NOTE

On M athieu's Inequality

H orst A Izer

JRE

J.L.Brenner

10 Phillips Road, Palo Alto, California 94303
and
O. G. Ruehr

Department of Mathematics, Michigan Technological University,
Houghton, Michigan 49932-1295
Submitted by William F. Ames
R eceived July 23, 1997

The inequalities

$$
\frac{1}{x^{2}+1 /(2 \zeta(3))}<\sum_{n=1}^{\infty} \frac{2 n}{\left(n^{2}+x^{2}\right)^{2}}<\frac{1}{x^{2}+1 / 6}
$$

hold for all real numbers $x \neq 0$. The constants $1 /(2 \zeta(3))$ and $1 / 6$ are best possible. © 1998 A cademic Press

1. INTRODUCTION

In 1890, M athieu [11] conjectured (in connection with work on elasticity of solid bodies) that the inequality

$$
\begin{equation*}
S(x):=\sum_{n=1}^{\infty} \frac{2 n}{\left(n^{2}+x^{2}\right)^{2}}<\frac{1}{x^{2}} \tag{1.1}
\end{equation*}
$$

is valid for all real numbers $x \neq 0$. In 1949, Schröder [15] established a weaker form of (1.1) and used his result to solve the problem of the rectangular plate. The first proof of M athieu's inequality was published in 1952 by Berg [2]. An interesting new proof was given by van der Corput and Heflinger [3] in 1956; they established a general integral inequality and showed that (1.1) can be deduced from their theorem. M oreover, they corrected an error in an approach presented by Emersleben [7]. All these proofs are quite intricate. A very short and elementary proof of inequality (1.1) was published by Makai [10] in 1957, who also established that the following converse of (1.1) holds for all real x :

$$
\begin{equation*}
\frac{1}{x^{2}+1 / 2}<S(x) \tag{1.2}
\end{equation*}
$$

Several interesting extensions, refinements, and results related to (1.1) and (1.2) can be found in $[2-10,14,16,17]$; see also the monographs [12, pp. 360-362] and [13, pp. 629-634]. Recently, Jakimovski and Russell [9] showed that an extended form of $S(x)$ plays a role in examining M ercerian theorems for Cesàro summability.

From (1.1) and (1.2) we conclude that the double inequality

$$
\begin{equation*}
\frac{1}{x^{2}+a}<S(x)<\frac{1}{x^{2}+b} \tag{1.3}
\end{equation*}
$$

holds for all $x \neq 0$, if $a=1 / 2$ and $b=0$. It is natural to look for an improvement of this result. More precisely, we ask for the smallest constant a and the largest constant b such that (1.3) is valid for all $x \neq 0$. In this note this problem is solved. A ccording to numerical results, Elbert [6] conjectured in 1982 that the left-hand inequality of (1.3) holds with $a=1 /(2 \zeta(3))=0.415 \ldots$. In the next section we establish Elbert's conjecture and we show that the right-hand inequality holds with $b=1 / 6=$ 0.166....

2. THE MAIN RESULT

The principal tools we need to prove our theorem are an inequality for infinite series and an expansion of $S(x)$ in powers of $1 / x$.

Lemma 1. If $y>0$ is a real number, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+y\right)^{3}}<\left(\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+y\right)^{2}}\right)^{2} \tag{2.1}
\end{equation*}
$$

The validity of this inequality was conjectured by the first two authors [1]. Very recently, Wilkins [18] found a remarkable proof; he used series and integral representations for the trigamma function to establish (2.1).

Lemma 2. For all sufficiently large x, the asymptotic estimate

$$
\begin{equation*}
S(x)=\frac{1}{x^{2}}-\frac{1}{6 x^{4}}+O\left(\frac{1}{x^{6}}\right) \tag{2.2}
\end{equation*}
$$

is valid.
The representation (2.2) was proved by W ang and W ang [17] in 1981; see also [13, p. 630]. A generalization of this result was given by Elbert [6] and Russell [14].

U sing the lemmas just stated, we can prove the following theorem, which provides the best possible values of a and b in (1.3).

Theorem. For all real numbers $x \neq 0$, we have

$$
\begin{equation*}
\frac{1}{x^{2}+1 /(2 \zeta(3))}<\sum_{n=1}^{\infty} \frac{2 n}{\left(n^{2}+x^{2}\right)^{2}}<\frac{1}{x^{2}+1 / 6} . \tag{2.3}
\end{equation*}
$$

The constants $1 /(2 \zeta(3))$ and $1 / 6$ are best possible.
Proof. A simple calculation reveals that (2.3) is equivalent to

$$
\begin{equation*}
1 / 6<f(y)<1 /(2 \zeta(3)), \quad y>0, \tag{2.4}
\end{equation*}
$$

where

$$
f(y)=\left(\sum_{n=1}^{\infty} \frac{2 n}{\left(n^{2}+y\right)^{2}}\right)^{-1}-y .
$$

First, we show that f is strictly decreasing on $[0, \infty)$. For all $y>0$, straightforward differentiation yields

$$
\left(\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+y\right)^{2}}\right)^{2} f^{\prime}(y)=\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+y\right)^{3}}-\left(\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+y\right)^{2}}\right)^{2},
$$

so that Lemma 1 implies

$$
f^{\prime}(y)<0 \quad \text { for } y>0
$$

Since $f(0)=1 /(2 \zeta(3))$, the second inequality of (2.4) holds for all $y>0$.
Now, we prove the first inequality of (2.4). For this it suffices to show that

$$
\begin{equation*}
\lim _{y \rightarrow \infty} f(y)=1 / 6 \tag{2.5}
\end{equation*}
$$

Lemma 2 implies

$$
S(\sqrt{y})=\frac{1}{y}-\frac{1}{6 y^{2}}+O\left(\frac{1}{y^{3}}\right) .
$$

Therefore,

$$
f(y)=\frac{1}{S(\sqrt{y})}-y=\frac{\frac{1}{6}-y^{2} O\left(\frac{1}{y^{3}}\right)}{1-\frac{1}{6 y}+y O\left(\frac{1}{y^{3}}\right)},
$$

from which (2.5) follows. Since f is monotonic, the bounds given in (2.4) cannot be improved. This completes the proof of the theorem.

REFERENCES

1. H. A lzer and J. Brenner, Problem 97-1, SIAM Rev. 39 (1997), 123.
2. L. Berg, Ü ber eine A bschätzung von M athieu, Math. Nachr. 7 (1952), 257-259.
3. J. G. van der Corput and L. O. Heflinger, On the inequality of M athieu, Indag. Math. 18 (1956), 15-20.
4. P. H. Diananda, On some inequalities related to Mathieu's, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976), 77-80.
5. P. H. Diananda, Some inequalities related to an inequality of M athieu, Math. Ann. 250 (1980), 95-98.
6. A. Elbert, A symptotic expansion and continued fraction for Mathieu's series, Period. Math. Hungar. 13 (1982), 1-8.
7. O. E mersleben, Ü ber die R eihe $\sum_{k=1}^{\infty} k /\left(k^{2}+c^{2}\right)^{2}$, Math. Ann. 125 (1952), 165-171.
8. H. W. Gould and T. A. Chapman, Some curious limits involving definite integrals, Amer. Math. Monthly 69 (1962), 651-653.
9. A. Jakimovski and D. C. R ussell, M ercerian theorems involving Cesàro means of positive order, Monatsh. Math. 96 (1983), 119-131.
10. E. M akai, On the inequality of M athieu, Publ. Math. Debrecen 5 (1957), 204-205.
11. E. M athieu, "T raité de physique mathématique, VI-VII: Théorie de l'élasticité des corps solides," G authier-V illars, Paris, 1890.
12. D. S. M itrinović, "A nalytic Inequalities," Springer-V erlag, Berlin, 1970.
13. D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, "Classical and New Inequalities in A nalysis," K luwer A cademic, D ordrecht, 1993.
14. D. C. R ussell, A note on M athieu's inequality, Aequations Math. 36 (1988), 294-302.
15. K. Schröder, D as Problem der eingespannten rechteckigen elastischen Platte, Math. Ann. 121 (1949), 247-326.
16. M. Tideman, K ommentar till en gammal olikhet, Nordisk Mat. Tidskr. 6 (1958), 27-28.
17. C. L. Wang and X. H. Wang, A refinement of the Mathieu inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 716-734 (1981), 22-24.
18. J. E. Wilkins, Jr., Solution of Problem 97-1, SIAM Rev., to appear.
