid cells. Both methods give similar,
hysically-sensible results for time-averaged vertical fluid velocity

n the bed region, yet the grouping method gives a non-physical
ncrease in velocity towards the top of the freeboard in the cen-
re of the bed. This non-physical increase further emphasises the
uperiority of the square grid method over the grouping method in
imulating bubbling fluidization.

Fig. 4 shows that stability is even more important for simu-
ating bubbling fluidization than packed bed flow, since particles

ove between fluid cells rapidly. In this case, the spatial smooth-
ng provided by the grouping method no longer provides enough
tability to give physically-sensible images of instantaneous fluid

elocity. For bubbling fluidization, physically-sensible instanta-
eous fluid velocities are only achieved by the technique of dividing
article volumes between fluid cells provided by the square grid
ethod.
Fig. 5. Fluid cell notation for a comparison of voidage method calculations with the
entire volume of all particles residing in fluid cell 1. Fluid cells 8 and 9 are vertically
below and above fluid cell 1, respectively.

3.2. Comparison of spatial smoothing provided by various
voidage calculation techniques

The spatial smoothing provided by the direct, grouping and
square-grid methods of calculating voidage was  compared by
assessing the voidage calculated on a grid with a randomly-packed
set of particles using each technique. The set of 26 particles was
selected such that the entire volume of every particle resided in
the same fluid cell, denoted “1” in Fig. 5. Thus, an ideal calculation
of voidage would determine the voidage to be unity (ε = 1) in every
other cell. In addition to comparing the direct and grouping tech-
niques, three different sizes of the square grid were compared. In
each square grid, the length of the grid cells in the vertical direc-
tion (dlz) was kept constant and equal to length (dz) of the fluid
grid cells in the vertical direction (dlz = dz).  However, the length of
the voidage cells in the horizontal direction (dlx,y) was  varied as
follows. Configuration 1 had side length equal to the length (dr)
of the fluid cells in the radial direction (dlx,y = dr = 4.4 mm). Con-
figuration 2 had side length half that of the fluid cells in the radial
direction (dlx,y = 0.5dr = 2.2 mm)  and configuration 3 had side length
just larger than the diameter of the particles (dlx,y = 1.375 mm;
dp = 1.2 mm).  The square grid voidage was calculated using both
the cuboid approximation described by Khawaja et al. (2012) to
divide particles amongst square cells as well as the exact formu-
lae for dividing particles amongst square cells, derived by Freireich
et al. (2010).

The voidage calculated in the various cells denoted in Fig. 5 for
each voidage technique is shown in Table 3. Fluid cells 8 and 9
refer to the cells vertically below and above fluid cell 1, respec-
tively. In this example, the voidage calculated by the direct method
gave ε = 0.692 in cell 1 and ε = 1 in all other cells and is exact,
because the entire volume of all 26 particles resides in cell 1. How-
ever, it is important to note that in most cases, where particles
are divided among multiple fluid cells, the direct method would
not provide an exact calculation of voidage. The grouping method
provides the most spatial smoothing, since the voidage in cell 1
is the closest to unity and the voidage in all other cells is the
furthest from unity of all of the techniques. In fact, fluid cells 1,
2, 3, 8 and 9 all have the same voidage for this example using
the grouping method, because they all share a full interface. As
expected, the voidage calculated using the square grid method has

increased accuracy and with a finer square grid in the horizontal
direction, since voidage grid cells span fewer fluid grid cells. Even
the very coarse voidage grid of configuration 1 provides slightly
less spatial smoothing than the grouping method since its voidage
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Table 3
Voidage measured in various fluid cells using the direct, grouping and square grid methods. Fig. 5 provides a diagram of the location of the different fluid cells. The entire
volume  of all particles in this example resides in fluid cell 1. Square grid length in the horizontal direction decreases with increasing configuration number. The square grid
calculation is made using both the cuboid approximation and the exact equations to calculate the division of particles amongst box cells.

Fluid cell Voidage calculated using:

Direct method Grouping method Square grid with cuboid approximation Square grid with exact division of
particles amongst square cells

Config. 1 Config. 2 Config. 3 Config. 1 Config. 2 Config. 3

1 0.692 0.956 0.907 0.796 0.755 0.907 0.795 0.752
2  1 0.956 0.949 0.966 0.971 0.949 0.966 0.972
3  1 0.956 0.940 0.962 0.978 0.938 0.961 0.977
4  1 0.982 0.995 0.997 0.999 0.998 0.998 0.999
5  1 0.991 0.981 0.991 0.996 0.981 0.991 0.997
6  1 0.974 0.982 0.990 0.998 0.982 0.991 0.998
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investigate the slug rise velocity predicted by the DEM-CFD model.
A bed was  modelled with particles of dp = 1.2 mm,  a bed diame-
ter of Dbed = 50 mm and a tapped bed height of 160 mm.  This bed
was fluidized at superficial velocities of U = 0.37, 0.425, 0.54 and
7  1 0.965 0.947 

8  1 0.956 1 

9  1 0.956 1 

easurement in cell 1 is further from unity. The voidage calculated
y the square grid with exact division of particles amongst square
ells is essentially the same as that calculated using the square grid
ethod with the cuboid approximations, showing that use of the

uboid method does not provide much excess spatial smoothing.
n all square grid techniques in this example, there is no spatial
moothing in the vertical direction (ε = 1 for cells 8 and 9) because
he voidage grid is aligned with the fluid grid in the vertical direc-
ion. If a particle did cross the vertical boundaries of the fluid cells,
ts volume would be divided between those cells fairly accurately,
ither using the cuboid approximation or the exact calculation.
he minimal smoothing in the vertical direction is important for
ccurate simulation in fluidized beds, since the largest difference
etween adjacent cells in voidage and flow field is often in the
ertical direction.

.3. Grid size for the square grid voidage technique

To simulate bubbling fluidization in a short bed, three sizes of
quare grid for calculating voidage were used, in order to assess the
ffect of grid size on the results. The three configurations of square
rid are the same as those described in Section 3.2. The system had
p = 1.2 mm particles, a bed diameter of Dbed = 44 mm and a tapped
ed height of 30 mm.  Fig. 6 shows the predicted time-averaged
oidage, fluid velocity and vertical particle velocities for the three
izes. The time-averaged results are very similar and investigation
f the instantaneous results also showed essentially no difference
mong the three simulations. This similarity indicates that the extra
patial smoothing provided by coarser square grids demonstrated
n Section 3.2, has minimal effect on the simulated results for a short
ubbling bed. However, other configurations of granular systems
ith more abrupt spatial changes in voidage, such as jetting and

pouted beds, might require finer square grids for accurate results.
dditionally, the three simulations all took about the same amount
f time to run, since computational expense was dominated by
he particle contact calculations, rather than voidage calculations.
hus, it is probably better to use fine voidage grids, with side
ength just greater than the diameter of the particles, to ensure
ccuracy without compromising speed for most granular system
onfigurations.

.4. Simulating bubbling and slugging fluidized beds with
EM-CFD model: comparison with experiments
The DEM-CFD model was used to simulate bubbling fluidization
n a short bed. Fig. 7 shows a comparison of time-averaged parti-
le velocity between the experimental magnetic resonance (MR)
easurements of Holland, Müller, Dennis, Gladden, and Sederman
0.992 0.995 0.948 0.993 0.997
1 1 1 1 1
1 1 1 1 1

(2008) and predictions from the cylindrical DEM-CFD model. The
raw DEM-CFD results were processed using a particle-based aver-
age, as described by Boyce, Holland, Scott, and Dennis (2013), in
order to match the MR  averaging procedure. The bed modelled was
the same as that described in Section 3.3 and used experimentally
by Holland et al. (2008). The square grid used to calculate local
voidage was arranged in configuration 3, described in Section 3.2.
The maps of velocities are similar in profile and magnitude, thereby
validating the DEM-CFD model.

Next, a tall, slugging fluidized bed was  simulated in order to
Fig. 6. Comparison of time averaged voidage (top), fluid velocity (middle) and ver-
tical particle velocity (bottom) for a short bubbling bed with decreasing size of the
square grid used for calculating voidage.
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F ticle velocity images from: (a) experimental MR imaging and (b) DEM-CFD simulation of
a t of 30 mm with particles 1.2 mm in diameter. The field of view for each image is 47 mm
(
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Fig. 8. DEM-CFD simulation predictions for slug rise velocity (US) for simulations
with different superficial velocities (U) above the minimum fluidization velocity

F
e
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ig. 7. Validation of 3D cylindrical model via comparison of time-average axial par
 bubbling fluidized bed. The bed was fluidized at U/Umf = 2 and had a settled heigh
z)  by 44 mm (x) and the resolution is 1.04 mm (z) by 0.94 mm (x).

.60 m/s, with Umf = 0.30 m/s  determined experimentally by Müller
t al. (2007a) and confirmed by DEM-CFD simulations in which U
as slowly decreased from above Umf until the pressure drop across

he bed began to decrease. In the simulations, bubbles formed at the
istributor and then grew and coalesced with one another until
ully formed axisymmetric slugs rose from approximately 120 mm
bove the distributor and upwards. A theoretical rise velocity for
xisymmetric slugs in fluidized beds was derived by Stewart and
avidson (1967):

S = U − Umf + 0.35
√

gDbed (10)

The average slug rise velocity predicted by the DEM-CFD sim-
lations with different superficial velocities was  calculated using
he cross-correlation method of Müller et al. (2007a). The average

ise velocity of fully formed slugs 140 mm above the distributor
alculated over 4.2 s of steady slugging is shown in Fig. 8, and com-
ared to the theory of Stewart and Davidson (1967). The DEM-CFD
redictions match those predicted by Eq. (10) very well. DEM-CFD

(Umf ). Simulation predictions (�) are compared to the theoretical rise velocity of
axisymmetric slugs (- - -) (Stewart & Davidson, 1967). A bed 50 mm in diameter
was  simulated, filled to a settled bed height of 160 mm with seed 1.2 mm in diam-
eter  with a minimum fluidization velocity of 0.30 m/s. Rise velocities of slugs were
measured 140 mm above the distributor and averaged over 4.2 s of steady slugging.

ig. 9. Use of the cylindrical DEM-CFD model to analyse the origins of pressure fluctuations in bubbling fluidized beds. The top row shows a series of voidage maps taken
very  50 ms in a 50 mm diameter bed; the middle and bottom rows show the corresponding maps of pressure drop per unit vertical distance and total pressure drop across
he  bed, respectively.
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redictions also show that the quantity (U − Umf) must be included
n the equation for slug rise velocity, in keeping with the two-phase
heory of fluidization (Davidson & Harrison, 1963) and matching a
onclusion of experimental studies of slug rise velocity by Müller
t al. (2007a), undertaken on a taller bed.

Thus far, the combination of the above comparisons between
heory and experiment suggests that the cylindrical model is
romising for predicting various properties of bubbling and slug-
ing fluidized beds. To take the use of the DEM-CFD model a step
urther, the origin of the oscillations in pressure drop across a
lugging fluidised bed was investigated. Fig. 9 shows a series of
oidage maps over time, with bubbles coalescing and a wall slug
ising in the simulated fluidized bed. In this case, a 50 mm wide
ed was used, filled with particles 1.2 mm in diameter to a tapped
eight of 110 mm.  The bed was fluidized at a superficial velocity of

 = 0.563 m/s. In addition to calculating voidage, Fig. 9 shows the
bility of the DEM-CFD to map  differential pressure drop in the z-
irection as well as overall pressure drop over time. The plots of
oidage and pressure drop over time show that the period of oscil-
ations in pressure drop matches the period of time taken for a pair
f bubbles to erupt at the top of the bed in quick succession, con-
istent with the experimental results of Müller et al. (2007b). From
he simulations, it can be seen that pressure drop across the sys-
em reaches a maximum after a large bubble followed by a smaller
ubble erupt in quick succession, leaving a tall plug of particles
ehind them at the top of the bed. There is a large local pressure
rop in this plug, inducing the maximum overall pressure drop. In
ontrast, the pressure drop reaches a minimum when only a sin-
le large bubble is rising through the system because essentially no
ressure drop across the bubble. These insights show the ability of
he model developed here, using an explicit scheme to account for
he ability of pressure waves to propagate, to investigate the inter-
ction of bubble passage and pressure fluctuations in more detail
han has hitherto been possible.

. Conclusions

The DEM-CFD model developed provides an important tool for
odelling 3D cylindrical fluidized beds with a high level of control

ver fluid grid sizing, which ensures that the conditions for using
olume-averaged fluid equations will be satisfied, whilst allowing
he fluid grid size to be fine enough in all regions so as to not miss
ey flow features. The model was validated by comparison with
xperimental MR results and well-established theory for bubbling
nd slugging beds of various heights.

The square grid methodology developed for calculating voidage
roved an effective way for accurately and stably measuring
oidage in arbitrarily-shaped control volumes. The technique
roved more stable than the direct method and more accurate
patially than the grouping method. In this paper, the square grid
echnique was used on a structured, cylindrical fluid grid, but it
ould be applied to unstructured grids. In order to use the square
rid method on an unstructured grid, the volume fraction of square
oidage grid cells which lies in the unstructured fluid grid cells
ould have to be calculated. This calculation would be complicated,

ecause it requires locating the faces of fluid grid cells in a rectan-
ular coordinate system and numerically integrating to determine
verlapping volumes between the voidage and fluid grid cells.
owever, this process would only need to be conducted at the start
f a simulation, after which the computationally-inexpensive cal-
ulations of voidage on a square grid, and translating that voidage

o an unstructured grid, could be conducted to determine voidage
t every time step. Thus, the square grid voidage technique is prob-
bly less expensive computationally for unstructured fluid grids
han the direct and grouping methods, as well as the method
ical Engineering 65 (2014) 18–27

approximating the shape of a sphere as a set of cubes. With regard
to accuracy and stability for unstructured fluid grids, the square
grid method would provide the same benefits over the direct and
grouping methods described in this paper.
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Appendix A. Fluid equations in cylindrical coordinates

In order to simulate a cylindrical geometry, the CFD code devel-
oped here used the conservative form of the volume averaged
Navier–Stokes equations (Anderson & Jackson, 1967) in cylindrical
coordinates:

∂F

∂t
+ 1

r

∂
∂r

(rCr) + 1
r

∂C�

∂�
+ ∂Cz

∂z

= ε

r

∂
∂r

(rDr) + ε

r

∂D�

∂�
+ ε

∂Dz

∂z
+ S + g + I (A.1)

where ε is the local volume-averaged voidage and the bold letters
are column vectors consisting of 4 rows, denoting the (1) conti-
nuity, (2) radial momentum, (3) angular momentum and (4) axial
momentum equations. The F matrix represents required conserved
quantities, thus:

F =

⎡
⎢⎢⎢⎣

�ε

�εUr

�εU�

�εUz

⎤
⎥⎥⎥⎦ (A.2)

where � is the local volume-averaged fluid density, and Ur, U� ,
and Uz are the radial, angular and axial components of the local
volume-averaged fluid velocity vector, respectively. The Cr, C� , and
Cz matrices represent the convective flux matrices in the radial,
angular and axial directions:

Cr =

⎡
⎢⎢⎢⎢⎣

�εUr

�εUrUr

�εU�Ur
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The Dr, D� , and Dz matrices represent the diffusive flux matrices
in the radial, angular and axial directions:

Dr =
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0
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where P is local volume averaged pressure, and 	 is the nine-
component stress tensor, in which the first subscript denotes
which direction momentum is diffusing in and the second sub-
script denotes which component of momentum is diffusing. The
differential forms of the stress tensor components are:
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here 
 and L are the viscosity and bulk viscosity, respectively and
 · U is the divergence:

 · U = 1
r

∂
∂r

(rUr) + 1
r

∂U�

∂�
+ ∂Uz

∂z
(A.11)

hich is calculated using the finite volume method. The S, g and
 matrices denote the source components due to aspects of the
ylindrical inertial reference frame, gravity and fluid–particle inter-
ction, respectively:

 =
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here the stress components in 	�� and 	�r act on the centre of
he fluid control volumes rather than the faces and Ir, Ir and Ir
epresent the radial, angular and axial components of the local
olume-averaged fluid–particle interaction force.

eferences

nderson, T. B., & Jackson, R. (1967). Fluid mechanical description of fluidized beds.
Industrial and Engineering Chemistry Fundamentals, 6(4), 527–539.

eetstra, R., van der Hoef, M.  A., & Kuipers, J. A. M.  (2007a). Drag force of intermedi-
ate Reynolds number flow past mono- and bidisperse arrays of spheres. AIChE
Journal,  53(2), 489–501. http://dx.doi.org/10.1002/aic.11065

eetstra, R., van der Hoef, M.  A., & Kuipers, J. A. M.  (2007b). Numerical study of segre-
gation using a new drag force correlation for polydisperse systems derived from
lattice-Boltzmann simulations. Chemical Engineering Science, 62(1-2), 246–255.
http://dx.doi.org/10.1016/j.ces.2006.08.054

okkers, G. A., van Sint Annaland, M.,  & Kuipers, J. A. M.  (2004). Mix-
ing and segregation in a bidisperse gas–solid fluidised bed: A numerical
and experimental study. Powder Technology, 140(3), 176–186. http://dx.
doi.org/10.1016/j.powtec.2004.01.018

oyce, C. M.,  Holland, D. J., Scott, S. A., & Dennis, J. S. (2013). Adapting data
processing to compare model and experiment accurately: A discrete element
model and magnetic resonance measurements of a 3D cylindrical fluidized
bed. Industrial and Engineering Chemistry Research, 52(50), 18085–18094.
http://dx.doi.org/10.1021/ie401896x

hiesa, M., Mathiesen, V., Melheim, J. A., & Halvorsen, B. (2005). Numerical simula-
tion of particulate flow by the Eulerian–Lagrangian and the Eulerian–Eulerian
approach with application to a fluidized bed. Computers and Chemical Engineer-
ing,  29(2), 291–304. http://dx.doi.org/10.1016/j.compchemeng.2004.09.002

hu, K. W.,  & Yu, A. B. (2008). Numerical simulation of complex particle–fluid
flows. Powder Technology, 179(3), 104–114. http://dx.doi.org/10.1016/j.
powtec.2007.06.017

hung, T. J. (2010). Computational fluid dynamics. Cambridge; New York: Cambridge
University Press.

rowe, C., Sommerfeld, M.,  & Tsuji, Y. (1998). Multiphase flows of droplets and particles
(1st ed.). Boca Raton, FL: CRC Press.

undall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for gran-
ular assemblies. Géotechnique, 29(1), 47–65. http://dx.doi.org/10.1680/geot.
1979.29.1.47

avidson, J. F., & Harrison, D. (1963). Fluidised particles. Cambridge: Cambridge Uni-
versity Press.

i Renzo, A., & Di Maio, F. P. (2007). Homogeneous and bubbling flu-
idization regimes in DEM–CFD simulations: Hydrodynamic stability of gas

and liquid fluidized beds. Chemical Engineering Science, 62(1–2), 116–130.
http://dx.doi.org/10.1016/j.ces.2006.08.009

ing, J., & Gidaspow, D. (1990). A bubbling fluidization model using kinetic
theory of granular flow. AIChE Journal, 36(4), 523–538. http://dx.doi.org/
10.1002/aic.690360404
ical Engineering 65 (2014) 18–27 27

Freireich, B., Kodam, M.,  & Wassgren, C. (2010). An exact method for determin-
ing  local solid fractions in discrete element method simulations. AIChE Journal,
56(12), 3036–3048. http://dx.doi.org/10.1002/aic.12223

Fries, L., Antonyuk, S., Heinrich, S., & Palzer, S. (2011). DEM–CFD modeling of a flu-
idized bed spray granulator. Chemical Engineering Science, 66(11), 2340–2355.
http://dx.doi.org/10.1016/j.ces.2011.02.038

Gaskell, P. H., & Lau, A. K. C. (1988). Curvature-compensated convective
transport: SMART, A new boundedness-preserving transport algorithm. Inter-
national Journal for Numerical Methods in Fluids,  8(6), 617–641. http://dx.
doi.org/10.1002/fld.1650080602

Guo, Y., Wu,  C.-Y., & Thornton, C. (2013). Modeling gas-particle two-phase flows with
complex and moving boundaries using DEM-CFD with an immersed boundary
method. AIChE Journal, 59(4), 1075–1087. http://dx.doi.org/10.1002/aic.13900

He, Y., Wang, T., Deen, N., van Sint Annaland, M.,  Kuipers, H., & Wen,
D.  (2012). Discrete particle modeling of granular temperature distribu-
tion in a bubbling fluidized bed. Particuology, 10(4), 428–437. http://dx.
doi.org/10.1016/j.partic.2012.02.001

Holland, D. J., Müller, C. R., Dennis, J. S., Gladden, L. F., & Sederman, A. J.
(2008). Spatially resolved measurement of anisotropic granular tempera-
ture in gas-fluidized beds. Powder Technology, 182(2), 171–181. http://dx.
doi.org/10.1016/j.powtec.2007.06.030

Hoomans, B. P. B., Kuipers, J. A. M.,  Briels, W.  J., & Van Swaaij, W.  P. M.  (1996).
Discrete particle simulation of bubble and slug formation in a two-dimensional
gas-fluidised bed: A hard-sphere approach. Chemical Engineering Science, 51(1),
99–118.

Khawaja, H., Scott, S., Virk, M.,  & Moatamedi, M.  (2012). Quantitative analysis of accu-
racy of voidage computations in CFD-DEM simulations. Journal of Computational
Multiphase Flows, 4(2), 183–192. http://dx.doi.org/10.1260/1757-482X.4.2.183

Kriebitzsch, S. H. L., van der Hoef, M.  A., & Kuipers, J. A. M.  (2013). Fully resolved sim-
ulation of a gas-fluidized bed: A critical test of DEM models. Chemical Engineering
Science,  91,  1–4. http://dx.doi.org/10.1016/j.ces.2012.12.038

Kuang, S. B., Yu, A. B., & Zou, Z. S. (2008). A new point-locating algorithm under three-
dimensional hybrid meshes. International Journal of Multiphase Flow, 34(11),
1023–1030. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2008.06.007

Kuipers, J. A. M.,  Van Duin, K. J., Van Beckum, F. P. H., & Van Swaaij, W.  P. M. (1993).
Computer simulation of the hydrodynamics of a two-dimensional gas-fluidized
bed. Computers and Chemical Engineering, 17(8), 839–858.

Leonard, B. P. (1979). A stable and accurate convective modelling procedure based on
quadratic upstream interpolation. Computer Methods in Applied Mechanics and
Engineering,  19(1), 59–98. http://dx.doi.org/10.1016/0045-7825(79)90034-3

Lim, E. W.  C., Wang, C.-H., & Yu, A.-B. (2006). Discrete element simulation for
pneumatic conveying of granular material. AIChE Journal,  52(2), 496–509.
http://dx.doi.org/10.1002/aic.10645

Liu, D., Bu, C., & Chen, X. (2013). Development and test of CFD–DEM model
for  complex geometry: A coupling algorithm for Fluent and DEM. Com-
puters and Chemical Engineering, 58,  260–268. http://dx.doi.org/10.1016/j.
compchemeng.2013.07.006

Liu, D., Xiao, S., Chen, X., & Bu, C. (2012). Investigation of solid mixing mechanisms
in  a bubbling fluidized bed using a DEM-CFD approach. Asia-Pacific Journal of
Chemical Engineering, 7, S237–S244. http://dx.doi.org/10.1002/apj.553

Müller, C. R., Davidson, J. F., Dennis, J. S., Fennell, P. S., Gladden, L. F., Hayhurst, A. N.,
et  al. (2007a). Oscillations in gas-fluidized beds: Ultra-fast magnetic resonance
imaging and pressure sensor measurements. Powder Technology, 177(2), 87–98.
http://dx.doi.org/10.1016/j.powtec.2007.02.010

Müller, C. R., Davidson, J. F., Dennis, J. S., Fennell, P. S., Gladden, L. F., Hayhurst, A. N.,
et  al. (2007b). Rise velocities of bubbles and slugs in gas-fluidised beds: Ultra-
fast magnetic resonance imaging. Chemical Engineering Science, 62(1–2), 82–93.
http://dx.doi.org/10.1016/j.ces.2006.08.019

Müller, C. R., Holland, D. J., Sederman, A. J., Scott, S. A., Dennis, J. S., & Gladden,
L.  F. (2008). Granular temperature: Comparison of magnetic resonance mea-
surements with discrete element model simulations. Powder Technology, 184(2),
241–253. http://dx.doi.org/10.1016/j.powtec.2007.11.046

Müller, C. R., Scott, S. A., Holland, D. J., Clarke, B. C., Sederman, A. J., Dennis, J.
S.,  et al. (2009). Validation of a discrete element model using magnetic res-
onance measurements. Particuology, 7(4), 297–306. http://dx.doi.org/10.1016/
j.partic.2009.04.002

Stewart, P. S. B., & Davidson, J. F. (1967). Slug flow in fluidised beds. Powder Technol-
ogy,  1(2), 61–80. http://dx.doi.org/10.1016/0032-5910(67)80014-7

Tagami, N., Mujumdar, A., & Horio, M.  (2009). DEM simulation of polydis-
perse systems of particles in a fluidized bed. Particuology, 7(1), 9–18.
http://dx.doi.org/10.1016/j.partic.2008.11.008

Tsuji, Y., Kawaguchi, T., & Tanaka, T. (1993). Discrete particle simulation of two-
dimensional fluidized bed. Powder Technology, 77(1), 79–87.

Tsuji, Y., Tanaka, T., & Ishida, T. (1992). Lagrangian numerical simulation of plug flow
of  cohesionless particles in a horizontal pipe. Powder Technology, 71(3), 239–250.
http://dx.doi.org/10.1016/0032-5910(92)88030-L

Wu,  C. L., Zhan, J. M., Li, Y. S., Lam, K. S., & Berrouk, A. S. (2009). Accurate
void fraction calculation for three-dimensional discrete particle model on
unstructured mesh. Chemical Engineering Science, 64(6), 1260–1266. http://dx.
doi.org/10.1016/j.ces.2008.11.014

Xiong, Q., Li, B., Zhou, G., Fang, X., Xu, J., & Wang, J. (2012). Large-scale DNS

of  gas–solid flows on Mole-8.5. Chemical Engineering Science, 71,  422–430.
http://dx.doi.org/10.1016/j.ces.2011.10.059

Zeilstra, C., van der Hoef, M. A., & Kuipers, J. A. M. (2008). Simulation of
density segregation in vibrated beds. Physical Review E, 77(3) http://dx.
doi.org/10.1103/PhysRevE.77.031309

http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0005
dx.doi.org/10.1002/aic.11065
dx.doi.org/10.1016/j.ces.2006.08.054
dx.doi.org/10.1016/j.powtec.2004.01.018
dx.doi.org/10.1016/j.powtec.2004.01.018
dx.doi.org/10.1021/ie401896x
dx.doi.org/10.1016/j.compchemeng.2004.09.002
dx.doi.org/10.1016/j.powtec.2007.06.017
dx.doi.org/10.1016/j.powtec.2007.06.017
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0040
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0040
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0040
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0040
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0040
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0040
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0040
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0040
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0040
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0040
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0045
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0045
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0045
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0045
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0045
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0045
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0045
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0045
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0045
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0045
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0045
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0045
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0045
dx.doi.org/10.1680/geot.1979.29.1.47
dx.doi.org/10.1680/geot.1979.29.1.47
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0055
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0055
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0055
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0055
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0055
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0055
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0055
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0055
dx.doi.org/10.1016/j.ces.2006.08.009
dx.doi.org/10.1002/aic.690360404
dx.doi.org/10.1002/aic.690360404
dx.doi.org/10.1002/aic.12223
dx.doi.org/10.1016/j.ces.2011.02.038
dx.doi.org/10.1002/fld.1650080602
dx.doi.org/10.1002/fld.1650080602
dx.doi.org/10.1002/aic.13900
dx.doi.org/10.1016/j.partic.2012.02.001
dx.doi.org/10.1016/j.partic.2012.02.001
dx.doi.org/10.1016/j.powtec.2007.06.030
dx.doi.org/10.1016/j.powtec.2007.06.030
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0100
dx.doi.org/10.1260/1757-482X.4.2.183
dx.doi.org/10.1016/j.ces.2012.12.038
dx.doi.org/10.1016/j.ijmultiphaseflow.2008.06.007
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0120
dx.doi.org/10.1016/0045-7825(79)90034-3
dx.doi.org/10.1002/aic.10645
dx.doi.org/10.1016/j.compchemeng.2013.07.006
dx.doi.org/10.1016/j.compchemeng.2013.07.006
dx.doi.org/10.1002/apj.553
dx.doi.org/10.1016/j.powtec.2007.02.010
dx.doi.org/10.1016/j.ces.2006.08.019
dx.doi.org/10.1016/j.powtec.2007.11.046
dx.doi.org/10.1016/j.partic.2009.04.002
dx.doi.org/10.1016/j.partic.2009.04.002
dx.doi.org/10.1016/0032-5910(67)80014-7
dx.doi.org/10.1016/j.partic.2008.11.008
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
http://refhub.elsevier.com/S0098-1354(14)00051-9/sbref0175
dx.doi.org/10.1016/0032-5910(92)88030-L
dx.doi.org/10.1016/j.ces.2008.11.014
dx.doi.org/10.1016/j.ces.2008.11.014
dx.doi.org/10.1016/j.ces.2011.10.059
dx.doi.org/10.1103/PhysRevE.77.031309
dx.doi.org/10.1103/PhysRevE.77.031309

	Novel fluid grid and voidage calculation techniques for a discrete element model of a 3D cylindrical fluidized bed
	1 Introduction
	2 Theory: cylindrical fluidised bed model
	2.1 Discrete element model
	2.2 Computational fluid dynamics
	2.3 Linkage between fluid and particles

	3 Results
	3.1 Comparison of voidage calculation techniques
	3.2 Comparison of spatial smoothing provided by various voidage calculation techniques
	3.3 Grid size for the square grid voidage technique
	3.4 Simulating bubbling and slugging fluidized beds with DEM-CFD model: comparison with experiments

	4 Conclusions
	Acknowledgments
	Appendix A Fluid equations in cylindrical coordinates
	References


