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We study the worst-case behavior of three iterative algorithms for computing 
the Jacobi symbol (~). Each algorithm is similar in format to the Euclidean 
algorithm for computing gcd(u, v). 

Eisenstein's algorithm chooses an even quotient at each step. It  is shown 
that the worst case occurs when u = 2n + 1, v = 2n - 1. 

Lebesgue's algorithm is essentially the least-remainder Euclidean algorithm 
with powers of 2 removed at each step. Its worst case occurs when u = 2L,  - L , _ I ,  
v = Ln, where Lo = 1, L1 = 1, and L,  = 2L,_1 + L,-2  for n :> 2. 

The "ordinary" Jacobi symbol algorithm is essentially the ordinary Euclidean 
algorithm with powers of 2 removed at each step. It  is the most interesting 
mathematically of the three. We prove that  if the ordinary algorithm on input 
(u, v) performs n division steps, with u > v > 0 and u + v as small as possible, 
then u = A .  a n d  v = A._I ,  where A0 = 1, A1 = 3, A2, = A~, - I  + 2A2n-2 for 
n _> 1, and A2,+1 = 2A2, d- A2,-1 for n __ 1. 

We also discuss the worst-case inputs to the ordinary algorithm under the 
lexicographic and reverse lexicographic orderings. 

1. I n t r o d u c t i o n .  

Interest  in efficient computa t ion  of the Jacobi symbol  was reawakened in 1977 with 
the publication of a randomized pr imal i ty  test (Solovay & Strassen,  1977). Despi te  this, 
there seems to have been little systemat ic  investigation of the worst-case behavior  of  the 
classical algori thms for computa t ion  of the Jacobi symbol.  

In this paper,  we discuss the worst-case behavior of three well-known algori thms,  each 
similar  to the Euclidean algorithm, for comput ing the Jacobi symbol  (~). 

Recall that  the ordinary Euclidean algori thm computes  gcd(u0, u l) by  doing a series 
of divisions with remainder:  
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t~0 = G 0 U l  "~ U2 

U 1 = (ll?A 2 Jr- 1~ 3 

Un--1 ~ an - - l 'Un ,  

We say that  n is the number of division steps in the algorithm. Lam~ (1844) proved 
tha t  the worst case of this algorithm occurs when the inputs are consecutive Fibonacci 
numbers .  More precisely, lett ing F0 = 0, F1 = 1, and F ,  = Fn-1 + Fn_2 for n _> 2, we 
have (Knu th ,  1981, p. 343): 

T h e o r e m  1.1. Let u > v > 0 be such that the Euclidean a/gori~hm on inputs (u, v) 
performs n division steps, and u is as small as possible. Then u -- Fn+2 and v = F,,+I. 

C o r o l l a r y .  On inputs  (u ,v) ,  u > v > 0, the Euclidean algorithm performs no more ~han 

2.08 log u - .32 q- .93u -1 

division s~eps. 

Another  method  of computing the greatest common divisor is the least-remainder 
algorithm. Again, we do a series of divisions with remainder 

U 0 ~--- a 0 u  1 -[- ~ l U 2  

U l  ~ a l u 2  "~" e2?ga 

~ n - - 1  ~ g n - - l ~ n ,  

but now we choose eiUi+l to be the absolutely least residue and ui+a > O, el = 4-1. 
This a lgori thm was analyzed by Dupr~ (1846). Lett ing D0 = 0, D1 = 1, and Dn = 
2Dn-1 + Dn-2  for n )_ 2, we have (Knuth ,  1981, exercise 4.5.30) 

T h e o r e m  1.2. Let u >_ v > 0 be such that the least-remainder algorithm on inputs 
(u, v) performs n division steps, and u is as small as possible. Then u = D ,  + D , - I  and 
v = D~. 

C o r o l l a r y .  On inputs  (u, v), u _> v > 0, the least-remainder aJgorithm performs no more 
than 

1.14log u -b .79 + .41u -1 

division steps. 

The  Jacobi symbol  (~) is defined for integers v and positive odd integers u. It can be 
computed  using the following identities (Jacobi, 1846): 

( v )  =(_ l ) (U_l ) (v_ l ) /4 (UInvOdV) ,  u, v odd and positive; (1) 
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2)____ (__1)(.:1_1)/8; (2) 

(~) = a("- ' )12 for lal <1; (3) 

(y_~) = ( v )  ( w ) .  (4) 

Equation (1) shows that  we can use a division with remainder to compute the Jacobi 
symbol ,  while equations (2)-(4) show how to remove powers of 2 or - 1 ,  if necessary, to 
keep the upper entry of the symbol odd and positive. 

In  the descriptions that  follow, we assume v > O. If v _< 0, we can use equation (3) 
above. 

Eisenstein 's algorithm 
Eisenstein (1844) proposed the following algorithm for computing (~) : let u = u0 and 

v = u l  be odd and write 
UO = a o u l  "[- ~2722 
~21 ~-. alU 2 -~- E3723 

1An_ 1 ~ .  a n _ l l Z  n.  

Here el = 4-1 are chosen so tha t  ui > 0, and each ai, except possibly an_l ,  is eve~. More 
formally,  if q = ul/ui+l is an integer, then ai = q; otherwise ai = [qJ or [q], whichever is 
even, 

Then 

= -I) r, ifu. =I, 

where  

r = g ( (~ i - -1 ) ( : i+1- -1)  + (UI+2--1 ) ( 1 - - 2 1 + 2 ) )  . 
O<i<n--2 

Eisenstein's work is summarized by Smith (1965, § 23). 

Lebesgue's edgori~hm 
Lebesgue (1847) proposed a different algorithm, similar to the lea~t-remainder Eu- 

c l idean algorithm, except that  powers of 2 are removed at each step to ensure tha t  the 
nex t  ui  is always odd. Let u = u0 and v -- 2~1ul. Then write 

Uo = aOUl "+" ~22e2~2 
u I = a l u  2 + ~32¢a'/13 

Un- -1  = a n - l ~ n .  
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Here ui > 0 is always odd and ti = 4-1. The quotient al is chosen so that 2e~+2ui+2 
u i + l / 2 .  

Then 
( v )  ( 0 ,  i fun  > 1; 

= ( -1)  r, i f u , - - - 1 ,  

where 

( ?A~81 ) ((1~i--1)( uI'F1 - 1) ('Ui-I'I- 1)1-- ~i+2~) 
r~--0</<~n-1 e i + l ~ _ _  +/_<~n-0< 2 4 + \  -2 ( 2  ] " 

.¢ 

The ord inaxy  Mgori~hm 
Finally, there is a third algorithm for computing the Jacobi symbol which is similar to 

the ordinary Euclidean algorithm. Positive remainders are chosen at each step, but again 
powers of 2 axe removed to ensure that each succeedin~ ui is odd. We call this algorithm 
the "ordinary" Jacobi symbol algorithm. 

While this algorithm is implicit in many elementary texts on number theory (e. g. 
(LeVeque, 1977, p. 112), (Rosen, 1984, pp. 319-320)), the earliest explicit mention we 
have been able to find is Williams (1980). Collins and Loos (1982) analyzed the ordinary 
algorithm and produced a bad case (but not the voorst case!). The focus of their paper was 
slightly different, however: while they counted the number of bit operations, we count the 
number of division steps. 

The ordinary algorithm also deserves attention as one that seems to be used frequently 
in practice (e. g. (Angluin, 1982), (Riesel, 1985)). Gaston Gonnet informs me (personal 
communication) that  the ordinary algorithm is the one currently used for computing (-~) by 
the computer algebra system Maple. Dan Grayson informs me (personal communication) 
that the ordinary algorithm is also used in the Mathematica system. 

On input ( u , v ) ,  we let u0 = u and 2~1ul = v and then write 

~0 ~ aOUl -F 2eau2 

ul  = alu2 + 2eSua 

?.In_ I : ~ n _ l ? g n .  

The el axe chosen such that the ul are all odd. Formally, we have ai = [u l /u i+lJ  and  
el+2 = v2(ui - aiui+l), where v2(n) is the exponent of the highest power of 2 that divides 
n. Then 

= ( -1 )  r, i f u , = l ,  

where 

r =  E ei+l - - - - ~  q- 4 " 
o<i_<.-i 
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In this paper, we analyze the worst-case complexity of Eisenstein's algorithm, Lebesgue's 
algorithm, and the ordinary algorithm. Eisenstein's algori thm and Lebesgue's a lgori thm 
are bo th  easy to analyze, and the results appear in sections 2 and 3. The behavior of the 
ordinary algorithm is much more complicated, and it is discussed in sections 4, 5, and  6. 
The main results of  the paper  are contained in these sections; in particular,  see Theorem 
5.1 and Lemma 4.6. 

2. E i s e n s t e l n ' s  a l g o r i t h m .  

In this section, we show that  the worst-case behavior of Eisenstein's algori thm is 
actually quite bad. Theorem 2.2 below seems to be a "folk theorem" and was first shown 
to the author by Eric Bach. 

L e m m a  2.1. Let u > v > O, u ,v  odd, be such that Eisensteln's Mgorlthm performs n 
division steps in comput ing (-~). Then u >_ 2n + 1 and v >_ 2n - 1. 

P r o o f ,  Let ul denote the sequence of terms in Eisenstein's algorithm, where u0 = u and 
ul = v. Then clearly u0 > ul > . . .  > u ,  >__ 1 and all the ui are odd. 

T h e o r e m  2.2. Let  u > v > O, u, v odd, be such that Eisenstein's algorithm performs n 
division steps (~) and u is as small as possible. Then u --- 2n + 1, and v = 2n - 1. 

P r o o f .  By the Lemma,  u _> 2n q- 1 and v >_ 2n - 1. To complete the proof  it suffices to 
show that  on input (u, v) =- (2n + 1, 2n - 1), Eisenstein's algorithm takes exactly n steps. 
This is left to the reader.  

3. Lebesgue~s  a l g o r i t h m .  

Define L0 = 1,  L1 = 1, a n d  L .  = 2 L , - 1  + Ln-2 for n > 2. It is easy to prove by 
induction that  

(1 + v /2)  n + (1 - V"2) r* 
.L,, 

2 

L e m m a  3.1. Suppose u >_ 2v > O, u odd, and Lebesgue's algorithm performs n division 
steps in computing (~). Then u >_ Ln+l and v >_ Ln. 

P r o o f .  By induction on  n. It is easily verified for n -- 1. Now assume it is t rue  for all 
rn < n; we wish to  prove it for rn = n. 

Without  loss of  generality we may  assume v is odd. Then  the first division step writes 
Uo = aoul +e22~2u2. Since Uo/Ul >_ 2, we have a0 _> 2. If a0 = 2, then par i ty  considerations 
show e~ = 0 and e2 = +1.  If a0 = 3, then since 2e2u2 < u]/2,  we have u0 > 2ul + u2. If 
a0 > 4, then the same inequality holds. Thus in all cases we have u0 :> 2ul  + u2. Now 
u2 < u l /2 ,  so the induction hypothesis applies and we have ul  >_ L ,  and  us :> L,~_I. 
Hence u0 > 2L ,  + L , - I  = Ln+I and the proof is complete. 
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L e m m a  3.2.  Suppose v <_ u < 2v, u odd, and Lebesgue's  algorithm performs n division 
s~eps in comput ing  (-~). Then  u >_ 2 L ,  -- L , - 1  and v > L , .  

P r o o f .  The  l e m m a  is easily verified for n = 1,2. Suppose the first two steps of Lebesgue ' s  
a lgor i thm are 

Uo ---- aoul Jr e22~U2; 

U 1 = a l u  2 Jr e32eatz3. 

Since u~ < uo < 2Ul, ei ther ao = 1 or ao = 2. 
Case  (a): a0 = 1. In  this case we have u0 - ul  + 2"2u2. Par i ty  considerations show 

tha t  e2 >__ 1. Hence uo >__ ui  Jr 2u2. But  2e2u2 _< u l / 2  because the least remainder  is chosen 
a t  each step; hence 2u2 _< u l / 2  and uo >_ 6u2. But  u l /u2  >_ 2, so L e m m a  3.1 applies and 
we have ul > L. and u~ > L.-a. Then uo >_ 6L.-I >_ 3Ln-I Jr 2~n--2 ---- 2L. --L.--I, and 
we axe done. 

Case (b): a0 = 2. In  this  case we have uo = 2ul  - u2, ul  = alu2 "4" ea2~3ua. Now 
us <_ u2/2,  so Lemma  3.1 applies to (u2,us)  and we find u2 >_ L . - 1 ,  us >_ L ._2 .  

I f  a l  -- 2, then U l  = 2u2 q- us > 2 L . - 1  Jr L . - 2  = L . ,  and Uo = 2ul - u2 = 3u2 -F 2us >_ 
3L ._1  ÷ 2 L . - 2  = 2 L .  - L . - 1 ,  as was to be shown. 

I f  al  >_ 3, then ul >_ (5/2)u2 > L,,-1 and therefore uo >_ 4u2 >_ 4 L . - 1  >_ 3 L . _ 1  q- 
2 L . - 2  = 2 L .  -- L ._~.  This  completes  the proof. 

T h e o r e m  3 .3 .  Let u > v > 0, u odd, be such ~hat Lebesgue's  algorithm per forms  n 
division steps in comput ing  (~), and u is as small as possible. Then u = 2 L ,  - L , - 1  and 
V = L  n • 

P r o o f .  We m a y  assume u < 2v. For if u >_ 2v, we wri te  u = av -b e2% as the first s t ep  of 
the  a lgor i thm,  and a >_ 2. There  are two cases: a --- 2 and a >_ 3. 

I f  a = 2, then the first step in the algori thm for (u ,v)  mus t  be  u = 2v Jr r; the 
a lgor i thm continues wi th  (v, r).  Then  the algori thm on input (v + 2r, v) takes the same 
n u m b e r  of s teps  as on input  (u ,v ) ,  and  v Jr 2r < u, a contradiction. 

I f  a >_ 3, then set u '  = ( a -  2)v Jr 2~r. A similar a rgument  shows tha t  the a lgor i thm on 
inpu t  ( u ' , v )  takes the same num ber  of steps as on inpu t  (u, v). But  u '  < u, a contradict ion.  

Hence we may assume u < 2v. By L e m m a  3.2 we have u > 2 L ,  - L , - 1  and  v > L , .  
To complete  the  proof  it suffices to show that  Lebesgue 's  algori thm actually pe r fo rms  n 
division steps on input (u ,v )  = (2L ,  - L , _ I , L , ) .  This  is left to the reader.  

C o r o l l a r y .  On inputs (u, v), u > v > 0, Lebesgue's algorithm per fo rms  no more  t han  

1.141ogu + .27 Jr 2.27u - I  

division steps. 
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4. The ordinary algorithm: preliminary analysis. 

In this section we will explore the worst-case complexity of the ordinary Jacobi symbol 
algorithm. As we will see, the behavior of the ordinary algorithm is fundamental ly  more 
complicated than that  of the algorithms of Eisenstein and Lebesgue. 

For each n, we are interested ila the "smallest" pair (u, v) such tha t  the ordinary 
algorithm performs n division steps. For the other algorithms in this paper, it  was not 
really necessary to discuss what  was meant by "smallest", since for u :> v > 0, the input 
(u, v) that  minimized u al~o minimized v, and such an input was unique. 

Unfortunately, the state of affairs is more complicated for the ordinary algorithm. 
Indeed, if we search for inputs (u, v) that  require 7 steps and minimize v, we find v = 105, 
which occurs in the pair (269,105). However, the corresponding input tha t  minimizes u is 
u --= 259, which occurs in the pair (259, 141). Furthermore, the pair (259, 145) also requires 
7 steps! Thus we see tha t  for the ordinary algorithm, the "worst case" depends strongly 
on our choice of ordering of the inputs, which was not the case for the other algorithms. 

This problem suggests searching for a more "natural" ordering of the inpu ts - -one  for 
which the ordinary algorithm is well-behaved. It turns out that  u -~ v is such an ordering; 
more precisely, we show that  if u > v :> 0 are such that  the ordinary algori thm requires 
n steps and u + v is as small as possible, then u = An a.nd v = A,,-1, for a certain linear 
r e c u r r e n c e  An. 

Later, in section 6, we will discuss the worst-case inputs under lexicographic and 
reverse lexicographic orderings. 

Def in i t ion .  Le* A_2 = 0, A_I = 1, As ,  = A2,-1 + 2A2n-2 for n > 0, and A2,+1 = 
2A2n + A2,-1 for n :> 0. 

Here is a brief table of the Ai: 

n = - 2 - 1  01 2 3 4 5 6 7 8 9 10 11 12 . . .  
A ,  = 0 I 13  5 13 23 59 105 269 479 1227 2185 5597 9967 . . .  

In section 5, we will prove the following 

Theorem 5.1. Let  u > v > O, u odd, be such Lha~ ~he ordinary Jacobi symbol  sdgori~hm 
to compute  (~) peHorms  n division steps, and u + v is as small as possible. Then  u = An 
and v = A , - 1 .  

(The intuition behind the choice of the Ai is as follows, arguing informally: we try 
to choose An minimal such that  one step of the algorithm leads from (A ,+I ,A ,~ )  to 
(An, A, -1) .  This suggests choosing A,  = A,-1  + 2A,_2. Once this choice is made,  how- 
ever, we cannot choose An+l = An + 2An-l ,  since then 2A,-1 < A, ,  which would imply 
that the next step is An = 2A•_1 + A , -2 .  Hence instead, we choose A,+I  = 2An + A,~-I. 
This gives the recurrence for the Ai.) 

To prove Theorem 5.1, we need some simple lemmas on the properties of the sequence 
An: 
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L e m m a  4 . 1 .  Let  a -- ( 5 +  Vri'7)/2, fl = (5 - V/~'7)/2, Cl = (V~'7 + 1)/2,  c2 = ( ~ - -  "1)/2. 
Then 

A2 n ~__ (otn+l - -  ~n+l)/~/-~, n > --1~ 

A s . _ ,  = (e~,~" + ~ " ) / v " f f ,  r, > o. 

P r o o f .  Eas i ly  derived by the  me thod  of constant  coefficients or proved by i nduc t iom 

L e m m a  4 . 2 .  F o r n  >__ 2 w e h a v e  A ,  = 5 A , - 2 - 2 A , - 4 .  F o r n  >_ 
4A2,-2  + A2 , - 3 .  For n >_ 0 we  have A2,+1 = 3A2,-1  + 4 A t , - ~ .  

P r o o f .  Lef~ to the reader. 

1 we have A 2 ,  = 

L e m m a  4 .3 .  For n >_ - 1  we have An -~ 1 (mod 2). 

P r o o f .  B y  induction on n, 

L e m m a  4 .4 .  For n >_ 0 we have 

A2n 3 + 
I < ~ <  

-- A 2 a - I  4 

For n > 1 we have 
1 -F ~ A2n+l 

2 A2n 
< 3 .  

P r o o f .  By Lemma 4.1 we have 

A2. ot 3 + V ~  

A 2 . - 1  el 4 

and clearly A 2 .  >_ A2 , -1 .  This  proves the first inequality. By Lemma 4.1 we have 

A~.+I 1 + v ~  
~ > cl ----- '; 

A2,  2 

also, 
A2n+l A2n-1 

- - 2 + - -  
A2n A~n 

< 3 .  

L e m m a  4 .5 .  Le~ 7 = (1 + v / ~ ) / 8  - .6404 and 6 ---- (3 + ~ ) / 2  -" 3.562. Let  f ( x )  = 
(3x + 1) / (4x + 2), g(x) = (4x + 2) / (x  + 1), and h(x)  = (3z + 1)/(x + 1). Then  if  x >_ 7, 
we have f ( ~ ) ' ~ X )  > ~ ~ d  h(z)  > (3 + , / 1 7 ) / 4  ~ 0  < x < 6, we have ] ( x ) , g ( ~ )  < ~ and 
h(x) <_ (1 + ~/17)/2. 

P r o o f .  Left to  the reader. 
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We now come to the main  l emma  of this paper: 

L e m m a  4.ti.  Let  u~ v be integers, u odd, u > v > O. Let 3" and 6 be as ha L e m m a  4.5. 
(a) ~ the ordinary aJgorlthm to ~o~pute (~) performs n ~tivislon step~, ~ d  n is even, 

then 
xu  + v >__ z A ,  + A , - I  

for x > 7. 
(b) I f  the ord ina ry  a/gorithm to compute (4) performs n division steps, and  n is odd, 

then 
XU q- V 7> xAn  q" An-1  

for O < z < 5. 

P r o o f .  We  prove  bo th  s ta tements  simultaneously by  induction on n. 
For n = 1, i t  is easily verified that u > 3, v > 1, and so we have xu  + v >__ xA1 + Ao 

for all x > 0. 
Similarly, for  n = 2, we have u > 5, v > 3, and so zu  + v > zA2 + A t  for all z >__ 0. 
Now assume tha t  the l emma  is true for all m < n; we prove it for m = n. 
We m a y  assume wi thout  loss of generality that  v is odd. P u t  uo = u and u l  = v. The  

first step of  the a lgor i thm sets 

~Z0 = a0ul + 2e2u2. 

Either a0 is odd or a0 is even. 
If a0 is odd, then par i ty  considerations show e2 > 1. Hence 

uo = aoul  q- 2e2u2 ~ Ul + 2u2. 

Also note tha t  2u2 < Ul, so that  if  

i l l  ~ alu2 Jr" 2eaU3~ 

then at :> 2. Hence ul  :> 2u2 -{- ua. 
If a0 is even, then u0 > 2ut q- us. Then, depending on whether  ux/u2 is less t han  or 

greater  t h a n  2, we have ul >_ u2 Jr" 2u3 or ul >_ 2u2 h- u3. 
To summar ize ,  we have three cases to consider: (i) u0 > ut + 2u2, u t  > 2u2 + u3; (ii) 

u0 >_ 2ul + u2, u t  >_ u2 + 2u3; and  (iii) u0 >_ 2ul  + u2, ut > 2u2 + u3. 

Case (i): Here we have 

u0 > 4u2 +u3 ;  

ul > 2 u 2 + u 3 .  

Hence it follows t h a t  

xuo + ul  > (4x + 2)u2 + (x q- 1)us. (~) 

Now the  a lgor i thm on (u2,u3) performs n - 2  division steps. By L e m m a  4.5, we see 
that  if x > 3' then  g(x) = (4z + 2 ) / (x  + 1) >__ 3"; and if 0 < x _< 6, then 0 < g(x)  < 5. Hence 
the induct ion hypothesis  applies to g(z)  and we find 

4x + 2  4x + 2  A 
z +-----~-u2 + u3 > Z + 1 . - 2  + A . - 3 .  
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Hence 
(4~ + 2)u2 + (x + 1)u3 _> (4x + 2)A.-2  + (x + 1)A.-3.  (6) 

Now suppose n is even. Then by Lemma 4.2 we have 

(4x + 2)An-2 "b (x "b 1)An-3 = sAn + An- l ,  (7) 

and  so by combining (5)-(7) we find 

xUo + ux >_ xA .  + A._a, 

as desired. 
Now suppose n is odd, Then using Lemma 4.2, we find 

(4x + 2)A,-2 + (x + l)An-3 = xA, + An-a + (x + I)A,-2 - (3x + I)A,-3. (8) 

On the other hand, Lemmas 4.4 arld 4.5 tell us that 

An-2 > I + %/~ An-a > 3x + 1 A 

for 0 < x < 6. Hence 
(x + 1)A._2 - (3x + 1 ) A . - 3  k O, 

and combining (5), (6), (8), and (9) yields the result, 

Case (ii): Here we have 

Hence it follows that  

U0 > 3U2 + 4ua; 

Ul ~_~ U2 2v2U 3. 

ZU0 "~- Ul k (3X "~ 1)uz + (4x + 2)ua. 

(9) 

(10) 

Now the algorithm on (u2, u3) performs n - 2  division steps. By Lemma 4.5, we see 
that  if x > 7 then f ( z )  = (3z + 1)/(4z + 2) > 7; and if 0 _< z _< 6, then 0 < f (x)  < £ 
Hence the induction hypothesis applies to f ( z )  and we find 

3 x + l  3 x + l  
4 ~ + 2 u 2  +u3  > .... 2A,_2 + A,_3. - 4x+ 

(11) 
Hence 

(3z + 1)u, + (4x + 2)u3 _> (3x + 1)A,-2 % (4x + 2)A,-3.  

Now suppose n is odd. Then by Lemma 4.2 we have 

(3x + 1)A,-2 + (4x + 2)A,-3 = xA,  + A, -x ,  (12) 
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and so by  combining (10)-(12) we find 

as desired. 
Now suppose n is even. 

zuo + ul  > x A ,  + A . _ I ,  

Then using Lemma 4.2, we find 

(3x + + (4x + 2)A._3 = + A . -1  - (= + + + 1)A._3. 

On the  other  hand,  Lemmas 4.4 and  4.5 tell us that  

_ _ 3  + ~ 3x + 1 
An-2 < A , , - 3  < An-a 

4 x + l  

for x >__ 7. Hence 
(3z + 1)An-a - (x + 1)A.-2 > 0, 

and combining (10), (11), (13), and (14) yields the result. 

Case (iii): Here we have 

In this case, bo th  u0 and  ul 
the inequali ty also holds here. 

This  completes the proof of Lemma 4.6. 

(13) 

(14) 

u0 >_ 5u2 + 2u3; 

Ul > 2u2 + us. 

are a t  least as large as the u0 and ul  covered in case (i), so 

5. P r o o f  o f  T h e o r e m  5.1. 

We can now prove Theorem 5.1, which was stated in the last section. 

P r o o f  o f  T h e o r e m  5 .1 .  
Firs t ,  we show tha t  on input u0 = An, u l  = A n - l ,  the algorithm actually performs 

exactly n steps. Clearly this is t rue for n = 1, 2. Assume true for m < n; we wish to prove 
it for m = n. 

If n is odd, then by  Lemma 4.4 we know [ A n / A , - l J  = 2, so u 0 - 2 u l  = An -2A,=-1 = 
A , - 2  by the definition of An. And An-2 is odd by Lemma 4.3, so e2 = 0. Thus the 
a lgor i thm continues wi th  (u l ,u2 )  = ( A n - I , A , - 2 ) ,  which by induction requires n -  1 
division steps. Hence the  result follows. 

On  the other  hand,  if n is even, then by Lemma 4.4 we know L A , / A n _ l J  = 1, so 
uo - u l  = An - An-1  = 2An-2 by the definition of An. Again An-2 is odd  by Lemma 4.3, 
so e2 = 1. Thus the algori thm continues with (u l, u2) = (A, ,-I ,  A , - 2 ) ,  which by  induction 
requires n - 1 division steps. Hence the result follows. 

Now let (u' ,  v s) be  any input  on which the ordinary algorithm performs n steps. 
By set t ing z = 1 in L e m m a 4 . 6 ,  we see that  u t + v  t >_ A n + A , - I .  If we could now 
show tha t  u = A , ,  v = A , _ I  is actually the o~ly pair requiring n division steps with 
u + v = A ,  + A n - l ,  ou r  result would follow. 
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To do this,  suppose (u ' ,v ' )  is another pair with 

u' + v' = An + A.-1 .  (15) 

Then  by  L e m m a  4.6 we have 2u I + v I :> 2An + An-1.  Subtract ing (15), we see u' > An. 
On the o ther  hand, by  Lemma 4.6 we also have .~u' + v' >_ ] A ,  + An-~.  Subtract ing (15), 
we see - u t / 3  > -An~3 ,  or  u I < An. Hence u' = An, v' -- An- l ,  and the result follows. 

C o r o l l a r y .  Le t  the inputs  to the ordinary algorithm be u > v > O. Then the ordinary 
a/gorl thm performs no more than 1.32 log(u + v) - .72 division steps. 

Thus  we see that,  in terms of  the number  of division steps for the worst  case, Lebesgue's 
a lgor i thm is superior to bo th  Eisenstein's algorithm and the ordinary algorithm, as might 
be  expected.  

6. Worst-case inputs o f  the ordinary algorithm under lexieographic orderlngs. 

In this section, we again consider the ordinary Jacobi  symbol algorithm, and seek the 
"smallest" inputs  requiring n division steps, where the implied orderings are the lexico- 
graphic order ing and the reverse lexicographic ordering. 

We  say that a pair  (u ,v)  is lezico#raphically less than (u ' ,v ' )  if u < u', or if u = u' 
and  v < v'. We  write (u, v) < (u', v'). 

Similarly, (u, v) is reverse lezicographically less than (u', v') if (v, u) is lexicographically 
less than  (v', u ') .  We wri te  (u, v) <R (u', v'). 

T h e o r e m  6.1 .  Let u > v > 0 and u odd. 
(a)/_f the  ordinary algorithm to compute  (~) requires 2n division steps and (u, v) is 

leMcographicM1y lea.st among all pairs with this property, then u = Azn, v = Azn-1.  
(b) I f  the ordinary algorithm to compute (~) requires 2n + 1 division steps and (u, v) 

is reverse lexicographically least among all pairs with this property, then u = A2n+l, v = 
A2n. 

Proof.  
(a) Let (u, v) take 2n division steps, and suppose (u,v)  < (A2n, A2n-1). By Lemma 

4.6 (a) we have zu + v >_ xA2n + A 2 , - I  for x >_ 7. Hence 

u - A 2 .  >_ A 2 n - 1  - 

and by  choosing z sufficiently large we see u > A2,.  Hence u = A2,  and v < A2n-1. But 
by  sett ing z = 1 in Lemma 4.6 (a), we have v >__ A2, -1 ,  a contradiction. Thus (A2, ,  A2n-1) 
must  be  lexicographically least. 

(b) Let (u,v) take 2n + 1 division steps, and suppose (u,v) <n (A2n+I,A2n)" Then 
by  sett ing x = 0 in L e m m a  4.6 (b) we see v >_ A2,.  Hence we must have u < A2n+I. But 
by  sett ing x = 1 in L e m m a  4.6 (b) we see u > A2,+1, a contradiction. 
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The reader will note the theorem above says nothing about the two missing symmetric 
cases: 2n division steps under the reverse lexicographic ordering, and 2n + 1 division steps 
under the lexieographic ordering. For these cases, we have Conjecture 6.2 below. 

Define Ro = 0, RI = I, R2 = 7, Rs = 31, and Rn = 5R.-I - 10R.-3 +4R.-4. Define 

SO ~--- 1, S 1 --~ 5, $2 ~--- 31, Ss = 141, and S. = 5S.-I - 10S._s + 4S,-4. Finally, define 

To = 1, T1 = 3, T2 = 13, Ts = 57, and T, = 5T,-1 - 10T,-s + 4T,-4. 
Here is a brief table 

n =01 

//. = 0 1 

S.=15 

T.=13 

of the  sequences R . ,  S . , a n d T . :  

2 3 4 5 6 7 8 9 ...  
7 31 145 659 3013 13739 62685 285931 ...  

31 141 659 3005 13739 62669 285931 1304285 ...  
13 57 259 1177 5367 24473 111631 509193 ... 

Numerical evidence supports the following conjecture: 

C o n j e c t u r e  6.2. Let u > v > 0 and u odd. 
(a) If tlae ordinary algorithm to compute (v) ~akes 2n + 1 steps and (u, v) is/ex/co- 

graphically least among all pairs having this property, then (u, v) = (T.+I, S . ) .  
(b) /f  the ordinary algorithm to compute (~) takes 2n steps and (u, v) is reverse 

lexicographically least among all pairs having this proper~y, then (u, v) = ( R.+x, Try). 

If true, this conjecture would be remarkable, because these worst cases do not cor- 
respond to an ultimately periodic sequence of quotients, as is the case with every other 
known Euclidean-type algorithm. (See the description of the matrices M(n) below.) 

While the author is unable to prove Conjecture 6.2, it is possible to prove the following: 

T h e o r e m  6.3. 
The ordinary algorithm on input (Tn+1, S.) performs 2n + 1 division s~eps. Further, 

(T.,+~,S.) < (A2.+~ ,A~. )  for n > 2. 
The ordinary algorithm on iapu~ (R.+I, T.) performs 2n division steps. F~ar~her, 

(R,+I ,T , )  <R (A2, ,A2,-1)  /'or n >_ 3. 

Proof.  
We prove only the first result, as the proof of the second is almost identical. 
First we define some matrices that describe the transformations taking place in the 

ordinary algorithm: 

L e t M l =  1 , M ' 2 =  , M s -  0 ' If ei E {1,2,3}, we define 

L e m m a  6.4. Le~ ei 6 {i, 21 for 1 _< i < k -  1 and set 

[ak bk] =M'~'~'' ' '~' ~ M 3 ' c k  dk 
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If el and ei+l are never both equal to 1 f o r l  < i < k - 2 ,  then the Jacobi symbol algorithm 
performs k division steps on input (a~. ck ). 

Proof .  Left to the reader. 

Now define [ xo] M(n) = M~2M~I = w.  
Yn Zn 

We wish to find a reeursion for the sequences {w.},  {x.} ,  {Y-}, {z.}. We find 

M(n q- 1) = M12M(n)M21 [ 12w. q- 4zn Jr 3y. + z .  16w. + 8Zn + 4yn q- 2Zn 1 
= L 6w. + 2Xn Jr 3 y .  q- z .  8wn q- 4 z .  q- 4y .  q- 2Zn J ' 

and 

M(n + 2) = M12M(n + 1)M21 

_ [ 234wn -b 90zn + 65yn + 25z. 
- -  L 130Wn -Ic- 50Zn q- 39y. -k 15z. 

360w. + 144x. + 100y. + 4Oz. ] 
200wn + 80x.  + 60yn + 24zn J ' 

M(n + 3) = M12M(n Jr 2)M21 

4838w. + 1886x. q- 1357yn + 529zn 
= L 2714wn + 1058xn q- 767yn + 299z. 

7544wn + 2952x. -b 2116y. q- 828zn ] 
4232Wn + 1656X. -b l196yn q- 468Zn J 

It is easy to find that  

M(n Jr 3) = 23M(n + 2) - 46M(n ÷ 1) "b 8M(n)  (16) 
by solving a system of linear equations; hence each of the sequences {w.} ,  {xn}, {Yn}, 
{z.} satisfy this linear recurrence. 

Now put 

M(n)Ma = [ w~n 
t u'. 

and 

] ~n  
I 

Zn 

[w. xn"] M(n)M213 I I  " 

L 
Each of the eight sequences defined as the entries of the above matrices mus t  satisfy 

the same recurrence (16), as each entry is a linear combination of terms which satisfy (16). 
Hence if we now define S2k = y~ and $2k+1 = y~ for k > 0, then we deduce So = 1, 

Sl = 5, 82 = 31, Ss = 141, S4 = 659, S5 = 3005, and Sn = 23S.-2  - 46Sn-4 q- 8Sn-6 for 
n > 6 .  

Similarly, if we define T2k+l = w~ and T2k+2 = w~ for k _> 0, then we deduce T1 = 3, 
T2 = 13, Ts = 57, Ta = 259, T5 - 1177, To - 5367, and  T.  = 23T._2 - 46T._4 + 8T._s 
for n > 7. 

We can now prove Theorem 6.3: 
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P r o o f .  
It follows from Lemma 6.4 that on input (Tn+a, Sn), the ordinary algorithm performs 

2n + 1 division steps. 
It remains to show that the sequences {S,} and {T,} actually satisfy the recursion 

stated in Theorem 6.3, and that T,+a < A2n+l for n > 2. 
For this, it is necessary to find a dosed form for T, and S,.  We observe that the 

associated characteristic polynomial for the recurrence is x ~ - 23x 4 h- 46x 2 - 8. It factors 
as follows: 

z 6 - 23x 4 +46x  2 - 8  -- (x 2 - 2)(x 2 - 5 x  q-2)(x 2 + 5 x  +2).  

This, together with the help of a computer algebra system, allows us to find a closed form 
for the recurrences. Let a and/3 be as in Lemma 4.1. Then 

34 ] an+ fin+ (--V/2)n+ k ~ (V~)a' 

These formulas are easily verified by induction. From these formulas, it is easy to 
see that  Sn - 5Sn--1 - 1 0 S n - 3  "4- 4Sn-4, aS asserted, and that Tn also satisfies the same 
recurrence. 

We now show that T,+a < A2n+l for all n sufficiently large. For this it sutTices to 
observe that the closed forms for Tn and An imply that T,+I ~ (_((6 q- v ~ ) / 1 7 ) ~  ~+'1 and 
A2.+1 ~ + Since ((6 + 4i )/17) < ( (417 + 1)/2vff¢), the result 
follows for all n sufficiently large. We leave the proof that Tn+l < A2n+l for n ~ 2 to the 
reader. 

7.  S o m e  r e m a r k s .  

Gauss (1876) showed how to compute the Jacobi symbol (-~) using the partial quotients 
in the continued fraction for u/v. Thus by using the fast methods of SchSnhage (1971) 
for computation of continued fractions, one can compute (~) in O(n(logn)21oglogn) bit 
operations, where u ,v  < 2 n. (This was pointed out to the author by H. W. Lenstra, Jr. 
and E. Bach.) However, this method is unlikely to be competitive in practice, except for 
extremely large inputs. 

For a discussion of other methods to compute Jacobi symbols, see Bachmann (1968, 
pp. 290-302). 

V. C. Harris (1970) found the worst case of a Euclidean algorithm similar to the ones 
described here. G. J. Rieger (1976, 1980a, 1980b) has analyzed this algorithm. 

A "shift-remainder" algorithm for computing the GCD, with some similarity to algo- 
rithms mentioned here, was analyzed by G. Norton (1987). 

It is also possible to adapt the so-called "binary GCD algorithm" of Stein (1967) to 
compute the Jacobi symbol. Also see Knuth (1981). 
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E. Bach points out (personal communication) that the three Jacobi symbol algori thms 
discussed in this paper could also be used to compute gcd(u, v), where v is odd. In fact, 
in the notation of section 1, this gcd is just u , .  

Bach has also suggested that  one could investigate the average number of division 
steps in computing (~), as Heilbronn (1969) and Porter (1975) have done for the ordinary  
Euclidean algorithm, and Rieger (1978) for the least-remainder algorithm. This analysis 
is probably feasible to carry out for Eisenstein's algorithm, and it seems likely tha t  the 
average number of division steps is O((log u)2). However, determining the average-case 
behavior for Lebesgue's algorithm or the ordinary algorithm seems quite hard. 

8. A c k n o w l e d g m e n t s .  
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Thanks to Kevin McCurley for pointing out the reference to Smith (1965) and Williams 

(1980). 
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