Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/camwa)

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

He's variational method for the Benjamin–Bona–Mahony equation and the Kawahara equation

Yan-Hai Ye, Lu-Feng Mo[∗](#page-0-0)

School of Information Engineering, Zhejiang Forestry University, Lin'an 311300, Zhejiang, China

1. Introduction

In this paper we will consider the Benjamin–Bona–Mahony (BBM) equation [\[1](#page-2-0)[,2\]](#page-2-1)

$$
u_t + 6uu_x + u_{xxx} = 0
$$

and the Kawahara equation [3]

$$
u_t + au^2u_x + bu_{3x} - ku_{5x} = 0
$$
 (2)

where *a*, *b* and *k* are constants.

The Benjamin–Bona–Mahony (BBM) equation describes the unidirectional propagation of small-amplitude long waves on the surface of water in a channel [\[1,](#page-2-0)[2\]](#page-2-1). It is proposed as an alternative to the Korteweg–de Vries equation (KdV). The Kawahara equation, fifth-order KdV-type equation, is a model equation for plasma waves, capillary-gravity water waves [\[3\]](#page-2-2). Moreover, this equation describes water waves with surface tension [\[4\]](#page-2-3). The inclusion of a fifth-order term to KdV is necessary to model magneto-acoustic waves [\[5\]](#page-2-4). For details of Kawahara equation, the reader is advised to read [\[4\]](#page-2-3) and the references therein.

Eqs. [\(1\)](#page-0-1) and [\(2\)](#page-0-2) were widely discussed by many authors using different methods, such as the exp-function method [\[6\]](#page-2-5) by Yusufoglu and Bekir [\[7](#page-2-6)[,8\]](#page-2-7), the variational iteration method [\[9\]](#page-2-8) and the homotopy perturbation method [\[10\]](#page-2-9) by Tari and Ganji [\[11\]](#page-2-10).

2. He's variational method

In his review article [\[12\]](#page-2-11) and his monograph [\[13\]](#page-2-12), Ji-Huan He suggested a preliminary but promising variational approach to the search for solitary solutions of nonlinear wave equations. Tao [\[14](#page-2-13)[,15\]](#page-2-14) found that He's variational method was very simple and effective. Other applications of He's variational method are available in Refs. [\[16](#page-2-15)[,17\]](#page-2-16).

In order to seek its travelling wave solution, we introduce a transformation

Corresponding author.

E-mail address: molufeng@126.com (L.-F. Mo).

^{0898-1221/\$ –} see front matter © 2009 Published by Elsevier Ltd [doi:10.1016/j.camwa.2009.03.026](http://dx.doi.org/10.1016/j.camwa.2009.03.026)

Substituting Eqs. [\(3\)](#page-0-3) and [\(4\)](#page-0-4) into Eq. [\(1\)](#page-0-1) yields

$$
\lambda v' + 6cvv' + c^3v'' = 0. \tag{5}
$$

Integrating Eq. [\(5\)](#page-1-0) once, we have

$$
\lambda v + 3cv^2 + c^3 v'' = m \tag{6}
$$

where *m* is the integration constant. We set $m = 0$ for simplicity:

$$
\lambda v + 3c v^2 + c^3 v'' = 0. \tag{7}
$$

By He's semi-inverse method [\[18\]](#page-2-17), we can arrive at the following variational formulation:

$$
J(v) = \int_0^\infty \left[\frac{1}{2} \lambda v^2 + c v^3 - \frac{c^3}{2} (v')^2 \right] d\xi.
$$
 (8)

We search for a soliton solution in the form

 $v(\xi) = A \sec h(\xi)$ (9)

where *A* is an unknown constant to be further determined.

Substituting Eq. [\(9\)](#page-1-1) into Eq. [\(8\),](#page-1-2) we have

$$
J = \frac{1}{2}\lambda A^2 - \frac{1}{6}c^3A^2 + \frac{\pi}{4}cA^3.
$$
 (10)

Making *J* stationary with *A* results in

∂*J* $\frac{\partial J}{\partial A} = \lambda A - \frac{1}{3}$ $\frac{1}{3}c^3A + \frac{3}{4}$ $\frac{1}{4}\pi cA^2 = 0.$ (11)

From Eq. [\(11\),](#page-1-3) we get

$$
A = \frac{4c^3 - 12\lambda}{9\pi c}.
$$
\n⁽¹²⁾

The solitary solution is, therefore, obtained as follows:

$$
v(\xi) = \frac{4c^3 - 12\lambda}{9\pi c} \sec h(\xi). \tag{13}
$$

By a similar manipulation, the Kawahara equation can be converted into the following ordinary differential equation:

$$
\lambda v + \frac{ac}{3}v^3 + bc^3v'' - kc^5v^{(4)} = 0. \tag{14}
$$

Its variational formulation reads

$$
J(v) = \int_0^\infty \left[\frac{1}{2} \lambda v^2 + \frac{ac}{12} v^4 - \frac{bc^3}{2} (v')^2 + \frac{1}{2} kc^5 (v'')^2 \right] d\xi.
$$
 (15)

We search for a soliton solution in the form

$$
v(\xi) = A \sec h^2(\xi) \tag{16}
$$

where *A* is an unknown constant to be further determined. Substituting Eq. [\(16\)](#page-1-4) into Eq. [\(15\),](#page-1-5) we obtain

$$
J = \frac{1}{3}\lambda A^2 + \frac{4}{105}acA^4 - \frac{4}{15}bc^3A^2 + \frac{16}{21}kc^5A^2.
$$
 (17)

Making *J* stationary with *A* results in

$$
\frac{\partial J}{\partial A} = \frac{2}{3}\lambda + \frac{16}{105}acA^3 - \frac{16}{15}bc^3A + \frac{32}{21}kc^5A = 0.
$$
\n(18)

From Eq. [\(18\),](#page-1-6) we have

$$
A = \sqrt{\frac{56bc^3 - 35\lambda + 80kc^5}{8ac}}.
$$
\n⁽¹⁹⁾

The solitary solution is, therefore, obtained as follows:

$$
v(\xi) = \sqrt{\frac{56bc^3 - 35\lambda + 80kc^5}{8ac}} \cdot \sec h^2(\xi).
$$
 (20)

3. Conclusion

In this study, we used He's variational method to search for solitary solutions. It is obvious that the employed approach is useful and manageable and remarkably simple to find various kinds of solitary solutions.

Acknowledgements

We thank Zhejiang Forestry University for its research project funds numbered 2351000352 and 2021000359.

References

- [1] M. Wadati, J. Phys. 57 (5–6) (2001) 841.
- [2] M. Wadati, J. Phys. Soc. Japan 32 (1972) 1681.
- [3] T. Bridges, G. Derks, SIAM J. Math. Anal. 33 (6) (2002) 1356.
- [4] N.G. Berloff, L.N. Howard, Stud. Appl. Math. 99 (1997) 1.
- [5] M.J. Ablowitz, P.A. Clarkson, Solitons. Nonlinear Evolution Equations and Inverse Scattering Transform, Cambridge University Press, Cambridge, 1990. [6] Ji-Huan He, Xu-Hong Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals 30 (3) (2006) 700–708.
- [7] E. Yusufoglu, New solitonary solutions for the MBBM equations using Exp-function method, Phys. Lett. A 372 (2008) 442–446.
- [8] E. Yusufoglu, A. Bekir, The variational iteration method for solitary patterns solutions of gBBM equation, Phys. Lett. A 367 (2007) 461–464.
- [9] J.H. He, X.H. Wu, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos Solitons Fractals 29 (1) (2006) 108–113.
- [10] Ji-Huan He, Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons Fractals 26 (3) (2005) 695–700.
- [11] H. Tari, D.D. Ganji, Approximate explicit solutions of nonlinear BBMB equations by He's methods and comparison with the exact solution, Phys. Lett. A 367 (2007) 95–101.
- [12] J.H. He, Internat. J. Modern Phys. B 20 (10) (2006) 1141.
- [13] J.H. He, Non-perturbative methods for strongly nonlinear problems, dissertation. de-Verlag im Internet GmbH, Berlin, 2006.
- [14] Z.L. Tao, Appl. Math. Acta. 100 (2008) 291.
- [15] Zhao-Ling Tao, Variational approach to the Benjamin Ono equation, Nonlinear Analysis: RWA 10 (3) (2009) 1939–1941.
- [16] T Ozis, A. Yidirim, Application of He's semi-inverse method to the nonlinear Schrodinger equation, Comput. Math. Appl. 54 (2007) 1039–1042.
[17] J. Zhang, Variational approach to solitary wave solution of the generali
-
- [18] J.H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Solitons Fractals 19 (4) (2004) 847–851.