
J. Symbolic Computation (1990) 10, 593-610

On the Worst Case of Three Algorithms for Computing the Jacobi Symbol

J E F F R E Y SHALLIT t

Departmen~ of Ma~hema~ic~ and Computer Scier~ce
Dartmouth College

Hanover, NIT 05755
USA

shallit ~dartmou~h. edu

(Received 7 February 1989)

We study the worst-case behavior of three iterative algorithms for computing
the Jacobi symbol (~). Each algorithm is similar in format to the Euclidean
algorithm for computing gcd(u, v).

Eisenstein's algorithm chooses an even quotient at each step. It is shown
that the worst case occurs when u = 2n + 1, v = 2n - 1.

Lebesgue's algorithm is essentially the least-remainder Euclidean algorithm
with powers of 2 removed at each step. Its worst case occurs when u = 2L, - L , _ I ,
v = Ln, where Lo = 1, L1 = 1, and L, = 2L,_1 + L,-2 for n :> 2.

The "ordinary" Jacobi symbol algorithm is essentially the ordinary Euclidean
algorithm with powers of 2 removed at each step. It is the most interesting
mathematically of the three. We prove that if the ordinary algorithm on input
(u, v) performs n division steps, with u > v > 0 and u + v as small as possible,
then u = A . a n d v = A._I , where A0 = 1, A1 = 3, A2, = A~, - I + 2A2n-2 for
n _> 1, and A2,+1 = 2A2, d- A2,-1 for n __ 1.

We also discuss the worst-case inputs to the ordinary algorithm under the
lexicographic and reverse lexicographic orderings.

1. I n t r o d u c t i o n .

Interest in efficient computa t ion of the Jacobi symbol was reawakened in 1977 with
the publication of a randomized pr imal i ty test (Solovay & Strassen, 1977). Despi te this,
there seems to have been little systemat ic investigation of the worst-case behavior of the
classical algori thms for computa t ion of the Jacobi symbol.

In this paper, we discuss the worst-case behavior of three well-known algori thms, each
similar to the Euclidean algorithm, for comput ing the Jacobi symbol (~).

Recall that the ordinary Euclidean algori thm computes gcd(u0, u l) by doing a series
of divisions with remainder:

i Research suppor ted by NSF grant CCR-8817400.

0747-7171/90/120593+ 18 $03.00/0 © 1990 Academic Press Limited

594 J. Shal l i t

t~0 = G 0 U l "~ U2

U 1 = (ll?A 2 Jr- 1~ 3

Un--1 ~ an - - l 'Un ,

We say that n is the number of division steps in the algorithm. Lam~ (1844) proved
tha t the worst case of this algorithm occurs when the inputs are consecutive Fibonacci
numbers . More precisely, lett ing F0 = 0, F1 = 1, and F , = Fn-1 + Fn_2 for n _> 2, we
have (Knu th , 1981, p. 343):

T h e o r e m 1.1. Let u > v > 0 be such that the Euclidean a/gori~hm on inputs (u, v)
performs n division steps, and u is as small as possible. Then u -- Fn+2 and v = F,,+I.

C o r o l l a r y . On inputs (u ,v) , u > v > 0, the Euclidean algorithm performs no more ~han

2.08 log u - .32 q- .93u -1

division s~eps.

Another method of computing the greatest common divisor is the least-remainder
algorithm. Again, we do a series of divisions with remainder

U 0 ~--- a 0 u 1 -[- ~ l U 2

U l ~ a l u 2 "~" e2?ga

~ n - - 1 ~ g n - - l ~ n ,

but now we choose eiUi+l to be the absolutely least residue and ui+a > O, el = 4-1.
This a lgori thm was analyzed by Dupr~ (1846). Lett ing D0 = 0, D1 = 1, and Dn =
2Dn-1 + Dn-2 for n)_ 2, we have (Knuth , 1981, exercise 4.5.30)

T h e o r e m 1.2. Let u >_ v > 0 be such that the least-remainder algorithm on inputs
(u, v) performs n division steps, and u is as small as possible. Then u = D , + D , - I and
v = D~.

C o r o l l a r y . On inputs (u, v), u _> v > 0, the least-remainder aJgorithm performs no more
than

1.14log u -b .79 + .41u -1

division steps.

The Jacobi symbol (~) is defined for integers v and positive odd integers u. It can be
computed using the following identities (Jacobi, 1846):

(v) =(_ l) (U_l) (v_ l) /4 (UInvOdV) , u, v odd and positive; (1)

Computing the Jacobi Symbol 595

2)____ (__1)(.:1_1)/8; (2)

(~) = a("- ')12 for lal <1; (3)

(y_~) = (v) (w) . (4)

Equation (1) shows that we can use a division with remainder to compute the Jacobi
symbol , while equations (2)-(4) show how to remove powers of 2 or - 1 , if necessary, to
keep the upper entry of the symbol odd and positive.

In the descriptions that follow, we assume v > O. If v _< 0, we can use equation (3)
above.

Eisenstein 's algorithm
Eisenstein (1844) proposed the following algorithm for computing (~) : let u = u0 and

v = u l be odd and write
UO = a o u l "[- ~2722
~21 ~-. alU 2 -~- E3723

1An_ 1 ~ . a n _ l l Z n.

Here el = 4-1 are chosen so tha t ui > 0, and each ai, except possibly an_l , is eve~. More
formally, if q = ul/ui+l is an integer, then ai = q; otherwise ai = [qJ or [q], whichever is
even,

Then

= -I) r, ifu. =I,

where

r = g ((~ i - -1) (: i+1- -1) + (UI+2--1) (1 - - 2 1 + 2)) .
O<i<n--2

Eisenstein's work is summarized by Smith (1965, § 23).

Lebesgue's edgori~hm
Lebesgue (1847) proposed a different algorithm, similar to the lea~t-remainder Eu-

c l idean algorithm, except that powers of 2 are removed at each step to ensure tha t the
nex t ui is always odd. Let u = u0 and v -- 2~1ul. Then write

Uo = aOUl "+" ~22e2~2
u I = a l u 2 + ~32¢a'/13

Un- -1 = a n - l ~ n .

596 I. Shallit

Here ui > 0 is always odd and ti = 4-1. The quotient al is chosen so that 2e~+2ui+2
u i + l / 2 .

Then
(v) (0 , i fun > 1;

= (-1) r, i f u , - - - 1 ,

where

(?A~81) ((1~i--1)(uI'F1 - 1) ('Ui-I'I- 1)1-- ~i+2~)
r~--0</<~n-1 e i + l ~ _ _ +/_<~n-0< 2 4 + \ -2 (2] "

.¢

The ord inaxy Mgori~hm
Finally, there is a third algorithm for computing the Jacobi symbol which is similar to

the ordinary Euclidean algorithm. Positive remainders are chosen at each step, but again
powers of 2 axe removed to ensure that each succeedin~ ui is odd. We call this algorithm
the "ordinary" Jacobi symbol algorithm.

While this algorithm is implicit in many elementary texts on number theory (e. g.
(LeVeque, 1977, p. 112), (Rosen, 1984, pp. 319-320)), the earliest explicit mention we
have been able to find is Williams (1980). Collins and Loos (1982) analyzed the ordinary
algorithm and produced a bad case (but not the voorst case!). The focus of their paper was
slightly different, however: while they counted the number of bit operations, we count the
number of division steps.

The ordinary algorithm also deserves attention as one that seems to be used frequently
in practice (e. g. (Angluin, 1982), (Riesel, 1985)). Gaston Gonnet informs me (personal
communication) that the ordinary algorithm is the one currently used for computing (-~) by
the computer algebra system Maple. Dan Grayson informs me (personal communication)
that the ordinary algorithm is also used in the Mathematica system.

On input (u , v) , we let u0 = u and 2~1ul = v and then write

~0 ~ aOUl -F 2eau2

ul = alu2 + 2eSua

?.In_ I : ~ n _ l ? g n .

The el axe chosen such that the ul are all odd. Formally, we have ai = [u l /u i+lJ and
el+2 = v2(ui - aiui+l), where v2(n) is the exponent of the highest power of 2 that divides
n. Then

= (-1) r, i f u , = l ,

where

r = E ei+l - - - - ~ q- 4 "
o<i_<.-i

Computing the Jacobi Symbol 597

In this paper, we analyze the worst-case complexity of Eisenstein's algorithm, Lebesgue's
algorithm, and the ordinary algorithm. Eisenstein's algori thm and Lebesgue's a lgori thm
are bo th easy to analyze, and the results appear in sections 2 and 3. The behavior of the
ordinary algorithm is much more complicated, and it is discussed in sections 4, 5, and 6.
The main results of the paper are contained in these sections; in particular, see Theorem
5.1 and Lemma 4.6.

2. E i s e n s t e l n ' s a l g o r i t h m .

In this section, we show that the worst-case behavior of Eisenstein's algori thm is
actually quite bad. Theorem 2.2 below seems to be a "folk theorem" and was first shown
to the author by Eric Bach.

L e m m a 2.1. Let u > v > O, u ,v odd, be such that Eisensteln's Mgorlthm performs n
division steps in comput ing (-~). Then u >_ 2n + 1 and v >_ 2n - 1.

P r o o f , Let ul denote the sequence of terms in Eisenstein's algorithm, where u0 = u and
ul = v. Then clearly u0 > ul > . . . > u , >__ 1 and all the ui are odd.

T h e o r e m 2.2. Let u > v > O, u, v odd, be such that Eisenstein's algorithm performs n
division steps (~) and u is as small as possible. Then u --- 2n + 1, and v = 2n - 1.

P r o o f . By the Lemma, u _> 2n q- 1 and v >_ 2n - 1. To complete the proof it suffices to
show that on input (u, v) =- (2n + 1, 2n - 1), Eisenstein's algorithm takes exactly n steps.
This is left to the reader.

3. Lebesgue~s a l g o r i t h m .

Define L0 = 1, L1 = 1, a n d L . = 2 L , - 1 + Ln-2 for n > 2. It is easy to prove by
induction that

(1 + v /2) n + (1 - V"2) r*
.L,,

2

L e m m a 3.1. Suppose u >_ 2v > O, u odd, and Lebesgue's algorithm performs n division
steps in computing (~). Then u >_ Ln+l and v >_ Ln.

P r o o f . By induction on n. It is easily verified for n -- 1. Now assume it is t rue for all
rn < n; we wish to prove it for rn = n.

Without loss of generality we may assume v is odd. Then the first division step writes
Uo = aoul +e22~2u2. Since Uo/Ul >_ 2, we have a0 _> 2. If a0 = 2, then par i ty considerations
show e~ = 0 and e2 = +1. If a0 = 3, then since 2e2u2 < u]/2, we have u0 > 2ul + u2. If
a0 > 4, then the same inequality holds. Thus in all cases we have u0 :> 2ul + u2. Now
u2 < u l /2 , so the induction hypothesis applies and we have ul >_ L , and us :> L,~_I.
Hence u0 > 2L , + L , - I = Ln+I and the proof is complete.

598 J. ShaUit

L e m m a 3.2. Suppose v <_ u < 2v, u odd, and Lebesgue's algorithm performs n division
s~eps in comput ing (-~). Then u >_ 2 L , -- L , - 1 and v > L , .

P r o o f . The l e m m a is easily verified for n = 1,2. Suppose the first two steps of Lebesgue ' s
a lgor i thm are

Uo ---- aoul Jr e22~U2;

U 1 = a l u 2 Jr e32eatz3.

Since u~ < uo < 2Ul, ei ther ao = 1 or ao = 2.
Case (a): a0 = 1. In this case we have u0 - ul + 2"2u2. Par i ty considerations show

tha t e2 >__ 1. Hence uo >__ ui Jr 2u2. But 2e2u2 _< u l / 2 because the least remainder is chosen
a t each step; hence 2u2 _< u l / 2 and uo >_ 6u2. But u l /u2 >_ 2, so L e m m a 3.1 applies and
we have ul > L. and u~ > L.-a. Then uo >_ 6L.-I >_ 3Ln-I Jr 2~n--2 ---- 2L. --L.--I, and
we axe done.

Case (b): a0 = 2. In this case we have uo = 2ul - u2, ul = alu2 "4" ea2~3ua. Now
us <_ u2/2, so Lemma 3.1 applies to (u2,us) and we find u2 >_ L . - 1 , us >_ L ._2 .

I f a l -- 2, then U l = 2u2 q- us > 2 L . - 1 Jr L . - 2 = L . , and Uo = 2ul - u2 = 3u2 -F 2us >_
3L ._1 ÷ 2 L . - 2 = 2 L . - L . - 1 , as was to be shown.

I f al >_ 3, then ul >_ (5/2)u2 > L,,-1 and therefore uo >_ 4u2 >_ 4 L . - 1 >_ 3 L . _ 1 q-
2 L . - 2 = 2 L . -- L ._~. This completes the proof.

T h e o r e m 3 .3 . Let u > v > 0, u odd, be such ~hat Lebesgue's algorithm per forms n
division steps in comput ing (~), and u is as small as possible. Then u = 2 L , - L , - 1 and
V = L n •

P r o o f . We m a y assume u < 2v. For if u >_ 2v, we wri te u = av -b e2% as the first s t ep of
the a lgor i thm, and a >_ 2. There are two cases: a --- 2 and a >_ 3.

I f a = 2, then the first step in the algori thm for (u ,v) mus t be u = 2v Jr r; the
a lgor i thm continues wi th (v, r). Then the algori thm on input (v + 2r, v) takes the same
n u m b e r of s teps as on input (u ,v) , and v Jr 2r < u, a contradiction.

I f a >_ 3, then set u ' = (a - 2)v Jr 2~r. A similar a rgument shows tha t the a lgor i thm on
inpu t (u ' , v) takes the same num ber of steps as on inpu t (u, v). But u ' < u, a contradict ion.

Hence we may assume u < 2v. By L e m m a 3.2 we have u > 2 L , - L , - 1 and v > L , .
To complete the proof it suffices to show that Lebesgue 's algori thm actually pe r fo rms n
division steps on input (u ,v) = (2L , - L , _ I , L ,) . This is left to the reader.

C o r o l l a r y . On inputs (u, v), u > v > 0, Lebesgue's algorithm per fo rms no more t han

1.141ogu + .27 Jr 2.27u - I

division steps.

Computing the Jacobi Symbol 599

4. The ordinary algorithm: preliminary analysis.

In this section we will explore the worst-case complexity of the ordinary Jacobi symbol
algorithm. As we will see, the behavior of the ordinary algorithm is fundamental ly more
complicated than that of the algorithms of Eisenstein and Lebesgue.

For each n, we are interested ila the "smallest" pair (u, v) such tha t the ordinary
algorithm performs n division steps. For the other algorithms in this paper, it was not
really necessary to discuss what was meant by "smallest", since for u :> v > 0, the input
(u, v) that minimized u al~o minimized v, and such an input was unique.

Unfortunately, the state of affairs is more complicated for the ordinary algorithm.
Indeed, if we search for inputs (u, v) that require 7 steps and minimize v, we find v = 105,
which occurs in the pair (269,105). However, the corresponding input tha t minimizes u is
u --= 259, which occurs in the pair (259, 141). Furthermore, the pair (259, 145) also requires
7 steps! Thus we see tha t for the ordinary algorithm, the "worst case" depends strongly
on our choice of ordering of the inputs, which was not the case for the other algorithms.

This problem suggests searching for a more "natural" ordering of the inpu ts - -one for
which the ordinary algorithm is well-behaved. It turns out that u -~ v is such an ordering;
more precisely, we show that if u > v :> 0 are such that the ordinary algori thm requires
n steps and u + v is as small as possible, then u = An a.nd v = A,,-1, for a certain linear
r e c u r r e n c e An.

Later, in section 6, we will discuss the worst-case inputs under lexicographic and
reverse lexicographic orderings.

Def in i t ion . Le* A_2 = 0, A_I = 1, As , = A2,-1 + 2A2n-2 for n > 0, and A2,+1 =
2A2n + A2,-1 for n :> 0.

Here is a brief table of the Ai:

n = - 2 - 1 01 2 3 4 5 6 7 8 9 10 11 12 . . .
A , = 0 I 13 5 13 23 59 105 269 479 1227 2185 5597 9967 . . .

In section 5, we will prove the following

Theorem 5.1. Let u > v > O, u odd, be such Lha~ ~he ordinary Jacobi symbol sdgori~hm
to compute (~) peHorms n division steps, and u + v is as small as possible. Then u = An
and v = A , - 1 .

(The intuition behind the choice of the Ai is as follows, arguing informally: we try
to choose An minimal such that one step of the algorithm leads from (A ,+I ,A ,~) to
(An, A, -1) . This suggests choosing A, = A,-1 + 2A,_2. Once this choice is made, how-
ever, we cannot choose An+l = An + 2An-l , since then 2A,-1 < A, , which would imply
that the next step is An = 2A•_1 + A , -2 . Hence instead, we choose A,+I = 2An + A,~-I.
This gives the recurrence for the Ai.)

To prove Theorem 5.1, we need some simple lemmas on the properties of the sequence
An:

600 J. Shallit

L e m m a 4 . 1 . Let a -- (5 + Vri'7)/2, fl = (5 - V/~'7)/2, Cl = (V~'7 + 1)/2, c2 = (~ - - "1)/2.
Then

A2 n ~__ (otn+l - - ~n+l)/~/-~, n > --1~

A s . _ , = (e~,~" + ~ ") / v " f f , r, > o.

P r o o f . Eas i ly derived by the me thod of constant coefficients or proved by i nduc t iom

L e m m a 4 . 2 . F o r n >__ 2 w e h a v e A , = 5 A , - 2 - 2 A , - 4 . F o r n >_
4A2,-2 + A2 , - 3 . For n >_ 0 we have A2,+1 = 3A2,-1 + 4 A t , - ~ .

P r o o f . Lef~ to the reader.

1 we have A 2 , =

L e m m a 4 .3 . For n >_ - 1 we have An -~ 1 (mod 2).

P r o o f . B y induction on n,

L e m m a 4 .4 . For n >_ 0 we have

A2n 3 +
I < ~ <

-- A 2 a - I 4

For n > 1 we have
1 -F ~ A2n+l

2 A2n
< 3 .

P r o o f . By Lemma 4.1 we have

A2. ot 3 + V ~

A 2 . - 1 el 4

and clearly A 2 . >_ A2 , -1 . This proves the first inequality. By Lemma 4.1 we have

A~.+I 1 + v ~
~ > cl ----- ';

A2, 2

also,
A2n+l A2n-1

- - 2 + - -
A2n A~n

< 3 .

L e m m a 4 .5 . Le~ 7 = (1 + v / ~) / 8 - .6404 and 6 ---- (3 + ~) / 2 -" 3.562. Let f (x) =
(3x + 1) / (4x + 2), g(x) = (4x + 2) / (x + 1), and h(x) = (3z + 1)/(x + 1). Then if x >_ 7,
we have f (~) ' ~ X) > ~ ~ d h(z) > (3 + , / 1 7) / 4 ~ 0 < x < 6, we have] (x) , g (~) < ~ and
h(x) <_ (1 + ~/17)/2.

P r o o f . Left to the reader.

Computing the Jacobi Symbol 601

We now come to the main l emma of this paper:

L e m m a 4.ti. Let u~ v be integers, u odd, u > v > O. Let 3" and 6 be as ha L e m m a 4.5.
(a) ~ the ordinary aJgorlthm to ~o~pute (~) performs n ~tivislon step~, ~ d n is even,

then
xu + v >__ z A , + A , - I

for x > 7.
(b) I f the ord ina ry a/gorithm to compute (4) performs n division steps, and n is odd,

then
XU q- V 7> xAn q" An-1

for O < z < 5.

P r o o f . We prove bo th s ta tements simultaneously by induction on n.
For n = 1, i t is easily verified that u > 3, v > 1, and so we have xu + v >__ xA1 + Ao

for all x > 0.
Similarly, for n = 2, we have u > 5, v > 3, and so zu + v > zA2 + A t for all z >__ 0.
Now assume tha t the l emma is true for all m < n; we prove it for m = n.
We m a y assume wi thout loss of generality that v is odd. P u t uo = u and u l = v. The

first step of the a lgor i thm sets

~Z0 = a0ul + 2e2u2.

Either a0 is odd or a0 is even.
If a0 is odd, then par i ty considerations show e2 > 1. Hence

uo = aoul q- 2e2u2 ~ Ul + 2u2.

Also note tha t 2u2 < Ul, so that if

i l l ~ alu2 Jr" 2eaU3~

then at :> 2. Hence ul :> 2u2 -{- ua.
If a0 is even, then u0 > 2ut q- us. Then, depending on whether ux/u2 is less t han or

greater t h a n 2, we have ul >_ u2 Jr" 2u3 or ul >_ 2u2 h- u3.
To summar ize , we have three cases to consider: (i) u0 > ut + 2u2, u t > 2u2 + u3; (ii)

u0 >_ 2ul + u2, u t >_ u2 + 2u3; and (iii) u0 >_ 2ul + u2, ut > 2u2 + u3.

Case (i): Here we have

u0 > 4u2 +u3 ;

ul > 2 u 2 + u 3 .

Hence it follows t h a t

xuo + ul > (4x + 2)u2 + (x q- 1)us. (~)

Now the a lgor i thm on (u2,u3) performs n - 2 division steps. By L e m m a 4.5, we see
that if x > 3' then g(x) = (4z + 2) / (x + 1) >__ 3"; and if 0 < x _< 6, then 0 < g(x) < 5. Hence
the induct ion hypothesis applies to g(z) and we find

4x + 2 4x + 2 A
z +-----~-u2 + u3 > Z + 1 . - 2 + A . - 3 .

602 J. Shallit

Hence
(4~ + 2)u2 + (x + 1)u3 _> (4x + 2)A.-2 + (x + 1)A.-3. (6)

Now suppose n is even. Then by Lemma 4.2 we have

(4x + 2)An-2 "b (x "b 1)An-3 = sAn + An- l , (7)

and so by combining (5)-(7) we find

xUo + ux >_ xA . + A._a,

as desired.
Now suppose n is odd, Then using Lemma 4.2, we find

(4x + 2)A,-2 + (x + l)An-3 = xA, + An-a + (x + I)A,-2 - (3x + I)A,-3. (8)

On the other hand, Lemmas 4.4 arld 4.5 tell us that

An-2 > I + %/~ An-a > 3x + 1 A

for 0 < x < 6. Hence
(x + 1)A._2 - (3x + 1) A . - 3 k O,

and combining (5), (6), (8), and (9) yields the result,

Case (ii): Here we have

Hence it follows that

U0 > 3U2 + 4ua;

Ul ~_~ U2 2v2U 3.

ZU0 "~- Ul k (3X "~ 1)uz + (4x + 2)ua.

(9)

(10)

Now the algorithm on (u2, u3) performs n - 2 division steps. By Lemma 4.5, we see
that if x > 7 then f (z) = (3z + 1)/(4z + 2) > 7; and if 0 _< z _< 6, then 0 < f (x) < £
Hence the induction hypothesis applies to f (z) and we find

3 x + l 3 x + l
4 ~ + 2 u 2 +u3 > 2A,_2 + A,_3. - 4x+

(11)
Hence

(3z + 1)u, + (4x + 2)u3 _> (3x + 1)A,-2 % (4x + 2)A,-3.

Now suppose n is odd. Then by Lemma 4.2 we have

(3x + 1)A,-2 + (4x + 2)A,-3 = xA, + A, -x , (12)

Computing th¢ Jacobi Symbol 603

and so by combining (10)-(12) we find

as desired.
Now suppose n is even.

zuo + ul > x A , + A . _ I ,

Then using Lemma 4.2, we find

(3x + + (4x + 2)A._3 = + A . -1 - (= + + + 1)A._3.

On the other hand, Lemmas 4.4 and 4.5 tell us that

_ _ 3 + ~ 3x + 1
An-2 < A , , - 3 < An-a

4 x + l

for x >__ 7. Hence
(3z + 1)An-a - (x + 1)A.-2 > 0,

and combining (10), (11), (13), and (14) yields the result.

Case (iii): Here we have

In this case, bo th u0 and ul
the inequali ty also holds here.

This completes the proof of Lemma 4.6.

(13)

(14)

u0 >_ 5u2 + 2u3;

Ul > 2u2 + us.

are a t least as large as the u0 and ul covered in case (i), so

5. P r o o f o f T h e o r e m 5.1.

We can now prove Theorem 5.1, which was stated in the last section.

P r o o f o f T h e o r e m 5 .1 .
Firs t , we show tha t on input u0 = An, u l = A n - l , the algorithm actually performs

exactly n steps. Clearly this is t rue for n = 1, 2. Assume true for m < n; we wish to prove
it for m = n.

If n is odd, then by Lemma 4.4 we know [A n / A , - l J = 2, so u 0 - 2 u l = An -2A,=-1 =
A , - 2 by the definition of An. And An-2 is odd by Lemma 4.3, so e2 = 0. Thus the
a lgor i thm continues wi th (u l ,u2) = (A n - I , A , - 2) , which by induction requires n - 1
division steps. Hence the result follows.

On the other hand, if n is even, then by Lemma 4.4 we know L A , / A n _ l J = 1, so
uo - u l = An - An-1 = 2An-2 by the definition of An. Again An-2 is odd by Lemma 4.3,
so e2 = 1. Thus the algori thm continues with (u l, u2) = (A, ,-I , A , - 2) , which by induction
requires n - 1 division steps. Hence the result follows.

Now let (u' , v s) be any input on which the ordinary algorithm performs n steps.
By set t ing z = 1 in L e m m a 4 . 6 , we see that u t + v t >_ A n + A , - I . If we could now
show tha t u = A , , v = A , _ I is actually the o~ly pair requiring n division steps with
u + v = A , + A n - l , ou r result would follow.

604 J. Shalli t

To do this, suppose (u ' ,v ') is another pair with

u' + v' = An + A.-1 . (15)

Then by L e m m a 4.6 we have 2u I + v I :> 2An + An-1. Subtract ing (15), we see u' > An.
On the o ther hand, by Lemma 4.6 we also have .~u' + v' >_] A , + An-~. Subtract ing (15),
we see - u t / 3 > -An~3 , or u I < An. Hence u' = An, v' -- An- l , and the result follows.

C o r o l l a r y . Le t the inputs to the ordinary algorithm be u > v > O. Then the ordinary
a/gorl thm performs no more than 1.32 log(u + v) - .72 division steps.

Thus we see that, in terms of the number of division steps for the worst case, Lebesgue's
a lgor i thm is superior to bo th Eisenstein's algorithm and the ordinary algorithm, as might
be expected.

6. Worst-case inputs o f the ordinary algorithm under lexieographic orderlngs.

In this section, we again consider the ordinary Jacobi symbol algorithm, and seek the
"smallest" inputs requiring n division steps, where the implied orderings are the lexico-
graphic order ing and the reverse lexicographic ordering.

We say that a pair (u ,v) is lezico#raphically less than (u ' ,v ') if u < u', or if u = u'
and v < v'. We write (u, v) < (u', v').

Similarly, (u, v) is reverse lezicographically less than (u', v') if (v, u) is lexicographically
less than (v', u ') . We wri te (u, v) <R (u', v').

T h e o r e m 6.1 . Let u > v > 0 and u odd.
(a)/_f the ordinary algorithm to compute (~) requires 2n division steps and (u, v) is

leMcographicM1y lea.st among all pairs with this property, then u = Azn, v = Azn-1.
(b) I f the ordinary algorithm to compute (~) requires 2n + 1 division steps and (u, v)

is reverse lexicographically least among all pairs with this property, then u = A2n+l, v =
A2n.

Proof.
(a) Let (u, v) take 2n division steps, and suppose (u,v) < (A2n, A2n-1). By Lemma

4.6 (a) we have zu + v >_ xA2n + A 2 , - I for x >_ 7. Hence

u - A 2 . >_ A 2 n - 1 -

and by choosing z sufficiently large we see u > A2,. Hence u = A2, and v < A2n-1. But
by sett ing z = 1 in Lemma 4.6 (a), we have v >__ A2, -1 , a contradiction. Thus (A2, , A2n-1)
must be lexicographically least.

(b) Let (u,v) take 2n + 1 division steps, and suppose (u,v) <n (A2n+I,A2n)" Then
by sett ing x = 0 in L e m m a 4.6 (b) we see v >_ A2,. Hence we must have u < A2n+I. But
by sett ing x = 1 in L e m m a 4.6 (b) we see u > A2,+1, a contradiction.

Computing the Jacobl Symbol 605

The reader will note the theorem above says nothing about the two missing symmetric
cases: 2n division steps under the reverse lexicographic ordering, and 2n + 1 division steps
under the lexieographic ordering. For these cases, we have Conjecture 6.2 below.

Define Ro = 0, RI = I, R2 = 7, Rs = 31, and Rn = 5R.-I - 10R.-3 +4R.-4. Define

SO ~--- 1, S 1 --~ 5, $2 ~--- 31, Ss = 141, and S. = 5S.-I - 10S._s + 4S,-4. Finally, define

To = 1, T1 = 3, T2 = 13, Ts = 57, and T, = 5T,-1 - 10T,-s + 4T,-4.
Here is a brief table

n =01

//. = 0 1

S.=15

T.=13

of the sequences R . , S . , a n d T . :

2 3 4 5 6 7 8 9 ...
7 31 145 659 3013 13739 62685 285931 ...

31 141 659 3005 13739 62669 285931 1304285 ...
13 57 259 1177 5367 24473 111631 509193 ...

Numerical evidence supports the following conjecture:

C o n j e c t u r e 6.2. Let u > v > 0 and u odd.
(a) If tlae ordinary algorithm to compute (v) ~akes 2n + 1 steps and (u, v) is/ex/co-

graphically least among all pairs having this property, then (u, v) = (T.+I, S .) .
(b) /f the ordinary algorithm to compute (~) takes 2n steps and (u, v) is reverse

lexicographically least among all pairs having this proper~y, then (u, v) = (R.+x, Try).

If true, this conjecture would be remarkable, because these worst cases do not cor-
respond to an ultimately periodic sequence of quotients, as is the case with every other
known Euclidean-type algorithm. (See the description of the matrices M(n) below.)

While the author is unable to prove Conjecture 6.2, it is possible to prove the following:

T h e o r e m 6.3.
The ordinary algorithm on input (Tn+1, S.) performs 2n + 1 division s~eps. Further,

(T.,+~,S.) < (A2.+~ ,A~.) for n > 2.
The ordinary algorithm on iapu~ (R.+I, T.) performs 2n division steps. F~ar~her,

(R,+I ,T ,) <R (A2, ,A2,-1) /'or n >_ 3.

Proof.
We prove only the first result, as the proof of the second is almost identical.
First we define some matrices that describe the transformations taking place in the

ordinary algorithm:

L e t M l = 1 , M ' 2 = , M s - 0 ' If ei E {1,2,3}, we define

L e m m a 6.4. Le~ ei 6 {i, 21 for 1 _< i < k - 1 and set

[ak bk] =M'~'~'' ' '~' ~ M 3 ' c k dk

606 J. Shallit

If el and ei+l are never both equal to 1 f o r l < i < k - 2 , then the Jacobi symbol algorithm
performs k division steps on input (a~. ck).

Proof . Left to the reader.

Now define [xo] M(n) = M~2M~I = w.
Yn Zn

We wish to find a reeursion for the sequences {w.}, {x.} , {Y-}, {z.}. We find

M(n q- 1) = M12M(n)M21 [12w. q- 4zn Jr 3y. + z . 16w. + 8Zn + 4yn q- 2Zn 1
= L 6w. + 2Xn Jr 3 y . q- z . 8wn q- 4 z . q- 4y . q- 2Zn J '

and

M(n + 2) = M12M(n + 1)M21

_ [234wn -b 90zn + 65yn + 25z.
- - L 130Wn -Ic- 50Zn q- 39y. -k 15z.

360w. + 144x. + 100y. + 4Oz.]
200wn + 80x. + 60yn + 24zn J '

M(n + 3) = M12M(n Jr 2)M21

4838w. + 1886x. q- 1357yn + 529zn
= L 2714wn + 1058xn q- 767yn + 299z.

7544wn + 2952x. -b 2116y. q- 828zn]
4232Wn + 1656X. -b l196yn q- 468Zn J

It is easy to find that

M(n Jr 3) = 23M(n + 2) - 46M(n ÷ 1) "b 8M(n) (16)
by solving a system of linear equations; hence each of the sequences {w.} , {xn}, {Yn},
{z.} satisfy this linear recurrence.

Now put

M(n)Ma = [w~n
t u'.

and

] ~n
I

Zn

[w. xn"] M(n)M213 I I "

L
Each of the eight sequences defined as the entries of the above matrices mus t satisfy

the same recurrence (16), as each entry is a linear combination of terms which satisfy (16).
Hence if we now define S2k = y~ and $2k+1 = y~ for k > 0, then we deduce So = 1,

Sl = 5, 82 = 31, Ss = 141, S4 = 659, S5 = 3005, and Sn = 23S.-2 - 46Sn-4 q- 8Sn-6 for
n > 6 .

Similarly, if we define T2k+l = w~ and T2k+2 = w~ for k _> 0, then we deduce T1 = 3,
T2 = 13, Ts = 57, Ta = 259, T5 - 1177, To - 5367, and T. = 23T._2 - 46T._4 + 8T._s
for n > 7.

We can now prove Theorem 6.3:

Computing the Jacobi Symbol 607

P r o o f .
It follows from Lemma 6.4 that on input (Tn+a, Sn), the ordinary algorithm performs

2n + 1 division steps.
It remains to show that the sequences {S,} and {T,} actually satisfy the recursion

stated in Theorem 6.3, and that T,+a < A2n+l for n > 2.
For this, it is necessary to find a dosed form for T, and S,. We observe that the

associated characteristic polynomial for the recurrence is x ~ - 23x 4 h- 46x 2 - 8. It factors
as follows:

z 6 - 23x 4 +46x 2 - 8 -- (x 2 - 2)(x 2 - 5 x q-2)(x 2 + 5 x +2).

This, together with the help of a computer algebra system, allows us to find a closed form
for the recurrences. Let a and/3 be as in Lemma 4.1. Then

34] an+ fin+ (--V/2)n+ k ~ (V~)a'

These formulas are easily verified by induction. From these formulas, it is easy to
see that Sn - 5Sn--1 - 1 0 S n - 3 "4- 4Sn-4, aS asserted, and that Tn also satisfies the same
recurrence.

We now show that T,+a < A2n+l for all n sufficiently large. For this it sutTices to
observe that the closed forms for Tn and An imply that T,+I ~ (_((6 q- v ~) / 1 7) ~ ~+'1 and
A2.+1 ~ + Since ((6 + 4i)/17) < ((417 + 1)/2vff¢), the result
follows for all n sufficiently large. We leave the proof that Tn+l < A2n+l for n ~ 2 to the
reader.

7. S o m e r e m a r k s .

Gauss (1876) showed how to compute the Jacobi symbol (-~) using the partial quotients
in the continued fraction for u/v. Thus by using the fast methods of SchSnhage (1971)
for computation of continued fractions, one can compute (~) in O(n(logn)21oglogn) bit
operations, where u ,v < 2 n. (This was pointed out to the author by H. W. Lenstra, Jr.
and E. Bach.) However, this method is unlikely to be competitive in practice, except for
extremely large inputs.

For a discussion of other methods to compute Jacobi symbols, see Bachmann (1968,
pp. 290-302).

V. C. Harris (1970) found the worst case of a Euclidean algorithm similar to the ones
described here. G. J. Rieger (1976, 1980a, 1980b) has analyzed this algorithm.

A "shift-remainder" algorithm for computing the GCD, with some similarity to algo-
rithms mentioned here, was analyzed by G. Norton (1987).

It is also possible to adapt the so-called "binary GCD algorithm" of Stein (1967) to
compute the Jacobi symbol. Also see Knuth (1981).

508 J. Shallit

E. Bach points out (personal communication) that the three Jacobi symbol algori thms
discussed in this paper could also be used to compute gcd(u, v), where v is odd. In fact,
in the notation of section 1, this gcd is just u , .

Bach has also suggested that one could investigate the average number of division
steps in computing (~), as Heilbronn (1969) and Porter (1975) have done for the ordinary
Euclidean algorithm, and Rieger (1978) for the least-remainder algorithm. This analysis
is probably feasible to carry out for Eisenstein's algorithm, and it seems likely tha t the
average number of division steps is O((log u)2). However, determining the average-case
behavior for Lebesgue's algorithm or the ordinary algorithm seems quite hard.

8. A c k n o w l e d g m e n t s .

A preliminary version of this paper was presented at the AMS Summer Meeting in
Boulder, Colorado, on August 9, 1989.

V. C. Harris read an earlier version of this paper and made many helpful suggestions.
Thanks to Kevin McCurley for pointing out the reference to Smith (1965) and Williams

(1980).
Thanks also to one of the referees, whose detailed remarks substantially improved the

presentation of this paper.

Re fe rences

Angluin, D. (1982). Lecture notes on the complexity of some problems in number theory,
Yale University, Department of Computer Science, Technical Report 243.

Bachmann, P. (1968). "Niedere Zahlentheorie," Chelsea, New York.

Collins, G. E., Loos, R. G. K. (1982). The Jacobi symbol algorithm, ACM SIGSAM
Bullefin 16 (1), 12-16.

Duprfi, A. (1846). Sur le hombre de divisions ~ effectuer pour obtenir le plus grand commun
diviseur entre deux hombres entlers, J. Math. Pure8 AppL l l , 41-64.

Eisenstein, G. (1844). Einfacher Algorithmus zur Bestimmung des Werthes yon (~), o r. f~r
die Reine und Angew. Ma~h. 27, 317-318.

Gauss, C. F. (1876). Theorematis fundamentalis in doctrina de residuis quadraticis demon-
strationes et ampliationes novae, in Werke, V. II, pp. 49-64.

Harris, V. C. (1970). An algorithm for finding the greatest common divisor, Fib. Quart.
8, 102-103.

Computing the Jacobi Symbol 609

Heilbronn, H. (1969). On the average length of a class of finite continued fractions, in
Number Theory ~ Analysis, pp. 87-96.

lacobi, C. G. J. (1846). Uber die Kreistheilung und ihre Anwendung auf die Zahlentheorie,
.L f~r die Reine und Angew. Math. 30, 166-182. (= Werke, V. 6, pp. 254-274.)

Knuth, D. E. (1981). "The art of computer programming," V. II (Seminumerical Algo-
rithms), 2nd edition, Addison-Wesley, Reading, Mass.

Lam~, G. (1844). Note sur la limite du hombre des divisions dans la recherche du plus
grand commun diviseur entre deux hombres entiers, C. R. Acad. Sei. Paris 19, 867-870.

Lebesgue, V.-A. (1847). Sur le symbole (~) et quelques-unes de ses applications, 3". Math.
Pure, Appl. 12,497-517.

LeVeque, W. J. (1977). "Fundamentals of number theory," Addison-Wesley, Reading,
Mass.

Norton, G. (1987). A shift-remainder GCD algorithm, in L. Huguet and A. Poli, eds.,
AAECC-5 (Lecture Notes in Computer Science #356), pp. 350-356.

Porter, J. W. (1975). On a theorem of Heilbronn, Mathematika 22, 20-28.

Rieger, G. J. (1976). On the Harris modification of the Euclidean algorithm, Fib. Quart.
14, 196,200.

Rieger, G. J. (1978). Uber die mittlere Schri~tanzahl bet Divisionsalgorithmen, Math.
Nachr. 82, 157-180.

Rieger, G. J. (1980a). Uber die Schrittanzahl beim Algorithmus von Harris und dem nach
nKchsten Ganzen, Arch. Math. 34, 421-427.

Rieger, G. J. (1980b). Continued fractions and related algorithms, in London Mathematical
Society Lecture Note Series #56, Journ~es Arithm6tiques, J. V. Armitage, editor, pp. 372-
378.

Riesel, H. (1985). "Prime numbers and computer methods for factorization," BirkhKuser,
Boston.

Rosen, K. H. (1984). "Elementary number theory and its applications," Addison-Wesley,
Reading, Mass.

SchSnhage, A. (1971). Schnelle Berechnung yon Kettenbruchentwicklungen, Acta Inform.
1, 139-144.

610 J. Shallit

Smith, H. J. S. (1965). "Report on the theory of numbers," Chelsea, New York.

Solovay~ R. and Strassen, V. (1977). A fast Monte-Carlo test for primality, SIAM J.
CampuS. 6, 84-85; erratum, 7 (1978), 118.

Stein, J. (1967). Computational problems associated with Racah algebra, J. Compu~.
Phys. 1, 397-405.

Williams, H. C. (1980). A modification of the RSA public-key encryption procedure, IEEE
Trans. Info. Theory IT-26, 726-729.

