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A group G satisfies the permutizer condition P if each proper subgroup H of G
permutes with some cyclic subgroup not contained in H. The structure of finite
groups with P is studied, the main result being that such groups are soluble with
chief factors of order 4 or a prime. The classification of finite simple groups is
used, as is detailed information about maximal factorizations of almost simple
groups. Q 1997 Academic Press

1. INTRODUCTION

A very well known property of groups is the normalizer condition,
according to which every proper subgroup of a group is smaller than its
normalizer. This is a relatively strong condition: for finite groups it is
equivalent to nilpotence, while for groups in general it at least implies

Ž w x.local nilpotence by a theorem of Plotkin see 8, p. 364 .
A natural way to weaken the normalizer condition is to replace the

normalizer of a subgroup H of a group G by its permutizer

P HŽ .G

Ž w x w x.see 9, p. 26 ; the term is used in a different sense in 5, p. 26 . This is
defined to be the subgroup generated by all cyclic subgroups of G that

Ž . Ž . ² :permute with H. Thus H F P H and H / P H if and only if H gG G
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² : Ž .s g H for some g g G_ H. A group G such that H / P H for everyG
proper subgroup H is said to satisfy the permutizer condition P, or to be a
P-group.

Obviously a group satisfying the normalizer condition is a P-group. As
examples of P-groups that do not satisfy the normalizer condition we cite

Ž Ž . .nonnilpotent supersoluble groups see 3.1 below and the symmetric
group S .4

The main object of the present article is to study the structure of finite
P-groups and to address the question: How close do such groups come to
being supersoluble? It turns out that the answer is quite close. In the
sequel it is understood that all groups are finite.

Our first task is to prove that P-groups are soluble, which is accom-
plished in Sect. 2. As one would expect, the proof depends on the
classification of finite simple groups. But in addition it is vital to have

Ždetailed information about the factorizations of almost simple groups, i.e.,
.groups that lie between a simple group and its automorphism group .

w xFortunately the recent monograph 6 of Liebeck, Praeger, and Saxl
provides the information needed.

Our main result on the structure of P-groups shows how near these
groups are to being supersoluble.

THEOREM A. Let G be a finite group satisfying the permutizer condition P.
Then G is soluble and each chief factor of G has order 4 or a prime. In
addition, if F is a chief factor of order 4, then G induces the full group of

Ž .automorphisms in F, i.e., GrC F , S .G 3

It seems difficult to give a really satisfactory characterization of P-groups,
despite the wealth of information about their structure provided by Theo-
rem A. In particular we do not know whether the converse of Theorem A
is true.

However, there is a characterization of P-groups which involves a useful
w xsubgroup introduced in 1967 by O. H. Kegel 3 . If l: G ª S is a4

surjective homomorphism from a group G to the symmetric group S , let4

D GŽ .l

denote the preimage of the normal subgroup of order 4 under l. Then we
define Kegel’s D-subgroup to be

D G s D G ,Ž . Ž .F l
l

where the intersection is over all surjective homomorphisms l: G ª S ,4
Ž . Ž .with the stipulation that D G s G if no such l’s exist. Thus GrD G is a

subdirect product of copies of S .3
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Our second main result is

THEOREM B. Let G be a finite group. Then G satisfies the permutizer
condition P if and only if the following conditions hold:

Ž .i each chief factor of G has order 4 or a prime;
Ž . Ž .ii if L is a proper self-normalizing subgroup of G containing O G ,2 9

Ž .then L is maximal in some subgroup X such that D XrL is supersoluble.X

Here L is the core of L in X. For example, one can read off that S isX 4
< Ž . < Ž .a P-group, while A is not, since D S s 4 but D A s A . This4 4 4 4

distinction between A and S is crucial in the study of P-groups.4 4
We mention that in his paper Kegel studies a related property which he

calls *: here a group G has * if and only if every maximal subgroup has a
cyclic supplement of prime power order. It is easy to see from Theorem A

Žthat every P-group has *; however, Kegel’s property is weaker than P see
w x.3, p. 213, Example 1 .

In the same paper Kegel raises an interesting question, which is appar-
Ž .ently still open. If every maximal subgroup of a finite group has an

abelian supplement, is the group necessarily soluble? In particular one can
ask if solubility follows when every proper subgroup permutes with some
abelian subgroup not contained in it.

2. THE SOLUBILITY OF FINITE P-GROUPS

The object of this section is to accomplish the critical step in the study
of the permutizer condition by proving.

THEOREM 2.1. A group with the permutizer condition P is soluble.

The method of proof, in outline, is to take a counterexample G of
smallest order and show that G may be assumed semisimple with simple

Ž .completely reducible radical R. Thus R F G F Aut R , i.e., G is almost
simple. It is then shown that for each maximal subgroup of R there is a
subgroup of G which possesses maximal factorizations. Now a description

w xof the maximal factorizations of almost simple groups is available 6 .
Using this and the classification of finite simple groups, we proceed to
eliminate each possibility for R.

It will now be assumed that G is an insoluble P-group of minimal order.
The first step is almost obvious.

Ž .2.2 G is a semisimple group.

For, if S, the maximum soluble normal subgroup of G, is nontrivial,
< <then GrS is soluble by minimality of G , and hence G is soluble.

Therefore S s 1 and G is semisimple.
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Next let R denote the completely reducible radical of G. Then R / 1
< <and GrR is soluble by minimality of G . Write

R s S = S = ??? = S ,1 2 k

Ž .where each S is a nonabelian simple group, and suppose that k ) 1. Puti

N s N S and C s C S .Ž . Ž .1 G 1 1 G 1

Then R F N and R l C s S = ??? = S . We are interested in the group1 1 2 k

G s N rC ,1 1

concerning which we shall prove

Ž .2.3 The group G is semisimple with simple completely reducible
radical R s RC rC . If H is any subgroup of G not containing R, then1 1
² : ² :H x s x H for some x g G R H.

Proof. Suppose that ArC is an abelian normal subgroup of G. Since1
w xRC rC is simple, R, A F R l C s S = ??? = S . But A normalizes1 1 1 2 k

w xS , so S , A s 1 and A s C . Thus G is semisimple; its completely1 1 1
reducible radical is R since GrR is soluble.

Next let H s HrC , where R g H. Then S g H since S = ??? = S F1 1 2 k
C F H. Suppose that H does not permute with any cyclic subgroup of N1 1
that is not contained in H. Since G is a P-group, there exists g g G_ H

² : ² : Ž ² :. Ž ² :.such that g H s H g . Therefore N l g H s H N l g , from1 1
which it follows that

² :N l g F H .1

Hence g f N .1
Now g permutes the direct factors S of R by conjugation; here we cani

g ² : ² :assume that S s S . Let s g S ; then s g H and gs g g H s H g , so1 2 2
that gs s hg i for some h g H and i. This shows that gsgy1 s hg iy1,

iy1 gy1 iy1 ² :whence g g HS s HS F N . But then g g N l g F H and2 1 1 1
so gsgy1 s hg iy1 g H. This gives the contradiction S F H.1

We shall now replace G by the group G and R by R. Thus we can
Ž .assume that G has the properties listed in 2.3 }however, we no longer know

that G has the property P.
With this notation we begin to utilize the maximal subgroups of R by

proving

Ž .2.4 Let M be a maximal subgroup of the simple group R and write
Ž . ² :L s N M and G s LR. Then L is maximal in G and G s x L sG 1 1 1

² : ² :L x for some x in G . Further L l x s 1.1
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Proof. Clearly L l R s M, so L / G . Suppose that L F H F G ;1 1
Ž .then H s L H l R and M F H l R F R, so that either H s L or

H s G . Thus L is maximal in G .1 1
Next assume that L has no cyclic supplements in G . Since R g L,1

² : ² : Ž ² :.there exists g g G_ L such that g L s L g . Therefore G l g L1
Ž ² :.s L G l g and in consequence1

² :G l g F L.1

² : ² : iNow let m g M. Then gm g g L s L g , so we may write gm s ll g
y1 iy1 iy1 ² :with ll in L. Thus gmg s ll g and g g G l g F L. It follows1

that gmgy1 g L and M gy1 F L. But M gy1 F R, so we obtain a contradic-
gy1 ² :tion, M s M and g g L. Therefore G s x L for some x.1

² : ² :Finally, suppose that L l x / 1. Then, since G s x L, the core of1
L in G is nontrivial and hence contains R. But this would mean that1
R F L. The proof is now complete.

If H is an almost simple group with completely reducible radical R,
then an expression H s AB, with A and B maximal subgroups of H not

Ž w x.containing R, will be called a maximal factorization of H cf. 6, p. 1 . The
next result shows that for each maximal subgroup of R there is a subgroup

Ž .of G with a maximal factorization. We continue with the notation of 2.4 .

Ž .2.5 Let M be a maximal subgroup of the simple group R, and write
Ž . Ž .L s N M . Then there is a subgroup G M of G s LR containing R withG 1

Ž . Ž . Ž .a maximal factorization G M s A M B M such that

Ž . Ž .a A M l R s M;
Ž . Ž . < <b B M contains an element of order R : M .

Ž .Proof. Choose G M to be a subgroup which is minimal subject to
Ž . Ž . Ž .R F G M F G and the existence of factorizations G M s A M R s1

Ž .² : Ž . Ž . Ž . Ž .A M x , where A M is maximal in G M , A M l R s M, and A M
² : Ž . Ž .l x s 1. Such a choice is possible by 2.4 . Let B M be a maximal

Ž . Ž . Ž . Ž .subgroup of G M containing x. Then G M s A M B M ; we show that
Ž .this is a maximal factorization of G M .

Ž . Ž .If this is not the case, then R F B M and it follows that B M s
Ž Ž . Ž .. Ž . Ž Ž . Ž ..² : Ž Ž .A M l B M R and B M s A M l B M x . Further A M l
Ž .. Ž . Ž . Ž .B M l R s A M l R s M. Next we claim that A M l B M is max-

Ž . Ž . Ž . Ž .imal in B M . Indeed assume that A M l B M F T F B M . Now
M F T l R F R, so that either T l R s M or R F T. In the first case

Ž Ž . Ž .. Ž Ž . Ž .. Ž . Ž .T s T l A M l B M R s A M l B M M s A M l B M . In
Ž . Ž . Ž . Ž .the second case T s B M . Thus A M l B M is maximal in B M as

Ž . Ž . Ž .claimed. However, B M - G M , so the minimality of G M is contra-
Ž . Ž . Ž .dicted. Therefore G M s A M B M is a maximal factorization. Finally

< < < Ž . Ž . < < < Ž . ² :x s G M : A M s R : M since A M l x s 1.
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Strategy

To complete the proof of Theorem 2.1 we will show that for each simple
group R there is a maximal subgroup M for which there is no maximal

Ž . Ž . Ž . Ž .factorization of the form G M s A M B M as described in 2.5 .
A list of all maximal factorizations of almost simple groups is displayed
w xin 6 in a series of tables. These show the possibilities for A l R and

B l R, where G s AB is a maximal factorization of an almost simple
group G with simple completely reducible radical R. In the case where R

Žis a classical group and A and B are geometric subgroups i.e., stabilizers
.of certain subspaces , the tables give normal subgroups X and X of AA B

and B, respectively; these can be slightly smaller than A l R and B l R,
but are often identical with them. In any case the composition factors
Ž .composition factors will always be nonabelian of X and X are amongA B

Ž .those of A l R and B l R, respectively. Notice that if A s A M for
some maximal subgroup M of R, then the composition factors of X areA
among those of M.

Our general method of excluding a particular simple group R is as
follows. We try to choose a maximal subgroup M of R such that the

w xcomposition factors of each X and X in the relevant table in 6 do notA B
all appear as composition factors of M. If such a choice is possible, the
simple group R can be excluded from consideration.

Usually M will be chosen to be a geometric subgroup when R is a
classical group. A good reference for these geometric subgroups is the

w xmonograph of Kleidman and Liebeck 4 .
The approach just described is generally successful, but it fails for

certain classical groups of low degree. In these and some other cases it is
invaluable to have an alternative and quite elementary argument with

Ž .orders of elements subsequently referred to as the order argument . This
Ž .is embodied in the next result, which continues the notation of 2.4 .

Ž . < <2.6 The simple group R has an element of order R : M rd, where d is
< <the greatest common dï isor of R : M and the order of some element of

Ž .Out R .

² : ² : < <Proof. We have G s L x s LR, and also L l x s 1. Hence x1
< < r rs R : M . If xR has order r, then x g R and the order of x is

< < Ž < < .R : M rd, where d s gcd R : M , r .

Ž .To exploit 2.6 it is generally best to choose M to be a maximal
Ž .subgroup of R with small order. Since Out R tends to be small, the effect

is to produce an element of R with large order. If the order is too large,
then R may be excluded. The method is especially convenient if R appears

w xin the ATLAS 1 since the maximum order of an element can usually be
determined by inspecting the maximal subgroups of R. This procedure will
often be adopted to deal with groups occurring in the ATLAS.
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Many sporadic simple groups are complete. There is another simple
Ž .method that can be applied when R is complete and so G s R . Using

Ž .the notation of 2.4 , we observe

Ž .2.7 If the simple group R is complete, then e¨ery maximal subgroup of
R has odd index.

² : ² :Proof. We have R s M x and M l x s 1 since L s M here.
Consider the natural permutation representation of R on the set of right
cosets of M. Since R is simple, each element is represented by an even

< < < <permutation. But x is represented by an R : M ]cycle, so R : M is odd.

Actually A is the only simple group with all its maximal subgroups of7
odd index. However, we shall not require this characterization, but merely

Ž .employ 2.7 to exclude certain sporadic groups.

The Case-by-Case Analysis

We now proceed to examine the finite simple groups, showing that for
each group R there is a choice of maximal subgroup M which leads to an
impossible factorization. When R is a classical group, we typically appeal

w xfirst to the tables in 6 and then use the order argument and the ATLAS
to dispose of exceptional cases.

I. The Alternating Groups

� 4Let R s A where n G 5. Denote the setwise stabilizer of n y 1, n inn
S by S and let M s S l R. Then S and M are maximal in S and R,n n

n< < < < Ž . Ž .respectively. Also S : S s R : M s . If n s 6, then 2.6 predicts the2n

existence in R of an element of order 15, which is incorrect. Thus n / 6,
Ž . Ž .and Aut R , S . Hence G s R or G s S . In the first case 2.4 showsn n
² : ² : ² :that G s x M and x l M s 1. Here x gu S, so S s x S. Hencen

² : ² :in any event S s x S and x l S s 1. Modifying x by an elementn
Ž .of S, we may assume that x is of the form n y 1, . . . , n, . . . or

n1 2Ž .Ž . < < < < < < Ž .n y 1, . . . n, . . . . Therefore x F n . But x s R : M s , a contra-24

diction.
We now commence the discussion of the classical groups.

II. The Projectï e Groups

Ž . eLet R s PSL q , where q s p with p a prime and q G 5 if n s 2.n

Ž . Ž wCase n s 2. Recall that the subgroups of PSL q are known see 2, p.2
x. Ž . Ž .213 . Since PSL 5 , A and PSL 9 , A , we can assume q / 5 or 9.2 5 2 6

Ž . Ž .Suppose that q s 7, so that G s R s PSL 7 or G , PGL 7 . The first2 2
Ž .case may be excluded since PSL 7 has a maximal subgroup of index 8 but2
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Ž Ž .. Ž .no elements of order 8 see 2.5 . If G , PGL 7 , let M be a Sylow2
² :2-subgroup. Then M is maximal in G and so G s x M for some x by

Ž . ² :2.3 . But x l M s 1 since M has trivial core in G. Hence x has order
21, which is impossible. Thus we can assume that q s 8 or q G 11.

Ž .Now R has a maximal subgroup M which is dihedral of order 2 q q 1 rd,
Ž . Ž w x. < < Ž .where d s gcd 2, q y 1 see 2, p. 213 and R : M s q q y 1 r2. Also

< Ž . < Ž w x.Out R s de see, for example, 6, p. 18 . Since the order of an element
Ž .of R cannot exceed q q 1, we obtain, using 2.6 ,

q q y 1Ž .
F q q 1,

2 de

which can only hold if q s 5 or 9. Hence this case is complete.

Case n s 3. Suppose first that e ) 1 and let r be a prime dividing e.
Ž 1r r . Ž w x.Then R has a maximal subgroup M , PSL q see 4, p. 70 . Refer3

w x Ž .now to the list of possible factorizations in 6, p. 10 . The only nonabelian
Ž .composition factor of X or X is PSL q , and this is never isomorphicA B 2

Ž 1r r . Ž .with PSL q , so we can exclude PSL q . When q s 4, there is an3 3
Žw x. Ž .exceptional factorization 6, p. 13 ; however, PSL 4 is easily excluded by3

choosing a maximal subgroup of order 72 and using the order argument
and the ATLAS.

Ž .Now let e s 1, so that q s p. We can assume that p / 2 since PSL 23
Ž . Ž . Ž w x., PSL 7 . Now R has a maximal subgroup M , O p see 4, p. 70 .2 3
< < Ž 2 .Hence M s p p y 1 and

p2 p3 y 1Ž .
< <R : M s ,

d

Ž . 2Ž 3 .where d s gcd 3, p y 1 . Thus G has an element x of order p p y 1 rd.
Ž .Applying 2.5 , we can assume that G has a maximal factorization

Ž . Ž . Ž . Ž .G s A M B M such that A M l R s M and x g B M . From the
w xtable in 6, p. 10 we conclude that X is soluble, so that in this caseA

Ž . Ž . < < Ž 3 . ŽA s B M and B s A M . Further X s 3 p y 1 see the first line ofA
. ll Ž . Ž w x.the table . Now x g B M l R s A l R s X see 6, p. 26 for some llA
< Ž . <dividing Out R s 2 d. Therefore

p2 p3 y 1Ž .
ll 3< <F x F 3 p y 1Ž .

d ll

2 2 Ž .and p F 3d ll F 6d . This yields p s 7. But PSL 7 may be excluded by3
choosing a maximal subgroup of order 57 and using the order argument
and the ATLAS.
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Case n ) 3. Choose M to be a geometric subgroup of type P , i.e., the2
Ž .stabilizer of a line. Them M has composition factors PSL q ifny2

Ž . Ž . Ž . Ž .n, q / 4, 2 or 4, 3 , and PSL q if q G 4.2
w xNow refer to the table on p. 10 of 6 . To exclude each possible

factorization we need to check that both X and X have compositionA B
factors that are different from those of M. This is clear except in the first

Ž .line of the table when n is prime and A s A M . But then X s A l RA
Ž . Ž . Ž .s M is soluble, which is only true if n, q s 4, 2 or 4, 3 . Finally, the

Ž . Ž .groups PSL 2 and PSL 3 are excluded by the order argument.4 4
Ž .There is an exceptional factorization for PSL 2 ; this group is also dealt5

with using the order argument.

III. The Symplectic Groups

Ž . e Ž . Ž .Let R s PSp q , q s p with p a prime and n, p / 2, 2 . Here we2 n
may assume n G 2.

Case n s 2. Suppose first that e ) 1 and let r be a prime dividing e.
Ž 1r r . Ž w x.Then R has a maximal subgroup M , PSp q see 4, p. 72 , which is4

simple unless q s 4, when A is the only composition factor. Check the6
w xtables on pp. 10 and 12 of 6 , comparing the composition factors of XA

and X with the above. As a result all cases can be excluded except forB
Ž .q s 4 and 16. The group PSp 4 is dealt with by using the order argument4

Ž .and the ATLAS. However, PSp 16 is not in the ATLAS and needs to4
examined.

Ž . < < 8Ž 4 .Let q s 16. As before let M , PSp 4 . Then R : M s 2 4 q 14
Ž 2 . w x4 q 1 s ll , say. From the tables in 6, p. 10 we recognize that there is

yŽ . Ž .just one possible factorization with X , O 16 and X , Sp 4 . ThusA 4 B 4
Ž . Ž . Ž w x.B s A M , A s B M , and X s B l R s M see 6, p. 50 . Also x g AB

Ž . < Ž . < 8by 2.5 . Since Out R s 8, it follows that x g A l R s X . But theA
yŽ . 2largest possible order of an element of O 16 is 16 q 1, which is less4

Ž .than llr8. This disposes of PSp 16 .4
Ž .Now consider the case e s 1, when q s p, so R s PSp p , p G 3.4

There is a maximal subgroup M of type P , i.e., the stabilizer of an2
1 4 4 2< < Ž .Ž .isotropic line. Now R s p p y 1 p y 1 and by an easy computa-2

1 4 2< < Ž .Ž .tion M s p p y 1 p y 1 , so that2

p4 y 1
< <R : M s .

p y 1

w x Ž 2 .By 6, p. 10 the only possible factorization for R has X , PSp p ? 2A 2
and X of type P . Since p ) 2, comparison of composition factors showsB 1

Ž . Ž .that B s A M and A s B M . Hence A contains an element x of order
Ž 4 . Ž . < Ž . < 2p y 1 r p y 1 . Since Out R s 2, we have x g A l R s X . But theA
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largest possible order of an element of X is p2 q 1, which is less thanA
Ž 4 . Ž .p y 1 r p y 1 , a contradiction.

Ž .Finally, an exceptional factorization occurs for PSp 3 , but this group is4
handled by the order argument and the ATLAS.

Case n ) 2. Let M be a maximal subgroup of R of type P . A check of2
w xthe possible factorizations in 6, pp. 10, 12, 13 reveals that no composition

factors match those of M. This completes the discussion of the case.

IV. The Unitary Groups

Ž . eLet R s U q , where q s p , p prime. We can assume that n G 3.n

Case n odd. In this case there are only exceptional factorizations,
Ž . Ž . Ž . Ž .occurring for the groups U 3 , U 5 , U 8 , U 2 . The first three of these3 3 3 9

are quickly disposed of since they are in the ATLAS. To exclude the group
Ž .U 2 , choose M to be a maximal subgroup of type P .9 2

Ž .Case n e¨en. Let R s U q where m G 2. We can assume that2 m
Ž . Ž . Ž . Ž .m, q / 2, 2 since U 2 , PSp 3 . Let M be a maximal subgroup of4 4

Ž .type P , with only one composition factor U q . Now check the1 2 my2
w xcomposition factors of X and X in the tables in 6, p. 11 ; no coinci-A B

dences occur.
Ž . Ž . Ž .There are a number of exceptional factorizations for U 2 , U 3 , U 2 ,4 4 6

Ž . Ž . Ž . Ž . Ž .U 2 . However, U 2 , PSp 3 , while U 3 and U 2 are in the ATLAS12 4 4 4 6
Ž .and so may be handled using the order argument. Finally, U 2 is12

excluded by choosing M of type P as above, and observing that the1
composition factors of A l R and B l R in the factorization are Suz and

Ž . w xU 2 6, p. 13 .11

( )V. The Orthogonal Groups PV q2mq 1

Ž . Ž . Ž . Ž .Since PV q , PSL q and PV q , PSp q , we can assume that3 2 5 4
Ž . Ž .m G 3. Also PV q , PSp m q if q is even, so we may also assume2 mq1 2

that q is odd. To exclude these groups choose M to be a maximal
subgroup of type P .2

There are in addition infinite families of factorizations for the groups
Ž . Ž e. Ž e. Ž w x.PV q , PV 3 , PV 3 see 6, p. 12 . These can be eliminated by the7 13 25

Ž .same choice of M as above. Finally PV 3 has numerous exceptional7
factorizations. Since this group appears in the ATLAS, it is best to exclude
it using the order argument.

q ( )VI. The Orthogonal Groups PV q , m / 42m

qŽ . qŽ . Ž .Since PV q is not simple and PV q , PSL q , we can assume that4 6 4
q Ž .m G 5. If m ) 5, choose a maximal subgroup M of type P . For PV q2 16
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Ž w x.there is an additional infinite class of factorizations see 6, p. 12 , and
q Ž . w xPV 2 has an exceptional factorization 6, p. 13 . These are also excluded24

by choosing M of type P .2
A different choice of M is called for when m s 5; this is because of the

qŽ . Ž .isomorphism PV q , PSL q . Take M of type P . A check of the table6 4 1
w xin 6, p. 11 excludes this case.

q( )VII. The Orthogonal Groups PV q8

Ž wThese groups have a different set of maximal factorizations see 6, p.
x.14 , but they can also be excluded by choosing a maximal subgroup M of

type P .2

y ( )VIII. The Orthogonal Groups PV q2m

y Ž .Let R s PV q ; we can assume that m G 4 because of low-degree2 m
isomorphisms. Choose M to be a maximal subgroup of type P .2

IX. The Exceptional Simple Groups

Let R be an exceptional simple group of Lie type. Here our task is made
Ž .easier by the fact that all factorizations of subgroups of Aut R containing

Ž w x.R are known. This is work of Hering, Liebeck, and Saxl see 6, p. 8 . In no
case is there a cyclic factor, so all these groups may be excluded.

X. The Sporadic Groups

The sporadic groups for which there is a maximal factorization are M ,11
Ž wM , M , M , M , J , HS, He, Ru, Suz, Fi , and Co see 6, pp.12 22 23 24 2 22 1

x.15]16 . The complete groups among these are M , M , M , Ru, and11 23 24
CO , each of which has a maximal subgroup of even index and so may be1

Ž .excluded by 2.7 .
The remaining groups have outer automorphism group of order 2. They

can all be excluded by using the order argument and the ATLAS. The
proof of Theorem 2.1 is now complete.

An Alternatï e Approach

The above proof has the disadvantage of requiring in the case of the
classical groups a detailed examination of many cases. We indicate briefly
an alternative approach which avoids some of the case-by-case analysis and

w xdoes not use the tables in 6 . This rests on the concept of a primitï e prime
Ž . fdï isor ppd of b y 1, where b, f ) 1 are integers: this is a prime which

divides b f y 1 but does not divide bi y 1 if 1 F i - f. The importance of
ppd’s in the study of linear groups is underscored by a recent work of

w xNiemeyer and Praeger 7 .
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Let R be a classical simple group with parameters n and q s pm, where
p is a prime. Choose a maximal subgroup M of R and let G denote the1

Ž .group referred to in 2.4 . Thus G s LR, L l R s M, and L is maximal1
in G . Now it is straightforward to show that the order of an element of1

Ž . em f mGL q cannot be divisible by two ppd’s p , p of p y 1, p y 1,n em f m
respectively, where nr2 - e - f. Using this observation and the fact that

< Ž . <p and p do not divide Out R , we may deduce that at least one ofem f m
< <p and p must divided M . A contradiction ensues if we are able toem f m

< <choose e, f such that nr2 - e - f and M is divisible by neither p norem
p .f m

This method is successful provided n is not too small, usually n G 4;
otherwise the ppd’s will not exist. As a result one is left with a number of
low-degree-cases}actually 13}which must be handled by other means.
ŽWe are grateful to Alice Niemeyer and Cheryl Praeger for several helpful
observations that led to the alternative approach, and for making their

w x .paper 7 available to us.

3. THE STRUCTURE OF FINITE P-GROUPS

Having established that groups with P are soluble, we proceed to obtain
detailed structural information about these groups.

We begin with an elementary observation which relates supersolubility
Ž .to the property P. In any finite group G there is a unique maximum

normal supersolubly embedded subgroup, denoted here by

s G .Ž .
Ž . Ž .So there is a G-invariant series in s G with cyclic factors, while Grs G

has no nontrivial cyclic normal subgroups.

Ž . Ž .3.1 A group G is a P-group if and only if Grs G is a P-group.

Ž .Proof. Assume that Grs G is a P-group and suppose that H is a
proper subgroup of G which does not permute with any cyclic subgroup

Ž .not contained in H. Then s G g H. Let 1 s S - S - ??? - S s0 1 m
Ž .s G be a G-invariant series with cyclic factors. There is an i - m such

² : ² :that S F H but S g H. Writing S rS s xS , we have x H si iq1 iq1 i i
² :H x . Hence G is a P-group. The converse is obvious.

A Lemma on p-Groups

The following result plays a key role in the analysis of the chief factors
w xof a P-group. The case where p ) 2 may be found in 9, p. 27 ; when p s 2

w x Ž w x.the result is in 10 see also 11 . For the reader’s convenience we include
a proof which is shorter than those just cited.
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Ž .3.2 Let Q be a p-group and let N be a nontrï ial, elementary abelian
² :normal subgroup of Q which has a complement X in Q. If Q s y X for

< < < <some element y, then N s p if p is odd and N F 4 if p s 2.

Proof. Assume that Q is a counterexample of minimal order.
Ž .Case p ) 2. Let 1 / t g N l Z Q . The result is true for the group

² : < < 2 ² :Qr t , so N s p . Then we can write N s u, t for some u. Since
Q s XN, we have y s xuat b, where x g X. Then

pp Ž .p a b p p a p a p2w xy s xu t s x u u , x s xŽ .

w x ² : p < < < <since N, Q F t . It follows that y g X and hence that N s Q : X s
<² : ² : <y : y l X s p.

Ž . < ² : <Case p s 2. Again let 1 / t g N l Z Q . Then N : t divides 4 and
< < ² : ² : Ž ² :. ² :N s 8. Let 1 / s t g Nr t l Z Qr t . Then N s s, t, u for some

² : w x ² : w x ² :u, and s, t eG. Note that N, Q F s, t and s, Q F t .
Now write y s xuat bsc, where x g X. Since s x u at b s s x s s or st, we

obtain

s1qx u at bqŽ x u at b.2qŽ x u at b.3 s 1.

4 Ž a b c.4 Ž a.4 xConsequently y s xu t s s xu . Since s s s or st, we have
w 2 ² :x Ž a.2 2Ž a.1qx 2² : 4 Ž a.4x , s, t s 1. Also xu s x u g x s, t . Hence y s xu s

4 < < < < <² : ² : <x . Finally, N s Q : X s y : y j X F 4, a contradiction.

We can now tackle the chief factors of P-groups.

THEOREM 3.3. Let G be a group satisfying P. Then e¨ery chief factor of G
has order 4 or a prime.

Proof. Let G be a counterexample of minimal order and choose a
minimal normal subgroup A of G. Of course G is soluble and A is
elementary abelian. Each chief factor of GrA has order 4 or a prime.

< <Therefore A must be an elementary abelian p-group, with A ) p and
< <A ) 4 if p s 2. Clearly A is the unique minimal normal subgroup of G.

Ž .Put N s Fit G , the Fitting subgroup of G. Then N is a p-group by
Ž . Ž .uniqueness of A. Also A F Z N since A l Z N / 1. Next define FrN

Ž .Xto be O GrN . Then F splits over N, say with F s VN and V l N s 1.p
Ž . Ž .The Frattini argument yields G s N V F s LN, where L s N V . SinceG G

L l Ae LN s G, either L l A s 1 or A F L.
w x Ž .Suppose that A F L. Then A, V s 1, and so A F Z F because

Ž .XF s VN. Now consider O GrA s TrA. In the first place TNrN Fp
Ž . w x Ž .X XO GrN s FrN, so T F F and A, T s 1. Hence T s A = O T ,p p

Ž . Ž .Xwhich shows that T s A. Thus O GrA s O GrA s NrA. Thereforep p p
NrA is the intersection of the centralizers of the p-chief factors of GrA
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Ž w x.see 8, p. 270 . From this it follows that GrN is a subgroup of a direct
product of copies of the cyclic group C if p ) 2, or of copies of S ifpy1 3

Ž .p s 2. If p ) 2, this means that F s G and so A F Z G , a contradiction.
Thus p s 2 and GrN is an extension of a 3-group by a 2-group. Since

Ž .XFrN s O GrN , it follows that GrF is a 2-group. But GrF acts2
Ž .irreducibly on A, so again A must be contained in Z G .

We are now left with the situation where G s LN and L l A s 1. Let
U be chosen maximal subject to L F U and U l A s 1. Since G has P,

² : ² :there is an element g g G_U such that g U s U g . In fact we can
² : ² : ² :assume that g is a p-element. For let g s t = z , where t is a

X <² : < < < < <p-element and z is a p -element. Now g U : U divides G : U s UN : U
< < ² : Ž ² :.s N : U l N , which is a power of p. Hence g r U l g is a p-group,

² : ² : ² : ² :which shows that z g U l g . Therefore g U s t U and U g s
² :U t . Now replace g by t.

² :Next put U s g U. Then U l A / 1 by maximality of U. But
U l AeUN s G, so that A F U and UA F U. Consequently

² :UA s UA l U s UA l g U.Ž . Ž .

² :Now let Q be a Sylow p-subgroup of UA containing UA l g . Since
A F Q, we have

Q s Q l UA s Q l U A;Ž . Ž .

in addition

² :Q s Q l UA s Q l UA l g UŽ . Ž .Ž .
² :s UA l g Q l U .Ž .Ž .

Ž .Applying 3.2 to Q with Q l U for X and A for N, we conclude that
< < < <A s p if p ) 2 and A s 4 if p s 2, a final contradiction.

COROLLARY 1. If G is a P-group, then e¨ery maximal subgroup M of G
has index 4 or a prime. Also M has a cyclic supplement in G with prime
power order.

This follows easily from Theorems 2.1 and 3.3. Note that the second
property of G is Kegel’s condition *.

Žw x.COROLLARY 2 9, p. 28 . For groups of odd order the property P is
equï alent to supersolubility.

Ž w x.COROLLARY 3 cf. 10 . Let G be a P-group. Then

Ž .i G is supersoluble if and only if S is not isomorphic with a quotient4
of G;
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Ž . < <ii if the largest prime dï iding G is p ) 3, then G has a normal
Sylow p-subgroup;

Ž . Xiii if Q is a Sylow 2-subgroup of G , then QeG and GrQ is
supersoluble.

Ž . wThese results follow easily from 3.1 , Theorem 3.3, and Satz 9.1 of 2, p.
x Ž716 for the first statement of Corollary 3 a minimal counterexample is

.considered .
Another criterion for a P-group to be supersoluble involves the derived

subgroup.

THEOREM 3.4. A group G is supersoluble if and only if G and GX

satisfy P.

Proof. Assume that G and GX satisfy P and that G has least order
subject to being nonsupersoluble. Then G has a unique minimal normal
subgroup A and GrA is supersoluble. By Theorem 3.3 we must have
< < Ž . Ž .A s 4. If f G / 1, then Grf G is supersoluble, as must be G by a

Ž w x. Ž .well-known theorem of Huppert see 8, p. 276 . Therefore f G s 1,
Ž w x.which implies that A has a complement X in G see 8, p. 135 . But

Ž . X < X <C A s 1, so G , S or A and G , A or G s 4. Both situations areX 4 4 4
impossible since A does not have P.4

The next result is an elementary remark.

Ž .3.5 Let G be a group each of whose chief factors has order 4 or a
Ž . � 4Xprime. Then GrO G is a 2, 3 -group.2

Proof. Consider a chief series 1 s G F G ??? F G s G and assume0 1 n
that G rG has order a prime p ) 3 while G rG has order 2, 3,iq1 i i iy1

Ž .or 4. Then G rG F Z G rG , so G rG s G rG =i iy1 iq1 iy1 iq1 iy1 i iy1

< < < <G rG where G rG s p and G rG s 2, 3, or 4. Replace G byi iy1 i iy1 iq1 i i
G . By a sequence of such replacements we can move chief factors withi
prime order greater than 3 down the series past factors of order 2, 3, or 4.

Ž . � 4XConsequently GrO G is a 2, 3 -group.2

The next result sheds further light on the internal structure of P-groups.
It is significant in that it distinguishes between S , which is a P-group, and4
A , which is not.4

THEOREM 3.6. Let G be a soluble group satisfying P and let M be a chief
factor of G with order 4. Then G induces the full group of automorphisms in

Ž .M, i.e., GrC M , S .G 3

Ž . � 4XProof. We can assume that O G s 1. Hence G is a 2, 3 -group by2
Ž .Theorem 3.3 and 3.5 . Thus chief factors of G have order 2, 3, or 4 and

Ž . Ž . Ž X.F s Fit G is a 2-group. Also O GrF s 1 and C FrF s F.2 G
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X Ž .Consider a G-composition series in FrF . If U is a factor, then GrC UG
is isomorphic with a subgroup of S , and if D is the intersection of all the3

Ž .C U , then GrD is an extension of a 3-group by a 2-group. AlsoG
Ž X.F s C FrF F D and DrF is a 2-group. Hence D s F and GrF has aG

normal Sylow 3-subgroup, say VrF.
Let L - K - H be successive terms of a G-composition series of FrFX

< < < < Ž .with K : L s 4 and H : K s 2. We claim that KrL s C V / 1.Hr L
w Ž . xThis is clear if HrL is not elementary abelian since f HrL , V s 1; in

the elementary case use complete reducibility of HrL as a VrF-module.
Ž .Since V acts irreducibly on KrL, it follows that C V s KrL hasHr L

< <order 2. Note that K eG and H : K s 4. Now replace K by K. By a
sequence of such replacements G-composition factors of order 4 in FrFX

may be moved up the G-composition series. Hence there is a G-submodule
F rFX such that all G-composition factors of FrF have order 4, while1 1
those of F rFX have order 2.1

The next step is to prove that GrF splits over FrF . With VrF s1 1
Ž .O GrF as above, we have by the Schur]Zassenhaus theorem that3

V s QF, where Q l F s F and QrF is a Sylow 3-subgroup of VrF .1 1 1
Ž .Then the Frattini argument shows that G s N Q V s TF, where T sG

Ž .N Q . Notice that Q has no nontrivial fixed points in FrF since allG 1
< <G-composition factors of FrF have order 4 and G : V is a power of 2.1

Hence T l F s F and GrF splits over FrF with complement TrF .1 1 1 1
Let X s T.1

Noting that chief factors of X are also of order 2, 3, or 4, we may apply1
the argument just given to X , with F in place of F, obtaining X s X F1 1 1 2 1
and X l F s F . By repetition of the procedure we generate a sequence2 1 2
of subgroups X , F , i s 1, 2, . . . , r, such that F e X , X s X F , andi i i i i iq1 i

X l F s F . Moreover by construction every X -composition factoriq1 i iq1 i
of F rF has order 4. The sequence terminates at r if F is contained ini iq1 r

the hypercentre of X .r
< <Put X s X and note that G s XF and G : X is a power of 2. By ther

property P there is a subgroup Y of G such that X is maximal in Y and X
< <has a cyclic supplement in Y. Clearly Y : X s 2 or 4. Suppose that

< < Ž .Y : X s 2. Then X eY and Y s X Y l F ; hence YrX is isomorphic
with Y l FrF . Thus Y l FrF is centralized by X. However, each F rFr r i iq1
has by construction no nontrivial X-fixed points. By this contradiction
< <Y : X s 4.

< <Now put V s Y l F, so that Y s XV and V : F s 4. Note that F is1 1 1 r r

a maximal proper X-invariant subgroup of V because X is maximal in Y.1
X ² X :Assume that V g F . Then V s V , F . But V is a 2-group, so that1 r 1 1 r 1

X Ž . XV F f V and V s F , a contradiction. Hence V F F , F e XV s Y,1 1 1 r 1 r r 1
and V rF is a chief factor of Y of order 4.1 r
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Ž .Next consider the group YrC V rF ; this is isomorphic with either SX 1 r 4
Ž .or A . But in the latter case XrC V rF would not have a cyclic4 X 1 r

Ž .supplement in YrC V rF . Consequently X must induce the full groupX 1 r
of automorphisms in V rF .1 r

Put Y s X, V s F , and Y s Y s Y V ; then Y l F s V . Repeat the0 0 r 1 0 1 1 1
preceding argument with Y in place of X to obtain V ) V with1 2 1
Y s Y V , V eY , and X inducing the full group of automorphisms in2 1 2 2 2
V rV . This procedure generates a chain of X-invariant subgroups F s2 1 r
V eV e ??? eV s F such that X induces the full group of automor-0 1 s
phisms in each of the elementary abelian groups V rV of order 4.iq1 i

Now let M be a minimal normal subgroup of G with order 4. Then
Ž .M F Z F and, since G s XF, the subgroup X acts irreducibly on M. Now

M l F s 1 since F lies in the hypercentre of X, so M must be X-isomor-r r
phic with some factor V rV . Therefore X induces the full group ofiq1 i

Ž . < <automorphisms in M and GrC M , S . By induction on G the sameG 3
holds for the quotient group GrM, so the theorem is proved.

Ž .XCOROLLARY. Let G be a soluble group with the property P. If O G s 1,2
Ž .then GrFit G is a subdirect product of copies of S .3

Ž .For Fit G equals the intersection of the centralizers of its chief factors
in G.

Necessary and Sufficient Conditions for P

We turn now to the problem of characterizing P-groups. For this
purpose Kegel’s D-subgroup, defined in the introduction, is well-suited.
We begin by using the D-subgroup to give necessary and sufficient
conditions for a normal subgroup of a P-group to be supersoluble.

Ž .3.7 Let N be a normal subgroup of a P-group G. Then the following
statements are equï alent:

Ž .i N is supersoluble;
Ž .ii neither A nor S is an image of N;4 4

Ž . Ž .iii N F D G .

Ž . Ž . Ž .Proof. Obviously i implies ii . Assume that N satisfies ii but not
Ž . Ž .iii . Then N g D G for some surjective homomorphism l: G ª S .l 4

l Ž . Ž .Hence N s A or S , a contradiction. Finally, to see that iii implies i ,4 4
note that by Theorem 3.3 and Corollary 1, every maximal subgroup has a

Ž .cyclic supplement of prime power order in G. Therefore D G is supersol-
w x Ž .uble by 3, Proposition 2 . If N F D G , then N is supersoluble.

Ž .COROLLARY. If G is a P-group, then D G is the unique largest supersol-
uble normal subgroup of G.



PERMUTIZER CONDITION 703

We will now establish Theorem B, the promised characterization of
P-grous.

Proof of Theorem B. Assume first that G is a P-group. Then G satisfies
Ž .i by Theorems 2.1 and 3.3. Let L be a proper self-normalizing subgroup

Ž . Ž .X Xof G containing O G ; clearly we can assume that O G s 1. Then L is2 2
² :maximal in some subgroup X such that X s L x for some element x. It

< <follows from Theorem 3.3 that X : L s 3 or 4. Now XrL cannot beX
abelian, so it must be isomorphic with S , A or S . In the first and last3 4 4

Ž .cases D XrL is supersoluble, as required. But XrL cannot be iso-X X
morphic with A since in A a subgroup of order 3 has no cyclic4 4
supplements.

Ž . Ž . Ž . Ž .XConversely, assume that G satisfies i and ii . Then O G F s G2
Ž . Ž .Xand so by 3.1 we can assume that O G s 1. Let L be a proper2

² : ² :self-normalizing subgroup of G; it will be shown that x L s L x for
Ž .some x in G_ L. By ii L is maximal in some subgroup X for which

Ž . < <D XrL is supersoluble. Now X : L s 3 or 4, and thus XrL , S , A ,X X 3 4
Ž .or S . Since D A s A , we can exclude A here. Thus XrL , S or4 4 4 4 X 3

S ; in both cases LrL has a cyclic supplement in XrL , which com-4 X X
pletes the proof.
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