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a b s t r a c t

Variational principles for the generalized Benjamin–Bona–Mahony equation and the
Kawahara equation are established using He’s semi-inverse method. The solitary solutions
are obtained using the Ritz method.

© 2009 Published by Elsevier Ltd

1. Introduction

In this paper we will consider the Benjamin–Bona–Mahony (BBM) equation [1,2]

ut + 6uux + uxxx = 0 (1)

and the Kawahara equation [3]

ut + au2ux + bu3x − ku5x = 0 (2)

where a, b and k are constants.
The Benjamin–Bona–Mahony (BBM) equation describes the unidirectional propagation of small-amplitude long waves

on the surface of water in a channel [1,2]. It is proposed as an alternative to the Korteweg–de Vries equation (KdV). The
Kawahara equation, fifth-order KdV-type equation, is amodel equation for plasmawaves, capillary-gravity water waves [3].
Moreover, this equation describes water waves with surface tension [4]. The inclusion of a fifth-order term to KdV is
necessary to model magneto-acoustic waves [5]. For details of Kawahara equation, the reader is advised to read [4] and
the references therein.
Eqs. (1) and (2) were widely discussed by many authors using different methods, such as the exp-function method [6]

by Yusufoglu and Bekir [7,8], the variational iteration method [9] and the homotopy perturbation method [10] by Tari and
Ganji [11].

2. He’s variational method

In his review article [12] and hismonograph [13], Ji-HuanHe suggested a preliminary but promising variational approach
to the search for solitary solutions of nonlinear wave equations. Tao [14,15] found that He’s variational method was very
simple and effective. Other applications of He’s variational method are available in Refs. [16,17].
In order to seek its travelling wave solution, we introduce a transformation

u(x, t) = v(ξ) (3)
ξ = cx+ λt. (4)
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Substituting Eqs. (3) and (4) into Eq. (1) yields

λv′ + 6cvv′ + c3v
′′ ′

= 0. (5)

Integrating Eq. (5) once, we have

λv + 3cv2 + c3v′′ = m (6)

wherem is the integration constant. We setm = 0 for simplicity:

λv + 3cv2 + c3v′′ = 0. (7)

By He’s semi-inverse method [18], we can arrive at the following variational formulation:

J(v) =
∫
∞

0

[
1
2
λv2 + cv3 −

c3

2
(v′)2

]
dξ . (8)

We search for a soliton solution in the form

v(ξ) = A sec h(ξ) (9)

where A is an unknown constant to be further determined.
Substituting Eq. (9) into Eq. (8), we have

J =
1
2
λA2 −

1
6
c3A2 +

π

4
cA3. (10)

Making J stationary with A results in

∂ J
∂A
= λA−

1
3
c3A+

3
4
πcA2 = 0. (11)

From Eq. (11), we get

A =
4c3 − 12λ
9πc

. (12)

The solitary solution is, therefore, obtained as follows:

v(ξ) =
4c3 − 12λ
9πc

sec h(ξ). (13)

By a similar manipulation, the Kawahara equation can be converted into the following ordinary differential equation:

λv +
ac
3
v3 + bc3v′′ − kc5v(4) = 0. (14)

Its variational formulation reads

J(v) =
∫
∞

0

[
1
2
λv2 +

ac
12
v4 −

bc3

2
(v′)2 +

1
2
kc5(v′′)2

]
dξ . (15)

We search for a soliton solution in the form

v(ξ) = A sec h2(ξ) (16)

where A is an unknown constant to be further determined.
Substituting Eq. (16) into Eq. (15), we obtain

J =
1
3
λA2 +

4
105
acA4 −

4
15
bc3A2 +

16
21
kc5A2. (17)

Making J stationary with A results in

∂ J
∂A
=
2
3
λ+

16
105
acA3 −

16
15
bc3A+

32
21
kc5A = 0. (18)

From Eq. (18), we have

A =

√
56bc3 − 35λ+ 80kc5

8ac
. (19)

The solitary solution is, therefore, obtained as follows:

v(ξ) =

√
56bc3 − 35λ+ 80kc5

8ac
· sec h2(ξ). (20)
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3. Conclusion

In this study, we used He’s variational method to search for solitary solutions. It is obvious that the employed approach
is useful and manageable and remarkably simple to find various kinds of solitary solutions.
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