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The 150 kbp genome of equine herpesvirus-1 (EHV-1) is composed of a unique long (UL) region and a unique
short (Us) segment, which is flanked by identical internal and terminal repeat (IR and TR) sequences of
12.7 kbp. We constructed an EHV-1 lacking the entire IR (vL11ΔIR) and showed that the IR is dispensable for
EHV-1 replication but that the vL11ΔIR exhibits a smaller plaque size and delayed growth kinetics. Western
blot analyses of cells infected with vL11ΔIR showed that the synthesis of viral proteins encoded by the
immediate-early, early, and late genes was reduced at immediate-early and early times, but by late stages of
replication reached wild type levels. Intranasal infection of CBA mice revealed that the vL11ΔIR was
significantly attenuated as mice infected with the vL11ΔIR showed a reduced lung viral titer and greater
ability to survive infection compared to mice infected with parental or revertant virus.
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Introduction

Equine herpesvirus-1 (EHV-1) is a member of Genus Varicellovirus
within the Alphaherpesvirinae subfamily. Its genome of 150 kbp (Telford
et al., 1992) is comprised of a unique long (UL) region covalently linked to
a short (S) region that is organized as a unique short segment (Us)
bracketed by a pair of identical internal repeat (IR) and terminal repeat
(TR) sequences (Henry et al., 1981; Ruyechan et al., 1982; Whalley et al.,
1981). Each inverted repeat harbors six genes (IR1 to IR6) andaportionof
the Us1 (gene 68) gene. The IR1 gene encodes the sole IE protein that
governs early and some late gene expression and downregulates its own
expression (Caughman et al., 1985; Harty et al., 1990; Smith et al., 1992,
1993). The early IR2 gene is locatedwithin the IE (IR1) ORF and generates
the IR2protein (IR2P) that strongly downregulates expressionof all genes
as a potent negative regulator (Kim et al., 2006). The IR3 gene, unique to
EHV-1, is trans-activated by the IE protein (IEP), EICP0 protein (EICP0P)
and IR4 protein (IR4P) and produces a non-coding 1 kb late transcript
(Ahn et al., 2007; Holden et al., 1992a) that downregulates expression of
the IE gene in a luciferase reporter system (Ahn et al., 2010). The early
regulatory IR4P cooperates with the IEP to enhance expression of early
and late viral genes (Holden et al., 1995) and comprises themajor portion
of the IR4/UL5 hybrid protein encoded by defective interfering particles
(DIP) that can cause persistent EHV-1 infection (Chen et al., 1996, 1999;
Ebner et al., 2008; Ebner and O'Callaghan, 2006). The IR5 gene encodes a
late 236 amino acid protein that exhibits homology to the ORF64 protein
of varicella-zoster virus and the Us10 protein of herpes simplex virus 1
(Holden et al., 1992b), the latter being a tegument phosphoprotein that
copurifies with the nuclear matrix (Yamada et al., 1997). The IR6 early
gene unique to EHV-1 and its close relative EHV-4 encodes a 33 kDa
phosphoprotein that functions in nuclear egress and viral cell-to-cell
spread (Breeden et al., 1992; O'Callaghan et al., 1994; Osterrieder et al.,
1998) and is amajor determinant of virulence (Osterrieder et al., 1996b).
Lastly, 631 bp of the 3′ end of the EHV-1 Us1 ORF (a homolog of HSV-1
Us2) extend into the IR, and the Us1 and IR6 transcripts are 3′ coterminal
(Breeden et al., 1992).

Manipulation of gene(s) within either inverted repeat segment has
been shown to be elusive because alterations of sequences within one
repeat are repaired by homologous recombination events involving
identical sequences within the other inverted repeat (Ahn et al., 2010;
Boldogkoi et al., 1998). We conducted experiments to ascertain if one
set of the six diploid genes in the inverted repeat may be dispensable
for EHV-1 replication so that the EHV-1 genome may be simplified for
genetic manipulation of these six genes in the S region. Here we
present findings that an EHV-1 lacking the entire 12.7 kbp inverted
repeat was capable of replication both in cell culture and in the
murine model of EHV-1 infection, but exhibited delayed growth
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kinetics, decreased virulence in vivo, and delayed protein expression
of representative viral genes as compared to the parental EHV-1.

Results

The 12.7 kbp IR sequence of EHV-1 is dispensable for replication

The presence of six diploid genes within the identical IR and TR
segments (Henry et al., 1981; Ruyechan et al., 1982; Whalley et al.,
1981) of the EHV-1 genome suggested the possibility that one repeat
segment may be dispensable for viral replication without altering the
biological properties of the virus. Thus, we deleted the entire IR of the
EHV-1 genome using GalK technology (Ahn et al., 2010; Rudolph et al.,
2002;Warming et al., 2005), and characterized vL11ΔIR reconstituted
from the recombinant BAC in cell culture. As shown in Fig. 1A,
12,715 bp of the EHV-1 genome that includes the entire IR and an
additional 1 bp of the UL sequence were deleted. The removal of the
entire IR also resulted in deletion of 631 bp of the Us1 gene (gene 68)
that extends into the IR as shown in Fig. 1A (Breeden et al., 1992).
Replacement of the entire IR with the GalK marker was confirmed by
PCR amplification of two junction regions between the GalK marker
and the EHV-1 genomic sequences at the UL terminus and the start of
the Us segment (Fig. 1A). PCR analyses indicated that the expected
sizes of amplicons were observed from pL11ΔIR-GalK (Fig. 1B, lanes 1
Fig. 1. EHV-1RacL11genomic structure anddeletionof the12.7 kbp IR segment confirmed
by PCR analysis. (A) RacL11 EHV-1 genomic structure based on the DNA sequence of the
Ab4 EHV-1 (Telford et al., 1992). IR and TR are the internal repeat and terminal repeat
segments, respectively. UL is the unique long region, and Us is the unique short segment
within the Short region. The entire IR within sequences 112934 bp to 125649 bp was
removed by GalK positive selection followed by GalK counter selection as described in
Materials andmethods. (B) PCR confirmation of the insertion of the GalKmarker. PCRwith
primer sets specific to the GalK marker flanking sequences detected the predicted 1 kb
(lane 1) and 2.4 kb (lane 3) fragments, respectively, from pL11ΔIR-GalK, but not from
pRacL11. M=size markers. (C) PCR confirmation of the removal of the GalK marker from
pL11ΔIR-GalK. PCR with a primer set specific to IR flanking sequences detected the
predicted 2.7 kb fragment (lane 2) from pL11ΔIR-GalK and the predicted 1.4 kb fragment
(lane 3) from pL11ΔIR. (D) PCR confirmation of the restored IR in pL11ΔIRR. PCR with
primer sets specific to IRandUL junction regionor to the IR andUS junction regiondetected
the predicted sizes of amplicons from pL11ΔIRR (Fig. 1D, lanes 1 and 3), but not from
pL11ΔIR-GalK (Fig. 1D, lanes 2 and 4).
and 3), but not from pRacL11 (Fig. 1B, lanes 2 and 4). Removal of the
GalK marker from pL11ΔIR-GalK was confirmed by PCR amplification
of the GalK marker flanking sequence (Fig. 1C, lanes 2 and 3) and DNA
sequence analysis of PCR amplicons (data not shown). Replacement of
the entire IR with the GalK marker from pL11ΔIR-GalK was confirmed
by the PCR amplification of IR junction sequences and DNA sequence
analysis (data not shown). Primer sets specific to UL (or Us) and IR
sequence amplified the expected sizes of PCR amplicons from
pL11ΔIRR (Fig. 1D, lanes 1 and 3), but not from pL11ΔIR-GalK
(Fig. 1D, lanes 2 and 4). Deletion and recovery of the IR were further
examined by BamHI digestion and Southern blot analyses. The BamHI
digestion pattern showed that an additional band of approximately
10 kb in size was observed in the case of pL11ΔIR-GalK (Fig. 2A, lane
2), but pL11ΔIR lacking the 1.2 kb GalK marker showed an
approximate 8.8 kb fragment instead of a 10 kb fragment (Fig. 2A,
lane 3). The pL11ΔIRR showed a BamHI digestion pattern identical to
that of pRacL11 (Fig. 2A, lanes 1 and 4).

To confirm that the pL11ΔIR-GalK harbored the GalKmarker in the
proper location, that pL11ΔIR lacks the GalKmarker, and that the GalK
marker from pL11ΔIR-GalK was replaced with the entire IR sequence,
Southern blot analyses were performed using BamHI digested BAC
DNAs (pRacL11, pL11ΔIR-GalK, pL11ΔIR, and pL11ΔIRR) and a
radiolabelled GalK marker PCR fragment as the probe. These analyses
showed that the GalKmarker probe bound only to one fragment of the
BamHI digested pL11ΔIR-GalK DNA (Fig. 2B, lane 2), but not to any
band of pRacL11 used as the control (Fig. 2B, lane 1), pL11ΔIR (Fig. 2B,
lane 3), or pL11ΔIRR (Fig. 2B, lane 4), indicating that the entire IR of
the pRacL11 was correctly replaced with the GalK marker, that the
GalK marker was removed in the final pL11ΔIR, and that the entire IR
was restored in pL11ΔIRR. Once the deletion and restoration of the
entire IR were confirmed, the recombinant vL11ΔIR and vL11ΔIRR
viruses were generated by cotransfection of pL11ΔIR (or pL11ΔIRR)
DNA and a plasmid containing the EHV-1 Us4 gene (gene 71)
(Rudolph et al., 2002). Successful reconstitution of vL11ΔIR cloned
DNA indicated that the IR deletion virus was replication competent,
but plaque assays showed that the plaque areas of vL11ΔIR were
significantly reduced compared to those of parental RacL11 and
vL11ΔIRR (pb0.0001, Figs. 3A and B). To exclude the possibility that
the entire IR was restored by the TR segment during serial virus
passage in RK13 cells, the IR flanking region of the vL11ΔIR genome
was PCR-amplified by a primer set specific for the IR flanking
sequences. PCR amplicons of the same size were generated from
Fig. 2. BamHI digestion patterns and Southern blot analysis to document construction of
ΔIR EHV-1. (A) BamHI digested pRacL11, pL11ΔIR-GalK, pL11ΔIR, and pL11ΔIRR DNAs
were separated on a 0.8% agarose gel. Black arrows indicate marker sizes. M=size
markers. (B) Southernblot analysis. BamHIdigestedpRacL11, pL11ΔIR-GalK, pL11ΔIR, and
pL11ΔIRR DNAs separated on a 0.8% agarose gel were transferred onto a membrane, and
the presence and absence of GalKmarker in EHV-1 BACDNAswere examined by Southern
blot using a probe specific to the GalK marker as described in Materials and methods.
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Fig. 3. Plaque morphology and relative plaque size of parental RacL11 EHV-1, vL11ΔIR, and vL11ΔIRR. (A) Representative plaque morphology in RK13 cells of parental virus, the
IR-deleted vL11ΔIR, and the IR-restored vL11ΔIRR. (B) Relative plaque size. The plaque sizes were measured by using the ImageJ software program (http://www.rebweb.nih.
gov/ij/). Bars represent means of 60 plaques of each virus; error bars represent standard deviations.
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both pL11ΔIR (Fig. 4A, lane 1) and DNA derived from vL11ΔIR-
infected RK13 cells (Fig. 4A, lane 3). However, no amplicon was
detected in DNA prepared from pRacL11 (Fig. 4A, lane 2) or from
RacL11-infected RK13 cell DNA (Fig. 4A, lane 4), indicating that the IR
segment was not repaired by recombination events with TR
sequences during vL11ΔIR replication in RK13 cells. To address
whether the IR sequences restored in the revertant virus were
functionally similar to parental virus with respect to gene expression,
synthesis of the IEP was examined in the various viruses. IEP
expression levels of both parental RacL11 and vL11ΔIRR viruses
Fig. 4. Characterization of the vL11ΔIR genome and IE protein expression in cells infectedwit
PCR amplification with a primer set specific to IR flanking sequences was performed as descri
DNA, DNA of RK13 cells infected with vL11ΔIR, pRacL11 DNA, and DNA of RK13 cells infected
with RacL11 EHV-1 (lanes 3, 5, and 7) or vL11ΔIRR (lanes 4, 6, and 8). Detection of the IEP w
mock-infected cells, respectively.
were similar at immediate-early, early, and late times of replication
(Fig. 4B), results that indicated that the IR was completely restored in
vL11ΔIRR.

Cellular tropism and growth kinetics of vL11ΔIR

Even though the IR was not essential for EHV-1 replication, there
remained the possibility that the cellular tropism of vL11ΔIR may
differ from that of the parental virus. Our recent studies had revealed
that a mutant EHV-1 in which both copies of the IR4 gene were absent
h vL11ΔIRR. (A) Confirmation of the absence of the GalKmarker in the vL11ΔIR genome.
bed inMaterials andmethods. Lane 1, 2, 3, and 4 indicate the DNA templates of pL11ΔIR
with RacL11, respectively. (B) Comparison of the IEP expression in RK13 cells infected

as performed as described in Materials and methods. Lanes 1 and 2 indicate marker and
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Fig. 5. Tropism of vL11ΔIR in various cell types. Monolayer cultures of each of the five
cell types were infected with vL11ΔIR or RacL11 EHV-1 at a moi of 1. After a 2 h virus
attachment at 37 °C, the infected cells were washed with PBS followed by adding equal
volumes of growth medium. At 72 hpi, samples were harvested and titered by plaque
assay as described in Materials and methods. Error bars indicate standard deviations.
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was capable of replication in equine NBL-6 cells, but, unlike its parent
virus, was not capable of replication in mouse, rabbit, monkey, or
human cells (Breitenbach et al., 2009). These observations suggested
that the deletion of the entire IRmay affect the biological properties of
EHV-1. Investigation of the cellular tropism and replication of EHV-1
showed that vL11ΔIR like the parental RacL11 was capable of
replicating in all five cell types tested but the vL11ΔIR replicated
with significantly reduced titers when compared with parental virus
and the revertant virus in all cell types examined (all p values were
b0.05; Fig. 5). The growth kinetics of vL11ΔIR was analyzed in RK13
cells by examining intracellular and extracellular viral titers at various
Fig. 6. Growth kinetics of parental, vL11ΔIR and vL11ΔIRR, and quantitative real time PCR. R
extracellular viruses were harvested at the indicated times post infection and titered as desc
(C) Quantitative real time PCR. RK13 cells were infected with RacL11, vL11ΔIR and vL11ΔIR
washing. Total DNAs were extracted from virus infected RK13 cells, and the relative numb
indicate standard deviations. P values were P=0.54 for vL11ΔIR and RacL11 and P=0.56 f
times after infection (Figs. 6A and B). Overall, growth of the vL11ΔIR
was impaired as compared to that of the RacL11 as its replication
exhibited a lag in reaching maximal titer. Both viruses reached
maximal titers at 18 to 24 h post infection, but the titer of the RacL11
and vL11ΔIRR exceeded that of the vL11ΔIR by more than one log.

To examine whether the delayed growth of vL11ΔIR is due to an
impaired ability of the mutant virus in entry/penetration, cell-
associated viral DNA was quantified by real time PCR after the
parental virus, vL11ΔIR, and the revertant virus were incubated with
RK cells for a 2 h attachment period at 4 °C followed by a 30-minute
incubation period at 37 °C. Comparison of Ct values of the RacL11,
vL11ΔIR, and vL11ΔIRR DNAs revealed no significant difference
(Fig. 6C). All p values were greater than P=0.50, suggesting that
the delayed growth of vL11ΔIR is due to a reduced rate of replication
rather than impaired virus entry/penetration.

Protein expression of the IE and representative early and late genes was
delayed in vL11ΔIR-infected cells

The change of phenotype and the delayed growth kinetics of
vL11ΔIR suggested that the deletion of the IR may affect viral gene
regulation such that proteins encoded by IR genes would be decreased
in cells infected with the IR deleted virus. Therefore, we compared
protein expression of the IE and representative early (IR4, EICP0, and
UL5), and late (gD) genes in cells infected with wt EHV-1 and the IR
deleted virus. The IE protein (IEP) was detected at 4 hpi in cells
infected with either virus (Fig. 7A, lanes 3 and 4), but the amount of
the IEP was significantly greater in cells infected with parental RacL11
EHV-1 until 6 hpi (Fig. 7A lanes 5 and 6). However, by late times of
infection, the amount of the IEP was similar in cells infected with
either virus (Fig. 7A lanes 7 and 8). In the case of the EHV-1 early gene
products, a similar pattern was observed at early times after infection
K13 cells were infected with the respective virus at an moi of 0.2, and intracellular and
ribed in Materials and methods. (A) Intracellular viral titer. (B) Extracellular viral titer.
R at an moi of 10 followed by incubation at 4 °C for 2 h and at 37 °C for 30 min, and PBS
er of viral genomes was quantified as described in Materials and methods. Error bars
or vL11ΔIR and vL11ΔIRR.
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Fig. 7. Comparison of the expression of viral immediate-early, early, and late proteins in RK13 cells infected with RacL11 EHV-1 or vL11ΔIR by western blot analyses. Lane 1: protein
markers; lane 2: mock-infected RK13 cells; lanes 3, 5 and 7: RacL11-infected RK13 cells; and lanes 4, 6 and 8: vL11ΔIR-infected RK13 cells. GAPDH was used to normalize protein
loading. RK13 cells were infected with RacL11 EHV-1 or vL11ΔIR at a moi of 5, whole cell lysates were prepared, and viral proteins were detected as described in Materials and
methods. Detection of (A) the immediate-early protein; (B) the early IR4 protein; (C) the early EICP0 protein; (D) the early UL5 protein; and (E) the late glycoprotein D.
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(4 and 6 hpi), and there was reduced synthesis of the early viral
proteins in cells infected with the IR deleted virus. However, by late
times (12 hpi), the amounts of early proteins were similar in cells
infected with either parental or IR-deleted virus. The pattern of
delayed early protein synthesis is shown for the early regulatory
proteins IR4P (Fig. 7B), EICP0P (Fig. 7C) and UL5P (Fig. 7D). Lastly, the
synthesis of a late EHV-1 gene product, glycoprotein D, was also
reduced in cells infected with the vL11ΔIR when compared to cells
infected with parental virus (Fig. 7E). Therefore, these experiments
showed that there was an overall delay in EHV-1 protein synthesis in
cells infected with a virus mutant that harbored only one copy of the
short region 12.7 kbp repeat sequence.

vL11ΔIR EHV-1 exhibited decreased virulence in CBA mice

Finally, experiments were carried out to determine if the deletion
of the IR affected virulence in the well-characterized CBA mouse
model of EHV-1 pathogenesis (Frampton et al., 2002; O'Callaghan and
Osterrieder, 2008; Osterrieder et al., 1996b; Smith et al., 2005; von
Einem et al., 2004). CBA mice infected intranasally with RacL11,
vL11ΔIR, or vL11ΔIRR showed clinical signs of huddling, ruffled fur,
lethargy, and significant loss of body weight from 2 dpi whereas
mock-infected control mice continued to gain weight and showed no
clinical signs throughout the observation period (Fig. 8A). Mice
infected with either RacL11, vL11ΔIR, or vL11ΔIRR lost 20% or more of
total body weight by 3 dpi. Overall comparison of body weight loss of
the three mouse groups infected with RacL11, vL11ΔIR, or vL11ΔIRR
showed there was no significant difference (pN0.8). Mortality was
observed in all groups of mice, and 100% (9 of 9), 11% (1 of 9), and 89%
(8 of 9) of mice infectedwith parental EHV-1, IR-deleted virus, and IR-
restored virus, respectively, succumbed to infection. Differences in the
virulence among RacL11, vL11ΔIR and vL11ΔIRR were examined by
monitoring the percent survival as shown in Fig. 8B. Survival curve
comparisons showed that survival following infection with the
RacL11 (or vL11ΔIRR) and vL11ΔIR was significantly different
(pb0.008), indicating that the deletion of the IR led to decreased
virulence of EHV-1 in this animal model. Lung virus titers of mice
necropsied at various days post infection were approximately 10-fold
higher in the case of mice infected with the parental virus and
vL11ΔIRR virus when compared to those of animals infected with the
vL11ΔIR (Fig. 8C). Similarly, high virus titers were seen in the case of
lungs of mice that had succumbed to infection with wt and IR-
restored EHV-1 (Fig. 8D). Overall, the animal studies revealed that
absence of the IR sequence attenuated EHV-1 virulence in the mouse,
and also reduced the ability of themutant virus to replicate in the lung
to high titers.

Discussion

Sequence arrangement of the EHV-1 genome (Henry et al., 1981;
O'Callaghan and Osterrieder, 2008; Ruyechan et al., 1982; Whalley et
al., 2007) is classified as group D of herpesviruses that have sequences
at one terminus which are repeated in an inverted orientation
internally (Roizman, 1996; Roizman and Pellet, 2001). Such a
structure is observed for the genomes of several members of the
Alphaherpesvirinae subfamily, including human herpesvirus 3 (vari-
cella-zoster virus), bovine herpesvirus 1, suid herpesvirus 1, gallid
herpesvirus 1, equine herpesvirus 3, and equine herpesvirus 4
(Roizman, 1996; Roizman and Pellet, 2001). Herpesviruses are
currently being engineered such that they may be considered for
use as gene therapy vectors and development of recombinant
vaccines (Rosas et al., 2008; Srinivasan et al., 2008; Yokoyama et al.,
2009). Manipulation of the genome, such as the introduction or
deletion of gene(s), can be carried out by homologous recombination
utilizing full-length infectious genomes established as BACs in E. coli
(Rudolph et al., 2002; Tischer et al., 2006). In herpesvirus genomes,
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Fig. 8. Percentage change in body weight and percent survival of mock infected mice and mice infected with RacL11, vL11ΔIR, or vL11ΔIRR, and EHV-1 titers of mouse lungs. Mice
were intranasally inoculated with sterile medium as control or infected with 1×106 PFU of RacL11 EHV-1, vL11ΔIR, or vL11ΔIRR, and total virus was isolated from mouse lungs as
described in Materials and methods. Body weight was measured daily, and the Student's-t test was used to compare measurements of body weight between groups. Error bars
indicate standard deviations. (A) Percentage change in body weight of control CBA mice (n=5) or mice infected with RacL11 (n=9), vL11ΔIR (n=9), or vL11ΔIRR (n=9).
(B) Percent survival of mock infected mice (n=5), and mice infected with RacL11 EHV-1 (n=9), vL11ΔIR (n=9), or vL11ΔIRR (n=9). (C) Viral titers from lungs of live mice
infected with RacL11 EHV-1 (n=3, black bars), vL11ΔIR (n=3, empty bars), or vL11ΔIRR (n=3, gray bars) at days 2, 3, and 4 post infection. (D) Viral titers of lungs frommice that
succumbed to infection with RacL11 (black bars), vL11ΔIR (empty bars), or vL11ΔIRR (gray bars). The number of mice that succumbed at each day during 3 dpi to 5 dpi are n=4 (bar
1), n=5 (bar 2), n=1 (bar 3), n=4 (bar 4), n=1 (bar 5), and n=3 (bar 6).
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the presence of repeat sequences makes manipulation of some genes
difficult, because deletion of a diploid gene may be rescued by the
same gene located in the other repeat (Ahn et al., 2010; Boldogkoi et
al., 1998). Therefore, it would be preferable to manipulate viruses
such that the viral genome presents a simplifier structure but retains
the ability to replicate and its major biological properties.

Here, we deleted the entire IR from the EHV-1 genome and
characterized the biological properties of the resulting virus in cell
culture and a small animal model. Deletion of the EHV-1 ~13 kbp IR
revealed that one repeat is dispensable for virus replication,
suggesting that construction of such a deleted virus is also possible
for related herpesviruses with a genome that can assume one of two
isomeric conformations. In addition, such a deletion mutant may be
employed to accommodate the insertion and expression of foreign
gene(s) that total to at least 13 kbp. The findings that the vL11ΔIR
showed reduced plaque size and delayed growth in RK13 cells clearly
suggest that the deletion of sequences including the genes within the
IR affects the biological properties of EHV-1 in cell culture. Previous
studies showed that the EHV-1 Us4, Us6, Us7, UL6, UL10, and UL20
gene products are involved in cell-to-cell spread of virus and virus
egress (Frampton et al., 2002; Guggemoos et al., 2006; Neubauer and
Osterrieder, 2004; Osterrieder et al., 1996a; von Einem et al., 2004),
but none of these genes is located within sequences deleted here. The
smaller plaque size and delayed growth of vL11ΔIR as compared to
the parent virus may be explained by the roles of EHV-1 major
regulatory genes IE and IR4 that are located within both inverted
repeats (Grundy et al., 1989; Holden et al., 1994; Telford et al., 1992).
The IEP as the essential sole immediate-early gene product trans-
activates early and some late genes independently or synergistically
with the IR4P (Garko-Buczynski et al., 1998; Holden et al., 1995;
Smith et al., 1992). Therefore, loss of one copy of the diploid IE and IR4
genes could delay the progress of the EHV-1 gene expression program
and result in reduced plaque size and delayed growth kinetics,
possibly because protein levels are reduced. Indeed, there was a delay
in the accumulation of viral gene products of all three classes in cells
infected with the IR mutant virus (Fig. 7).

It has been known that EHV-1 exhibits a broad host range and
replicates in a variety of cell types (O'Callaghan and Osterrieder, 2008;
Trapp et al., 2005).Whalley et al. showed that EHV-4, although closely
related to EHV-1, has very limited cellular tropism that could be
broadened when the EHV-4 gD gene was replaced with the EHV-1
homolog (Whalley et al., 2007). That the tropism of vL11ΔIR was
identical to that of the parental virus in the five cell types tested was
interesting because our recent studies with an EHV-1 mutant deleted
of both copies of the IR4 gene showed a major change in its tropism as
compared to that of the wt EHV-1 (Breitenbach et al., 2009). Thus, a
single copy of this auxiliary regulatory gene was sufficient for vL11ΔIR
to replicate in the five cell types.

The virulence of EHV-1 in the CBA mouse model is well
characterized by body weight loss and a significant mortality rate
due to a massive inflammatory reaction in the lung mediated by the
induction of cytokine/chemokine responses (Frampton et al., 2002;
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O'Callaghan and Osterrieder, 2008; Smith et al., 2005). Previous
studies showed that the gp2 protein encoded by the Us4 gene is a
major EHV-1 virulence factor and that mutation of this gene
attenuated the virus but did not inhibit virus replication in the
murine lung (Frampton et al., 2002; Smith et al., 2005). However,
deletion of both copies of the IR4 regulatory gene abolished EHV-1
virulence in the CBA mouse because the ΔIR4 mutant failed to
replicate in themouse lung (Breitenbach et al., 2009). Our finding that
the vL11ΔIR was less virulent than the parental virus as judged by
overall mortality was attributed to the inability of this ΔIR mutant to
replicate to high titers in the murine lung. Whereas the EHV-1mutant
virus lacking both copies of the IR4 gene was completely avirulent
(Breitenbach et al., 2009), the ΔIR virus that harbors and expresses
one copy of the IR4 gene and one copy of the IR6 gene, a known
determinant of virulence (Osterrieder et al., 1996b), could replicate in
the mouse respiratory system and elicit a fatal outcome in a small
percentage of the animals.

As noted (Roizman, 1996; Roizman and Pellet, 2001), herpesvirus
genomes are classified into groups A to F with regard to their
structural properties such as the number and location of repeat and
inverted sequences and ability to exist in one, two or four isomeric
arrangements. Herpesviruses such as EHV-1 (Henry et al., 1981;
O'Callaghan and Osterrieder, 2008; Whalley et al., 2007) with
genomes of group D have a fixed long region covalently linked to a
short genomic region comprised of a pair of inverted repeat sequences
that bracket the unique short segment. To our knowledge, this paper
is the first report that describes a mutant herpesvirus of group D that
lacks the entire internal inverted repeat and has as a consequence a
genome that can only exist as a single isomer. Previous reports on the
organization of the genome of herpes simplex virus 1 mutants by
Roizman et al. (Jenkins and Roizman, 1986; Poffenberger and
Roizman, 1985; Poffenberger et al., 1983) and a recent report (Sauer
et al., 2010) describing a genomic mutant of human cytomegalovirus
showed that these group E genomes that normally are composed as
equal amounts of four isomers can exist in a single isomeric
arrangement that fails to invert. These mutant forms of the genomes
of HSV-1 and CMV and now EHV-1 that fail to undergo isomerization
are capable of replication in cell culture with an efficiency similar to
that of wild type virus. However, the v11LΔIR mutant exhibited a
significant reduction in pathogenicity in themouse, and these findings
are similar to the situation with the noninverting HSV-1 mutant that
was found to be profoundly attenuated in vivo (Jenkins et al., 1996;
Jenkins and Martin, 1990).

Since the vL11ΔIR has reduced virulence in vivo, it would be of
interest to ascertain if this mutant virus has the ability to spread to the
central nervous system and/or establish latency in the natural host.
Whatever its biological phenotype may be in the horse in vivo, the
simplified genomic structure of the vL11ΔIR should enhance the
manipulation of the six genes in the inverted repeat of the EHV-1
genome. Also, this virus with a truncated genome of ~137 kbp may
prove to be a useful tool for delivery of foreign genes and/or
development of a recombinant vaccine to combat EHV-1 infections
in the equine.
Materials and methods

Cell culture and viruses

Mouse L-M, rabbit RK13, equine NBL-6, monkey Vero, and human
HeLa cells used for viral propagation were maintained with Eagle's
minimal medium supplemented with 100 U of penicillin/ml, 100 μg of
streptomycin/ml, nonessential amino acids, and 5% (or 10%) fetal
bovine serum. The pathogenic RacL11 EHV-1 strain (RacL11)was used
as the parental virus in our studies (Ahn et al., 2007; Ahn et al., 2010;
Breitenbach et al., 2009).
Construction of plasmids

PCR products were amplified using Accuprime pfx polymerase
(Invitrogen, Carlsbad, CA), pRacL11 EHV-1 BAC (pRacL11) template,
and appropriate primers. To construct the IR-deleted EHV-1, GalK BAC
technology was used as previously described (Ahn et al., 2010;
Warming et al., 2005). pRacL11 (Rudolph et al., 2002) was
transformed into SW106 E. coli (Warming et al., 2005). The purified
PCR product of the GalK marker harboring the EHV-1 IR flanking
sequences (primers, 5′ ccg ggc cat atc tgg tca agg gtc acg ggc ccg cgc
ccg aga gag agc ctg gcc cct gtt gac aat taa tca tcg gca 3′/5′ aca ccg tag
tgg gtg agt gtg ggt ttt cca aac ata gct cga att cat tag ttc agc act gtc ctg ctc
ctt 3′) was transfected into SW106 cells containing pRacL11. Positive
colonies were selected on Gal positive selection agar plates (Warming
et al., 2005) and confirmed by PCR amplification (left flanking region
primers, 5′ atg atc ccg cag tta cag cct aca aac tgg 3′/5′ tag cac acc taa cct
cct gag tgt gag cg 3′; right flanking region primers, 5′ agt tga tgg ata
ggc gag cat ctc aaa caa g 3′/5′ tga aac atc tgc aac tgc gta aca aca gct tcg g
3′) of EHV-1 IR flanking regions (named pL11ΔIR-GalK). To remove
the GalK marker from the intermediate, counter selection was
performed as previously described (Ahn et al., 2010; Warming et al.,
2005). Both flanking regions of the IR were combined by multiple
rounds of PCR amplification (left flanking region primers, 5′ tag cac
acc taa cct cct gag tgt gag cg 3′/5′ aga tgt ata tct gcc agg ctc tct ctc ggg
cg 3′; right flanking region primers, 5′ aga tat aca tct act aat gaa ttc gag
cta tgt ttg g 3′/5′ ttc tct ttg gat ggt ata aga caa tcg tcg 3′; combined
flanking region primers, 5′ tag cac acc taa cct cct gag tgt gag cg 3′/5′ ttc
tct ttg gat ggt ata aga caa tcg tcg 3′). Purified PCR amplification
products of the IR flanking region were transfected into SW106 cells
containing pL11ΔIR-GalK, and positive colonies were selected on the
Gal counter selection plates as described (Ahn et al., 2010; Warming
et al., 2005). To generate the revertant virus recovering the entire IR
sequence, plasmid (pAYC177-XbaI I/B1:harboring the entire IR
sequence and IR flanking sequences of the EHV-1 genome) (Ahn et
al., 2007) was electroplated into SW106 cells containing pL11ΔIR-
GalK (named pL11ΔIRR), and positive colonies were selected on the
Gal counter selection plates as described (Ahn et al., 2010; Warming
et al., 2005). The identity of the resulting final BAC clone named
pL11ΔIR and pL11ΔIRR was confirmed by PCR targeting the flanking
sequences of the IR-deleted BAC (primers, 5′ aca cat tga gtc ctt tct act
ctc ctc ctc gg 3′/5′ ttc tct ttg gat ggt ata aga caa tcg tcg 3′) and the
flanking region of the revertant clone in which the IR had been
restored (primers, 5′ ccg ttt gaa tgc gat tgg tgg g 3′/5′ gcg ttg tat cta gca
gcc cac g 3′.and 5 aga gta ggc gtt cca tcc acg 3′/5′ gac cct acc aaa ggc gtg
tag g 3′). The deletion and restoration of the entire IR was ultimately
verified by sequence analysis of amplified PCR amplicons, BamHI
digestion, and Southern blot analysis.

Generation of recombinant EHV-1 from cloned BAC DNA and DNA
isolation from virus-infected RK13 cells

Purified pL11ΔIR DNA or pL11ΔIRR DNA and a plasmid DNA
containing the EHV-1 Us4 gene (gene 71) (Rudolph et al., 2002); 40)
were co-transfected into RK-13 cells by using the BD CalPhos
Mammalian Transfection Kit (Clontech, Mountain View, CA) accord-
ing to the manufacturer's directions. At three days post transfection
(dpt), supernatants were harvested from DNA transfected RK13 cells,
and virus reconstitution was examined by plaque assay. EHV-1
plaques lacking green fluorescence (suggesting replacement of the
gene encoding green fluorescent protein (GFP) with the EUs4
sequence) were isolated by three rounds of plaque purification, and
the resulting viruses were named vL11ΔIR or vL11ΔIRR. Viruses were
propagated in RK13 or NBL-6 cells, and titered according to standard
procedures (Perdue et al., 1974). The deletion or restoration of the
entire IR in the respective viruses was confirmed by the PCR
amplification of the IR-flanking regions using virus-infected RK13
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cell DNA as a template and primers (5′ ttc tct ttg gat ggt ata aga caa tcg
tcg 3′, 5′ aca cat tga gtc ctt tct act ctc ctc ctc gg 3′). DNA from EHV-1-
infected RK13 cells was prepared by using DNAzol reagent (Molecular
Research Center, Inc., Cincinnati, OH) according to the manufacturer's
instructions, and used for PCR as a template.

Southern and western blot analyses

To confirm the insertion of the GalK marker into pRacL11, the
removal of the GalK marker from pL11ΔIR-GalK, and the replacement
of the GalK marker from pL11ΔIR-GalK with the entire IR sequences,
BamHI digested pRacL11, pL11ΔIR-GalK, pL11ΔIR, and pL11ΔIRRwere
separated on a 0.8% agarose gel and transferred onto a positively
charged nylon membrane (Ambion, Austin, TX) by using a semi-dry
electroblotter (Bio-Rad Laboratories, Hercules, CA). After DNA
transfer, the membrane was placed on blot paper saturated with
0.5 M NaOH for 15 min, briefly washed with 2×SSC, and incubated at
80 °C for 1 h. The PCR amplicon of the GalK marker (primers, 5′ cct gtt
gac aat taa tca tcg gca tag 3′/5′ act gtc ctg ctc ctt gtg atg g 3′) was end-
labeled with [γ-32P]ATP (New England Nuclear Corporation, Boston,
MA) and T4 polynucleotide kinase (Promega, Madison, WI) according
to the manufacturer's directions. Radiolabeled probe was denaturated
by adding 1/10 volume of 3 M NaOH, incubated for 10 min at room
temperature, and then neutralized by adding an equal volume of 1 M
Tris–HCl (pH 7). Prehybridization, hybridization, and washing were
performed using a NorthernMax Kit (Ambion, Austin, TX) followed by
autoradiography using a phosphorimage screen and the molecular
imager FX system (Bio-Rad Laboratories). For protein detection, RK13
cells were infected with parental RacL11 virus or vL11ΔIR at a
multiplicity of infection (moi) of 5, and cells were harvested at 4, 6,
and 12 h post infection (hpi). Whole cell lysates of virus-infected cells
were separated by dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE), and then transferred to a nitrocellulose membrane
(Ambion) by using a semi-dry electroblotter (Bio-Rad Laboratories).
The IE, early (E; IR4, EICP0, UL5), and late (L; gD) proteins were
detected by using monospecific rabbit polyclonal antibodies (Bowles
et al., 1997; Caughman et al., 1995; Flowers and O'Callaghan, 1992;
Holden et al., 1994; Zhao et al., 1995) as primary antibodies and anti-
rabbit IgG[Fc]-alkaline phosphatase conjugate (Promega) as the
secondary antibody. Proteins were visualized by incubating the
membrane containing blotted proteins in an AP conjugate substrate
(AP conjugate substrate kit, Bio-Rad Laboratories) according to the
manufacturer's directions.

Plaque morphology, growth kinetics, and cell tropism

For the plaque assays, RK13 cell monolayers were infected with
serial 10-fold dilutions of the respective viruses and overlaid with
medium containing 1.5% methylcellulose at 2 h after infection. At
4 days post infection (dpi), plaques were fixed with 10% formalin,
stained with 0.5% crystal violet, and counted (Perdue et al., 1974).
Plaque sizes were measured by using the ImageJ software program
(http://www.rebweb.nih.gov/ij/). For single step growth kinetics,
RK13 cells in 25 mm flasks were infected at an moi of 0.2 with the
respective viruses. After 1 h of viral attachment at 4 °C, cells were
washed with PBS, 4 ml of growth medium was added, and viruses
were harvested at designated time points. To determine intracellular
viral titer, virus infected cells were washed with PBS followed by
adding 4 ml of growth medium, and freeze and thaw cycle, and the
virus was titered described above. To determine extracellular viral
titer, supernatants were used. To determine the cellular tropism, five
cell types (L-M, RK13, NBL-6, Vero, and HeLa cells) were infected at an
moi of 1 with mutant, revertant, or parental viruses. After virus
attachment for 1 h at 4 °C, the virus-infected cells were washed with
PBS followed by adding normal growth medium, and total viral titers
were examined at 3 dpi.
Quantitative real time (RT)-PCR

To compare the number of viruses attached to the host cells,
quantitative real time PCR assays were performed using the DNAs
from virus infected cells as the template, the EHV-1 UL3 ORF region
specific primer set (5′ ttt gaa ttc gcc acc atg ggg gcc tgc tgc tcc tct ag 3′/
5′ tta tgt aca att cag acc gta tat ggt gtt ttg c 3′), rabbit GAPDH gene
specific primer set (GeneBank:L2396.1; 5′ cat gtt tgt gat ggg cgt gaa
cca 3′/5′ taa gca gtt ggt ggt gca gga t 3′), and iQ SYBR Green Supermix
(Bio-Rad Laboratories) according to the manufacturer's directions.
Confluent RK13 cells in the 6 well plates were infected with RacL11,
vL11ΔIR, or vL11ΔIRR at an moi of 10. Virus infected RK13 cells were
incubated at 4 °C for 2 h and then 37 °C for 30 min followed by
washing virus infected RK13 cells with PBS. Total DNAs including
cellular and viral DNAs were prepared from virus infected RK13 cells
by using DNeasy Blood & Tissue kit (Qiagen Inc. Valencia, CA), and
used as the template for quantitative RT-PCR. Cycle threshold (Ct)
values to detect the viral genome were normalized by using Ct values
of housekeeping GAPDH gene amplification.

Animal experiments

Animal experiments were conducted as described previously (Ahn
et al., 2010; Frampton et al., 2002; Osterrieder et al., 1996b; von Einem
et al., 2004). Groups of 4-week-old CBA female mice (n=12/group)
were inoculated intranasally with sterile medium (mock infection) or
1×106 pfu of vL11ΔIR, vL11ΔIRR or RacL11. Mice were observed daily
and weighed from prior to inoculation, and weights were compared.
Virus isolation from the lungs of mice infected with vL11ΔIR,
vL11ΔIRR, or RacL11 (n=3/group) at 2, 3, and 4 dpi for live mice
and at the time of death for dead mice was performed by using silica
beads and BeadBeater (BioSpec Products, Inc., Bartlesville, OK)
according to the manufacturer's directions, and viral titers were
determined as described above. For statistical analyses, two-tailed
Student's-t test was performed by using the Excel software program
(Microsoft Corporation, Redman,WA). Virulence as judged by percent
survival data was determined by the Log-rank (Mantel–Cox) test
using GraphPad Prism software (GraphPad Software, Inc., La Jolla, CA).
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