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f Laboratório Nacional de Luz Sı́ncrotron, Caixa Postal 6192, Campinas, SP, Brazil

Received 28 June 2005; revised 22 July 2005; accepted 5 September 2005

Available online 5 October 2005

Edited by Hans Eklund

Dedicated to the memories of Adalberto Abreu Lemos (1910–2002) and Isaura Lemos Fernandes (1913–2002).
Abstract Hemozoin (Hz) is a heme crystal produced upon the
digestion of hemoglobin (Hb) by blood-feeding organisms as a
main mechanism of heme disposal. The structure of Hz consists
of heme dimers bound by reciprocal iron–carboxylate interac-
tions and stabilized by hydrogen bonds. We have recently de-
scribed heme crystals in the blood fluke, Schistosoma mansoni,
and in the kissing bug, Rhodnius prolixus. Here, we character-
ized the structures and morphologies of the heme crystals from
those two organisms and compared them to synthetic b-hematin
(bH). Synchrotron radiation X-ray powder diffraction showed
that all heme crystals share the same unit cell and structure.
The heme crystals isolated from S. mansoni and R. prolixus con-
sisted of very regular units assembled in multicrystalline spheri-
cal structures exhibiting remarkably distinct surface
morphologies compared to bH. In both organisms, Hz formation
occurs inside lipid droplet-like particles or in close association to
phospholipid membranes. These results show, for the first time,
the structural and morphological characterization of natural
Hz samples obtained from these two blood-feeding organisms.
Moreover, Hz formation occurring in close association to a
hydrophobic environment seems to be a common trend for these
organisms and may be crucial to produce very regular shaped
phases, allowing the formation of multicrystalline assemblies in
the guts of S. mansoni and R. prolixus.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Blood-feeding organisms are implicated, not only as vectors

of several important infectious diseases including malaria and
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Chagas� disease, but also as causative agents as in schistosomi-

asis. These organisms usually digest large quantities of hemo-

globin (Hb) to meet their nutritional requirements. During this

digestive process, amino acids, peptides and heme are released

[1]. Heme constitutes an essential molecule to most living

organisms [2]. However, in a free state it acts as a pro-oxidant,

participating in the formation of free radicals [3] and also

interferes with phospholipid membrane stability, altering the

bilayer structure and leading to cell disruption [4,5]. Thus,

the ways in which blood-feeding organisms deal with free heme

are of central importance in their physiologies. In order to

overcome its toxicity, very efficient mechanisms of heme detox-

ification have evolved in such organisms, including the enzyme

heme oxygenase [3] and heme binding proteins such as HeLp, a

heme lipoprotein from the cattle tick Boophilus microplus [6]

and RHBP, a hemolymphatic protein present in the kissing

bug vector of Chagas� disease Rhodnius prolixus [7]. Heme

can also be detoxified by its aggregation that takes place in a

specialized organelle named hemosome in the cattle tick B.

microplus [8]. In malaria parasites, a similar process occurs in-

side the digestive vacuole, consisting of crystallization of free

heme into a dark brown pigment named hemozoin (Hz)

[9,10]. We and others [11,12] have recently identified this heme

crystal in other blood-feeding organisms, such as R. prolixus,

the helminth Schistosoma mansoni, the main etiologic agent

of human schistosomiasis [13] and the protozoan Haemopro-

teus columbae [14]. In these organisms, Hz formation seems

to represent the main heme detoxification pathway. Recent

findings from our group corroborate this hypothesis, as

in vivo treatment of Schistosoma-infected mice with the anti-

malarial, chloroquine, inhibits Hz formation in S. mansoni

and reduces parasite burden and egg deposition in the livers

of the infected animals [15].

The structure of Hz was originally demonstrated based on

synchrotron radiation X-ray powder diffraction (SR-XRD)

[16] and revealed its identity to the synthetic analog, b-hematin

(bH). Later, it was shown that heme monomers in bH are

dimerized through reciprocal iron-carboxylate bonds involving

one of the propionic side chains of each porphyrin ring, with
blished by Elsevier B.V. All rights reserved.
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neighbouring dimers forming chains stabilized through hydro-

gen bonds [10]. However, the structural determination of nat-

ural Hz directly obtained from blood-feeding organisms

remained elusive. Recent reports indicate that a surprisingly

diverse array of spectroscopically similar heme crystalline

phases can be formed during bH synthesis and that infra-red

spectroscopy alone, is insufficient to individually identify syn-

thetic analogues of Hz [17]. Thus, a combination of electron

microscopy and SR-XRD is required to unambiguously iden-

tify different crystalline states of heme. Given the scarcity of

data available about heme crystals in S. mansoni and in R. pro-

lixus, here we aimed to investigate the structures and morphol-

ogies of these crystals by using spectroscopic and electron

microscopy techniques and by comparing them with synthetic

bH.
2. Materials and methods

2.1. b-hematin
Synthetic bH was prepared following the method of dehydrohalo-

genation of hemin as previously described [18].
2.2. Animals and Hz extraction
Rhodnius prolixus adult females were reared with rabbit blood and

kept for four days at 28 �C and 80% relative humidity. Briefly, R. pro-
lixus midgut were incubated in phosphate buffered saline and gently
shaken for 5 min at room temperature. The tubes were left undisturbed
for 5 min to allow sedimentation of tissue debris and the supernatants
were collected and subjected to Hz extraction as previously described
[11]. Schistosoma mansoni strain LE was maintained in Biomphalaria
glabrata snails and in syrian hamsters. Adult worms were obtained
by mesenteric perfusion of hamsters 42 days after infection, as previ-
ously described [19]. Adult female worms were homogenized in phos-
phate buffered saline at 25 �C and subjected to Hz extraction based
on previously described methods [13].
2.3. Synchrotron radiation X-ray powder diffraction
High-resolution powder diffraction data were collected at the XRD1

beamline at the National Synchrotron Light Laboratory (LNLS),
Campinas, Brazil. Samples were ground in an agate mortar and spread
over a glass slide so that no part of the X-ray beam would spill over the
sample holder at angles as low as 6� (2h). The sample holders were
mounted on a spinning stage and carefully aligned to the center of a
two-axis diffractometer. Rotation about the x axis for fixed 2h angles,
at several diffraction peaks (2h), demonstrated that the samples had no
preferred orientation. All measurements were carried out at room tem-
perature at a wavelength of 1.7263 Å, near the iron absorption edge to
allow resonant scattering. The bH sample was additionally measured
using a wavelength of 1.4644 Å, so that two independent datasets were
available to check for the correctness of the structural model. Scans
were performed using angular steps of 0.02� in 2h from 6� to 55.6�.

2.4. Field emission scanning electron microscopy (FESEM)
Dry Hz or bH samples were re-suspended in deionized water and a

drop of the resulting suspension was applied onto a silicon chip and
kept at 37 �C until dry. Then, the samples were coated with gold for
30 s and were examined in a JEOL JSM-6340F field emission scanning
electron microscope at an accelerating voltage of 5.0 kV. Images were
acquired by a digital photodocumentation system.
Fig. 1. X-ray powder diffraction patterns measured at 1.7263 Å for (A)
S. mansoni Hz, (B) R. prolixus Hz and (C) bH.
2.5. Transmission electron microscopy (TEM)
Samples of R. prolixusmidgut or S. mansoni adult females were fixed

overnight at room temperature in 1% glutaraldehyde and 4% formal-
dehyde in 0.1 M sodium cacodylate buffer, pH 7.4. They were then
rinsed and postfixed in 1% OsO4, 0.8% K3Fe(CN)6 and 5 mM CaCl2
in the same buffer for 1 h. Samples were dehydrated in acetone and
embedded in epoxy Polybed resin (Polyscience). Ultrathin sections
were stained with uranyl acetate, lead citrate and were examined in a
Zeiss 109 electron microscope. Images were acquired using a Megaview
II digital system.
3. Results and discussion

High-resolution SR-XRD data were collected from S. man-

soni and R. prolixus Hz as well as from synthetic bH. All the

patterns gave rise to sharp Bragg diffraction peaks correspond-

ing to crystalline materials (Fig. 1). A priori examination of

peaks positions and intensities of the three SR-XRD spectra

(measured at 1.7263 Å) showed that they exhibited virtually

identical patterns, suggesting that the three compounds have

the same crystal structure. The diffraction pattern obtained

from the S. mansoni Hz also exhibited some contribution from

an amorphous background signal, which may likely be ex-

plained by the presence of lipids or even to less crystalline

amorphous Hz pigments that co-purified with the isolated

Hz crystals. A similar effect of diffuse scattering background

has previously been reported in SR-XRD measurements of

malaria pigment in red cells infected with Plasmodium falcipa-

rum [16,17]. Despite the relatively lower quality of the resulting

SR-XRD pattern for S. mansoni Hz compared to bH and R.

prolixus Hz, cell assignment and structure determination were

also carried out for this sample. Cell assignment, using the pro-

gram CRYSFIRE [20], gave practically identical triclinic unit

cells for both S. mansoni and R. prolixus Hz, as well as for

bH (Table 1). Good de Wolf figures of merits, M [21], were ob-

tained for bH and R. prolixus Hz (37.2 and 34.5, respectively).

The triclinic unit cells found for these two compounds also had

cell parameters very similar to those reported by Pagola et al.

[10] for bH (Table 1) as refined using CELREF [22]. The excel-

lent agreement in cell parameters for the two natural samples

of S. mansoni and R. prolixus Hz and for bH suggested that

the three compounds share the same structure.

Further demonstration that, at atomic level, the structures of

S. mansoni and R. prolixus Hz are the same as that of bH was

obtained by performing Rietveld fits of the experimental data

using the atomic coordinates reported for bH [10] and refining

only the cell and profile parameters. Rietveld refinements were

carried out using GSAS [23] and gave very high agreement fac-



Fig. 2. Final Rietveld fits (k = 1.7263 Å) for (A) S. mansoni Hz, (B) R.
prolixus Hz and (C) synthetic bH. Experimental data points and the
calculated fits are shown. The lower trace in each panel shows the
difference curve.

Table 1
Unit cell parameters obtained from refinement using CELREF [22] of S. mansoni and R. prolixusHz, and synthetic bH

a (Å) b (Å) c (Å) a (�) b (�) c (�) Rwp (%)

S. mansoni 12.21(2) 14.784(15) 8.034(9) 90.54(15) 97.10(12) 97.23(12) 6.9
R. prolixus 12.206(12) 14.776(8) 8.028(5) 90.48(9) 97.09(7) 97.38(7) 7.4
b-Hematin 12.198(6) 14.681(4) 8.013(3) 90.65(3) 96.74(3) 97.78(3) 6.4
b-Hematin [10] 12.196(2) 14.684(2) 8.040(1) 90.22(1) 96.80(1) 97.92(1) 6.37

Data for bH reported by Pagola et al. [10] are also shown for comparison. Scans were performed using angular steps of 0.02� in 2h from 6� to 55.6�,
as described in Section 2.
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tors, Rwp > 14%. We then used the simulated annealing pro-

gram FOX [24] to look for an alternative structural model

compatible with our data. In this analysis, both triclinic space

groups (P1 and P�1) were considered and all interatomic dis-

tances and angles were restricted to the values found by Pagola

et al. [10]. The porphyrin ring has 4/mmm symmetry, which

makes the bH molecule prone to lying in a local minimum dur-

ing the simulated annealing process. This was avoided by first

finding the position of the porphyrin ring with the iron atom

and then adding the carboxylate and methyl groups in all pos-

sible conformations. For each molecule, three positional, three

rotational and eight torsion angle variables were then opti-

mized. Interestingly, we found, for both S. mansoni and R. pro-

lixus Hz, the same structure reported by Pagola et al. for bH
[10]. The small differences between the unit cell parameters

of S. mansoni or R. prolixus Hz and bH (observed both in

our measurements and in those reported by Pagola et al.

[10]) presented in Table 1 could reflect slight differences be-

tween the process of heme crystallization in vitro (in the case

of b H) and those physiologically produced in the gut of S.

mansoni and R. prolixus. Similar phenomena have previously

been described in the comparison of synthetic magnetite

(Fe3O4) crystals (produced in vitro) and magnetite crystals

from biological origin [25]. Final Rietveld fits were performed

using GSAS [23] and constraining interatomic distances. Due

to its somewhat lower quality, the diffraction pattern of the

S. mansoni Hz was fitted to the structural model obtained

for the R. prolixus Hz, without refining the atomic positions.

Background subtracted final agreement indexes were

Rwp = 6.9, 7.4 and 6.4% for the S. mansoni Hz, R. prolixus

Hz and bH, respectively. The refinement for the data measured

at 1.4644 Å for bH gave Rwp = 8.1% (data not shown). Plots

showing the fits between the experimental data and calculated

diffraction patterns for all crystals analyzed are presented in

Fig. 2. The excellent fits demonstrate that S. mansoni and R.

prolixus Hz have the same crystal and molecular structures

as bH. In the crystalline phase of bH, heme molecules are

linked to each other, forming dimers by means of reciprocal

iron-carboxylate bonds to one of the propionate side chains

of the porphyrin rings (Fig. 3), as proposed before [10]. Fe–

O distances measured for bH and R. prolixus pigment were

1.85 and 1.82 Å, respectively, which compares very well to

the value of 1.898 Å reported by Pagola et al. [10]. Heme di-

mers are further linked by hydrogen bonds, forming chains

that are held in the crystal by Van der Waals interactions.

From our current data, Odonor–Oacceptor distances of 2.8 and

2.7 Å were determined for bH and R. prolixus Hz, respectively,

which are indicative of strong hydrogen bonds.

Next, we investigated the morphologies of S. mansoni and R.

prolixus Hz, as previous data from our group and others indi-

cated that these heme crystals were significantly distinct in



Fig. 3. Proposed unit cell structure of R. prolixus and S. mansoni Hz.
The two coordinated iron atoms and the coordinating nitrogen atoms
are shown in purple and blue, respectively, and the oxygen atoms of
the carboxylate side chains of heme are shown in red. Two heme
molecules are linked by reciprocal iron-carboxylate bonds. The
structure was based on SR-XRD data for synthetic bH and for the
dried Hz obtained from R. prolixus and S. mansoni, as well as on
previously reported data on bH [10] (see Section 3). (For interpretation
of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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shape from synthetic bH and Plasmodium Hz [11–14,17,26,27].

Field emission scanning electron microscopy (FESEM) of bH
and Plasmodium Hz showed that these crystals were very reg-

ular in shape, with well-defined crystal facets, whereas S. man-

soni Hz is quite heterogeneous in size, ranging from 50 nm to a

few micrometers in diameter, with a roughly spherical shape

[27]. Regarding R. prolixus, previous data from our group

showed that heme crystals from this insect displayed irregular

surface topography and were generally much larger than crys-

tallites obtained from Plasmodium or synthetic bH [26]. Fig. 4

shows the markedly distinct morphologies that heme crystals

can adopt in nature, with those obtained from S. mansoni

and R. prolixus (Panels A, B and C, D, respectively), sharing

more similarity between themselves than to synthetic bH crys-

tallites (Fig. 4E). The difference in size between bH, S. mansoni

and R. prolixus crystallites is probably related to the method

utilized for preparing synthetic bH, as previously described

[17]. A hallmark of the Hz produced by Schistosoma and Rhod-

nius is the apparent association between crystals, giving rise to

larger roughly spherical structures composed of regularly

shaped crystalline units. This can be clearly observed in higher

magnification images of these crystalline assemblies (Figs. 4B

and D), which show that they are composed of regular

brick-shaped crystals approximately 200 nm long. Interest-

ingly, in S. mansoni Hz all heme crystals were found assembled

into spherical structures, whereas in R. prolixus heme crystals

were found both in multicrystalline assemblies and as isolated

approximately rod-shaped crystallites not associated with the

larger structures. In sharp contrast, bH crystallites were found

to be isolated species or present in non-specific clusters, with
no large crystalline assemblies detected in such samples

(Fig. 4E).

The multicrystalline assemblies produced by S. mansoni and

R. prolixus could also be observed by transmission electron

microscopy (TEM) analysis of the gut contents of those organ-

isms (Fig. 5). Interestingly, in S. mansoni both crystal growth

and association into larger assemblies appear to take place at

the surface of electron-lucent round structures, closely resem-

bling lipid droplets (Fig. 5A). The process of Hz formation

seems to occur from the surface of this lipid droplet-like parti-

cle to its core, as observed in images of multicrystalline assem-

blies at different stages of crystallization (Fig. 5B). In R.

prolixus, crystals were found both associated to vesicles de-

rived from perimicrovillar membranes, which are phospholipid

bilayer membranes that ensheath the epithelial midgut cells,

and free in the midgut lumen or in multicrystalline assemblies

(Fig. 5C).

Despite the fact that the resulting crystals share the same

molecular structure of Hz, the results presented here indicate

that Hz formation in S. mansoni and R. prolixus is different

from the crystallization that takes place in P. falciparum.

Not only are heat-labile reactions involved in Hz formation

in Schistosoma and Rhodnius [12,15], but also the ultrastruc-

tural organization of the crystallites in S. mansoni and in R.

prolixus (Figs. 4 and 5) are quite distinct from the ones that

have been reported for Plasmodium Hz. In this regard, it is

interesting to note that Hb digestion in Plasmodium is intracel-

lular, whereas in S. mansoni and in R. prolixus digestion pro-

ceeds extracellularly. In this scenario, it is conceivable that

proteins, lipids or other types of hydrophobic components or

structures present in the guts of S. mansoni and R. prolixus

could not only initiate heme crystallization, producing the reg-

ularly shaped crystals similar to those of Plasmodium, but also

allowing them to interact with each other resulting in multi-

crystalline assemblies (Figs. 4 and 5). Such catalytic structures

could act by providing a suitable site of attachment for free

heme or, alternatively, a microenvironment in which heme re-

mains soluble in an acidic milieu, a pre-requisite for the pro-

duction of regular shaped crystals of Hz [17]. This possibility

appears quite plausible as both lipid droplet-like particles (in

S. mansoni) and perimicrovillar membrane-derived vesicles

(in R. prolixus) are hydrophobic. Due to its amphipathic nat-

ure [4,5], heme could thus associate with such hydrophobic

environments, allowing for the slow growth of regularly

shaped Hz crystals. In this regard, preliminary data from our

group show that lipid droplet-like particles isolated from S.

mansoni females catalyze Hz formation in heat-resistant reac-

tions, closely resembling the activity found in P. falciparum

food vacuoles and indicating that lipids would be important

catalysts of heme crystallization in S. mansoni (data not

shown; see also [28–32]).

Regarding the mechanisms involved in Hz formation, three

different possibilities have been proposed. First, histidine rich

protein-II (HRP-II) was shown to be one of the catalysts in

Plasmodium [33] but later it was argued that the histidine resi-

dues of HRP-II could not be responsible for catalyzing Hz for-

mation due to pH restrictions in the food vacuole [34].

Moreover, parasites lacking the genes coding for HRP-II or

III are still capable to produce Hz [35]. Autocatalysis was also

proposed as a mechanism of Hz formation, based on the obser-

vation that purified bH could itself promote Hz growth [36].

The third possible catalyst would be lipids, especially free fatty



Fig. 4. Field emission scanning electron microscopy of heme crystals isolated from S. mansoni (A,B), R. prolixus (C,D) and synthetic bH (E). Arrows
indicate individual Hz crystals assembled in multicrystalline structures.
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acids, which would act by increasing heme solubility in acidic

environments, by-passing the rate-limiting step of heme crystal-

lization [28–31]. Interestingly, three out of four known organ-

isms capable of producing Hz promote heme crystallization

in close association to hydrophobic structures such as the food

vacuole membranes in Plasmodium [31], the perimicrovillar

membranes in Rhodnius [12] and lipid droplet-like particles in

Schistosoma [32]; this study and additional unpublished data].

In Plasmodium, heme accumulates to millimolar concentra-

tions inside the food vacuole, thus favouring its crystallization

into Hz, which was found to be associated with membrane frac-

tions [31]. Similarly, in the guts of S. mansoni and R. prolixus

heme concentrates to the millimolar range in close association

with hydrophobic/membranous components, such as lipid

droplet-like particles (Figs. 5A and B; [32]) and vesicles derived

from perimicrovillar membranes (Figs. 5C and D; [12]). In this

context, it is possible that, inside a lipid droplet or a membrane

bilayer, heme concentrates and crystallizes, producing regular
shaped crystalline phases. Thus, the differences in external

appearance of Hz crystals obtained from different organisms

do not seem to be derived from distinct atomic structures,

but rather to be generated from differences in crystal growth

conditions. This suggests that the process of Hz formation in

S. mansoni and R. prolixus is similar to that of Plasmodium par-

asites, since all of them produce very regular crystals exhibiting

identical unit cell parameters and structures. However, for

those organisms in which heme crystallization occurs extracel-

lularly, an additional step occurs consisting of the association

between crystals in larger multicrystalline assemblies, the ulti-

mate form by which heme is eliminated. Interestingly, mem-

branes surrounding bacterial magnetosomes have also been

detected as thin halos around fossil chains of magnetite crys-

tals, suggesting a putative catalytic role of hydrophobic envi-

ronments in general biomineralization processes [37].

Heme is clearly more soluble than Hz in acidic medium and

all studies on Hz formation so far have been carried out under



Fig. 5. Transmission electron microscopy of heme crystals observed in the luminal gut content of S. mansoni (A,B) and R. prolixus (C,D). Panel A
shows the gut content of S. mansoni, with crystalline assemblies at three different stages of formation: initial (1), intermediate (2) and final (3); C,
crystal; L, lipid droplet-like particles. Arrows in B indicate the absence of a phospholipid double membrane in a lipid droplet-like particle. Inset in B
shows a lipid droplet-like particle at higher magnification. Bar = 25 nm. Panel C shows the gut content of R. prolixus,with crystalline assemblies at
three different stages of formation: initial (1), intermediate (2) and final (3). Arrowheads in D indicate the presence of a phospholipid double
membrane in perimicrovillar membranes. Inset in D shows the perimicrovillar membranes at higher magnification. Bar = 25 nm.
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conditions that apparently exceed the solubility limit of heme

[38]. This means that there is probably a rapid precipitation

of amorphous heme, which then converts to Hz. On the other

hand, in blood-feeding organisms, Hz is presumably formed

from a steady-state pool of heme released as a result of contin-

uous Hb digestion. Conceivably, the main role of all catalysts

of heme crystallization so far studied is to increase the solubility

of heme in acidic medium. Indeed, previous observations indi-

cated that certain solvents, such as ethanol and benzoic acid,

can enhance Hz formation [38–40]. This is further reinforced

by recent findings of Egan et al. [40], who proposed that heme

crystallization was more correctly understood as a biomineral-

ization process based on the observation that, in acidic med-

ium, acetate promotes the solubilization of sedimented heme.

Under these conditions, acetate would displace the axial water

bound to the central heme iron, allowing solubilization of heme

[40]. Thus, it is tempting to speculate that the molecules directly

involved in Hz formation in S. mansoni and R. prolixus would

be present in the lipid droplet-like particles and in perimicrov-

illar membrane-derived vesicles, respectively. This possibility is

currently being investigated in our laboratory.

In conclusion, we show that structural and morphological

characterization of heme crystals produced by S. mansoni

and R. prolixus provides important information concerning

the assembly of heme crystals, opening new perspectives for
drug development against schistosomiasis and Chagas� disease
transmission. In particular, due to the structural identity of the

Hz found in different species, it is possible that compounds

that are currently known to interfere with heme crystallization

in Plasmodium may be used for targeting this heme detoxifica-

tion pathway in other blood-feeding organisms.
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