
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 21, 354-367 (1980) 

Open-Addressing Hashing with Unequal-Probability Keys 

GASTON H. GONNET 

Department of Computer Science, University if Waterloo, 
Waterloo, Ontario N2L 3G1, Canada 

Received March 23, 1979; revised January 28, 1980 

1. INTRODUCTION 

When analyzing hashing algorithms, it is usually assumed that all keys in the table 
are equally likely to be accessed. In practice, however, this is generally not true. As 
Knuth [7] points out, the keys most likely to be accessed tend to appear first during 
the creation of the table; consequently, estimates based on an equal probability of 
accessing all keys are frequently pessimistic. In this paper we compute the expected 
number of accessed in a model of open-addressing hashing, assuming a variety of 
distributions for the probability of accessing individual keys in the table. The results 
presented here correspond to tables which are created by inserting keys in decreasing 
order of probability; this is the optimal ordering when we do not know the specific 
hashing function. The optimal order when we know the hashing function is described 
in [3]. 

2. RESULTS 

Let n be the number of keys we are working with, and let m be the size of our table 
(m > n). Also let pi ,pz ,..., p,, be the probability of accessing the keys k,, k, ,..., k,. 
We require that p1 > pz 2 a . - >p, > 0 and furthermore that the table be created by 
inserting the keys in decreasing order of probability. This is the optimal insertion 
order when we do not know the particular hashing function. In practice, of course, we 
seldom know the probability distribution of accessing the keys; normally, however, 
the keys are inserted into the table as they appear, and the keys with the highest 
probabilities tend to appear first. Thus, our optimal order may be considered an 
optimistic approximation to the real situation. 

We will be dealing here with the open-addressing hashing scheme. Under this 
scheme collisions are resolved by computing additional hashing functions until an 
empty position in the table is found. New probe positions for collision resolution are 
assumed to be independent of the previous ones; this is what Knuth calls uniform 
probing [7]. Double hashing, and schemes without secondary or higher clustering [4, 
51, behaves similarly to uniform probing up to a certain load factor. 
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In the open-addressing scheme, the probability of requiring more than i accesses to 
insert the (n + 1)st key into the table is 

(m-iy 
Pr { more than i accesses} = $ = &Lyl ’ 

where rnk denotes the descending factorial, rnk = m(m - 1) . . . (m - k + 1). Conse- 
quently the expected number of accesses to insert the key is 

E [ accesses to insert (n + 1 )st key] 

= x i Pr { exactly i accesses ) 
i>O 

= 2: Pr{ more than i accesses} = 2: 
(m-iy 

i>O i>O 
* * 

Using the summation formula for descending factorial this simplifies to 

E[accesses to insert (n + 1)st key] = 
(m + l)- m+l 

(m-n+l)W=m-n+l’ 

Thus the expected number of accesses to locate a given key in the table containing n 
keys is 

where ,uU; = Cf= i ikpi is the kth moment of the distribution of pi. 
This general result does not provide much insight on how a particular distribution 

may behave. Thus we will analyze our algorithm using several specific probability 
distributions, some of which come from experimental observation. The rest of this 
section will summarize our results. The asymptotic expansion results assume that 
m -+ co, and that a = n/m (0 < a < 1) is a constant independent of m. The derivations 
of all these results will be given in Section 3 along with a brief description of each 
probability distribution used here. These derivations are quite straightforward for the 
most part, except for the geometric distribution where we have to consider three 
different cases, and the 80-20% rule. 

In Table I we follow Knuth [6] by using H, to denote the nth harmonic number, 
I.e., 

H,= 2 $=ln(n)+y+-&--& 
i=l l 

+ O(n-“>, 
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TABLE I 

Type of distribution Pi Closed form 

Uniform 
1 - 

n 

Wedge 2(b - i) 

(general) n(2b-n- 1) 

Wedge 
(b=n+ 1) 

2(n + 1 - i) 
n(n + 1) 

Zipfs law 
(harmonic) 

1 
iH, 

Generalized 
harmonic 

(i+ a)-’ m+l 
( 

H -Hm-n+, 
@+?I+ l)--(a+ 1) mtaf2 l+&mn+;I)-r(atI) ) 

Lotka’s law 
bi-harmonic 

Geometric 
-mIrl(n)=~=o(l) 

(I -a)a i-1 

1 -a” 

-m In(a) =/3 = o(l) 

(1 -a)&’ 
1 -aa” 

(1 -a)&’ 
1 -a” 

80-20% rule 
ie- (i- 1)’ 

ne 

+(H,+, -H,-.+,I 

2(m+ l)(n+(b-m-2)(H,+,-HH,-.+,)) 
n(2b-n- 1) 

m+l 
( 

H 
- lit m+, -Hm-,+, 
m+2 Hn ) 

mtl 
( 

H 
- 1+ Ill+1 -H,-n+, +H, 
mt2 Hff’(m + 2) 1 

where y is Euler’s constant, y = 0.57721 56649.... Similarly 

Ei(x) denotes the exponential integral [ 1 ] 

Ei(x) = faj e-‘t-l dt. 
--x 



OPEN-ADDRESSING HASHING 357 

TABLE 1 (continued) 

a=n/m Full table 

-a-’ In(1 -a) + O(m-‘) In(m) + y - 1 + O(ln(m)/m) 

2ae2[a + (1 - a) In(1 - a)] t O(m-‘) 

1 _ InO - a) 
In(n)++ OF’) 

2 t O(ln(m)/m) 

2- &+ We’) 

6 In n 
‘+ m7r2 

-t O(m-‘) Same 

’ ’ (1 _Lb) m + (I$$(m-l)+olO-‘) Same 

De-O 
I-~-“o [EQ) - W(1 -a))] t O(m-‘) s [Ei(p) - 1 -In@) t In m] + O(m-‘) 

-a-lIn(l-a)t(lt($-~)ln(l-a))~ 

t O@*) t O(m-‘) 

C(a) f f-W/m) 

The values for the constants and the function C(a) are given in the next section. Our 
asymptotic notation follows the conventions used by Knuth [6]. 

f(n) = WI(n)) if there exist k and n, such that 

If(n)I <k(n) forn > n,. 

f(n) = 4 g(n)> if lii$$=O. 

f(n) = 4 s(n)) if g(n) = 4.fY4). 



358 GASTON H. GONNET 

f(n) = @(g(n)) if there exist k, , k, and n, such that 

I k, s(n)1 < If(n)I G Ik, &)I for n > n,. 

Table II lists some exact numerical results for the different distributions, rounded to 
live decimal places. For each distribution the first row gives figures for a hash table 
with m = 100, while the second is for a hash table with m = 1000. Each case was 
examined for the live different occupancy factors shown. 

3. DERIVATION OF RESULTS 

For the uniform distribution, pi = l/n and thus 

E[accesses] = (m + 1) ,$, m +“;. _ i 

= ‘“f l) (Jf,,, -H*++l). 

In the case of a full table (n = m) this becomes 

E [ accesses] = +,+1 - 1) = In(m) + y - 1 + O(ln(m)/m), 

while in a partly filled table with load factor a = n/m, 

E[accesses] = -a-’ ln(1 - a) + O(m-‘). 

TABLE II 

Occupancy Factors 

Distribution 50% 80% 90% 95% 100% 

Uniform 1.37050 1.95930 2.44353 2.92079 4.23925 
1.38468 2.00633 2.54609 3.12697 6.49296 

Wedge 1.21978 1.47789 1.62904 1.73907 1.91605 
(b=n+ 1) 1.22664 1.49245 1.65115 1.76966 1.98703 
Harmonic 1.13951 1.29967 1.41440 1.51982 1.79140 

1.10072 1.21957 1.30887 1.39779 1.86468 
Lotka’s law 1.02113 1.02895 1.03333 1.03702 1.04592 

1.00354 1.00438 1.00487 1.00531 1.00748 
Geometric 1.03201 1.03201 1.03201 1.03201 1.03201 

(a = 314) 1.00302 1.00302 1.00302 1.00302 1.00302 
(a = 9/10) 1.10684 1.11327 1.11396 1.11428 1.11477 

1.00917 1.00917 1.00917 1.00917 1.00917 
(a = 0.99) 1.33246 1.77291 2.09726 2.40001 3.19530 

1.11936 1.12792 1.12902 1.12958 1.13130 
80-20% rule 1.08120 1.19327 1.27574 1.35200 1.54897 

1.08561 1.20340 1.29445 1.38596 1.86998 
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The general wedge (or truncated wedge) probability distribution is defined by 

2(b - i) 
‘I= n(26-n- 1) 

with b > n. 

From this we obtain 

E [ number of accesses] 
2(m + 1) 

= i: 
b-i 

n(2b-n- 1) ,=1 m+2-i 

2(m+1) (n+(b-m-2)(H,,,+,-H,-,+,)). = n(2b - n - 1) 

If we set b = n + 1 we obtain the wedge distribution for which the probabilities are 
proportional to the integers 1,2,..., n. The expected value in this case becomes 

E[accesses] = 2a-‘[a + (1 - a) ln(1 - a)] + O(m-‘). 

For a full table we have n = m = b - 1 and 

E[accesses]=$[m-(H,+,-l)] 

= 2 + O(ln(m)/m). 

For keys distributed according to Zipf s law, the harmonic distribution [ 71 we have 
pi = l/H, i. Consequently 

E [ accesses] = yfi (m+:--i)i=H,;1,+:2) $,(++m+l2--i) 

= Hny;;2) W,+Hm+,-H,-.+J 

H m+l 

For the full table result we set n = m to obtain 

E[accesses] = 2 -k+ O(m-I). 
m 

and for the partly filled table with a = n/m 

E[accesses] = 1 - 
In(1 - a) 
In(n) + y + o(m-‘)’ 
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We will consider a generalization of the harmonic probability distribution that 
makes pi oc l/(i + a). After normalization we obtain 

1 1 
Pi=i+u ly(a+n+ 1)-y/@+ 1)’ 

where a is a real constant and v(x) is the logarithmic derivative of the gamma 
function [ 11. Simplifying this in a manner very similar to our work with the Zipf 
distribution we obtain 

E[accesses] = myi: 2 
[ 

H 
1 + mtl -HI?+IIt1 

I y(utnt 1)-l&7+ 1) * 

Lotka’s distribution (bi-harmonic) is given by 

1 
pi = H~2)i2 ’ 

and thus 

mtl ", 
E[uccesses] = Ht2b ~&,(mf:-i)i2' 

mtl n 
=C 

(m t 2)-2 
=TQyyl mt2-i 

+ (mt2)-2 + (mt2)-' 
i *2 9 

I 

H m+1 -Hi,,-,+, +Hn 

HL2)(m + 2) ’ 

For any a we conclude that 

E[uccesses] = 1 t 
6(ln n - ln(1 - a) t y) 

m7r2 
-i + O(mp2 In m). 

The geometric distribution is shaped by the parameter a, and is given by 

Pi = 
(1 -a) a’-’ 

1 -ua” ; O<u<l; a = n/m; /? = -m In(u). 

The parameter a may be a function of m. To obtain the proper asymptotic expansions 
we must consider three different cases. 

(a) m In(u) = o(l). Thus for increasing m, /I does not remain bounded. Note 
that this case includes the situation when a does not depend on m. Note also that this 
condition is equivalent to m( 1 - a) = w(l), since 0 < a < 1 then 0 < -m In(u) = w(l) 
or 0 < In(u) = w(l/m) or l/u = e W(llm) = 1 + w(l/m). From this we conclude that 
m(l - a)/a = o(l), and either m(1 -a) = w(l) or m(1 -a) # o(l) and l/a = o(l). 
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It is easy to see that the latter condition is impossible since m -+ 00 and consequently 
m( 1 - a) = w( 1). From our formula we obtain 

E [ accesses ] 

= (1 -a)(m + 1) + a’-’ 
1 -an ,y m + 2 - i 

= (1 - a)@ + 1) 
1 -an ( (1 .-.-yiZ+ 1) + $, (m jLJi)$Y’t 1)) 

=1+ 1 a-na”+(n- l)a”+’ “, (i- l)(i-22)&i 
1 - e-a4 ( (1 -a)m + (’ - ‘) ,& (m t 2 - i) m 1 

= ’ + (1 -‘a) m •I- (1 _ a):(, _  1)  + 0(p-3)’  

(b) m In(a) = O(l), or equivalently m(1 - a) = O(l), as can be seen using the 
Taylor expansion of In(a). In this case j3 remains bounded as m increases. We have 

E[accesses] = (m ’ ‘)(’ -‘I 
1 -an iI m:I’i’ 

= Cm + W-4 
1-a” a 

m+, T$’ (l/a)’ . . 
j=m?2-n J 

Using the Euler-Maclaurin summation formula [2,6] we derive 

qaccesses] = Cm + ‘X1 -‘I am-l a-m-1 

1 -an 1 mtl 

t Ei(-x In(a)) -g - 
+ o(m-“)) 

! 

= 1 yi!m, (Ei(P) - Ei(( 1 - a) /I)) t O(m-‘). 

For a full table we use the techniques described in [2] to evaluate the summation and 
we obtain 

E[accesses] = ,‘~,“B (EiQ3) - 1 - In /I + In m) t O(m- ‘). 

(cl m In(a) = o(l), or equivalently m(1 - a) = o(l). In this case we can obtain 
a good approximation of the sum by using the tirst two terms of the sum’s Taylor 
expansion around a = 1. By doing this or by computing the series expansion for 
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Ei(x)=y+In(x)+x+x2/4+ me. and eX= 1 +x+x2/2+... in the result for case 
(b) we obtain 

E[accesses]=-a-‘ln(1 -a)+ 

For full tables we obtain 

E[accesses] = (In m + y - 1)(1 - /I + /12/12) + p - p2/4 + O@‘) + O(m- ‘). 

The final probability distribution which we will examine comes deom the 80-20% 
rule. This rule indicates that 80% of all accesses will be made on the most active 20% 
of the keys, and so on “recursively.” When we say “recursively,” we mean that the 
rule applies not only to the entire table of keys k, , k, ,..., k,, but to any subset of the 
table consisting of the p most active keys k,, k2,..., kp, where p < n. The simplest 
probability distribution which models this rule is given by 

p 
i 
= ie- (i- l)O 

ne ’ 

where 

0 = 1og(o’8) = 0 13864 
log(O.2) * **** 

In our analysis of this distribution, we will use the following terminology: C(z) is 
Riemann’s zeta function. T(z) is the gamma function, v(z) its logarithmic derivative 
and 2F,(a, b; c; z) the Gauss hyppergeometric series [ 11. We will also employ the 
convention that Oe = 0 to simplify notation. 

The moments of the 80-2096 distribution, computed using the Euler-Maclaurin 
formula and its extensions [2.6], are given by 

i=l 
38n2 e(3 - 8) n 

-- 
e+3 +2(s+2)+ qe+i) +oW9 

e(k- e) knk-2 
12(e + k _ 2) + O(nk-3) + OWeh 

and the variance of the distribution is 

On2 
0’ = (8 + 1 y (0 + 2j + OWe). 
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Recall from Section 2 that 

Consequently with a = n/m, 0 < (r < 1, we may substitute the moments of the 
distribution into the above formula to obtain 

E[accesses] = C(a) + O(m-‘) = 1 + 19 7 

This last series is inconvenient for the purpose of evaluation when 
Thus we use the transformation 

a is close to 1. 

=a -e 

( 
* =a -e In Y-e+ 

e(e- I) 
2!2 Y*- 

w we- 21 y3 + . . . 
3!3 1 ’ 1-a 

Since 

-e+ w- 1) 
2!2 - 

e(e- w-2) + 
3!3 .-- 

= lim 
(( 

(-0) b + (-8)(1 - 0) b(b + 1) 
- 

b-0 l!l! 2!2! 

+ (-e)(l-w-w@+ l)w2) + . . . 
3!3! 

=ljT d’,(--8, b; 1; 1) - 1 r(l)r(l +0-b) _ l 
+ b I’(1 + @I-(1 -b) 

=+I +e)+vu(l)=--W(l+e)-y, 

we have the final expression 

00 7 ak 
k;, 8+k=a 

-e -y(l+e)-y-ln(l-a)+e(l-a)- 
e(f3-- l)(l - a)’ 

4 

+e(e-1)(e-2)(1-a)3_... 
18 
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Note also that 

I 
= x 
o &dx=-r(1 +e)-y-ln(1 -a)+8(1 -a)+O((l -a)Z). 

Thus we can express the expected value as 

E[accesses] = 1 + 19a-~(-~(l +8)-y- In(1 -a) + 13(1 - aj - . ..) 
+ O(m-1). 

Direct computation allows us to give a list of some values for the function C(a): 

C(O.5)= 1.08617 37741 28045 31512 1541 . . . . 

C(0.8) = 1.20463 31959 45617 83466 2159 ..a, 

C(0.9) = 1.29674 51213 95053 49342 7795 . . . . 

C(0.95) = 1.39031 66674 21293 92038 3669 es., 

C(O.99)= 1.61076 56741 38615 66525 3015 . . . . 

C(O.9994004851 43161 88579 4781 ..a) = 2.0, 

C(0.99999 95583 01845 90154 1475 . ..) = 3.0. 

To consider the case for full tables (n = m) we first obtain the inequality 

0 i xc-I i xe- I 

nB I i-1 m+2-X 

dx< ie-(i- 1)” I3 
‘n”(m+2-i)‘n8 I m+ 1 -x 

dx. 
i-l 

Since E[accesses] = (m + 1) C;= 1 [i” - (i - l)e/ne(m + 2 - i)J we have 

cm + 110 * 
ne 5 

xB-’ dx<E[accessesl < cm + 11s n 
0 m+2-x ’ \ ne I 

xe-’ dx 
()m+l-x . 

Transforming the left integral with y = x/(m + 2) and the right integral with 
y = x/(m + 1) and for n = m, we obtain 

(m + 1) 0 Mm+21 (m + 2)e-1 

me o I 1-Y 
ye-’ dy < E[accesses] 

<B ml(m+l) (m+ l)eye-l 

‘me o I 1-y 
dy. 

Finally, we,,may use part of the previous derivation to get 

[ 1 + O(m- ‘)I q-v(e) - y + In(m) - ln(2)) 

< E[accesses] < [ 1 + O(m-‘)I e(+e) - y + In(m)). 
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Let us write 

E[accesses] = 1 + t9ln m + C, + O(m-’ In m). 

The above bounds imply that 

-1 - e(w(e) + y + ln(2)) < C, < -1 - f?(w(Q + y). 

There is an alternative way of computing the number of accesses for a full table. Let 
g(i) = (i” - (i - l)“)/(m + 2 - i); then 

mtl “, 
E[accesses] = 7 1 g(i) 

i=l 

g(i. di + g(m) g’(m) =- g”‘(m) + 2+7-- 720 
. 

Using straightforward computation and the techniques described in [2] we find 

C,=O(m-'), 

g(m) Bme-l 
-=4(1 -I- O(m-I)), 

2 

g’(m) _ t%P1 
12 48 (1 + O(m-‘>>, 

and 

d”(m) hP1 
-=m(l + O(m-I)). 720 

Using the value computed before for I$ (x”/( 1 - x)) dx we derive 

[“g(i) di = (-~(1 t 0) - y - ln(2)) B(m t l)e-l (0 ln(m t 1) + 1) 
‘I 1 

’ (1 + e)(m t 2) ’ o(me-2)’ 

and finally 

E[accesses] = e(--w(i t e) - y - ln(2)) + 1 + 8 ln(m + 1) 
ee 8 tp=- 1920 •I- ‘*** 

Hence by computing the Euler-Maclaurin formula with three and four terms we can 
bound C, by 
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8 - ( &+&+-$-h2--y-v(l+e)) 
<c,<e &+$-In2-y-y(1+e) . 

( 1 

To seven-digit accuracy these bounds are 

-0.0873946 s-e < C, < -0.0873224 . . . . 

The distribution given by 
ie-1 

Pi = ff’l-e, n 

is asymptotically equivalent to the 80-20% rule. For this distribution, using the same 
derivations as before, we find that for full tables 

E[accesses] = 1 + t9[ln m - ~(1 + e) - l] + O(m-’ In m). 

From this result we derive the strong conjecture that 

C, = -e[w(l + 0) + l] = -0.08738 76749 82611 29115 5901 . . . . 

(~(1 + 8) = -0.36971 05008 49560 89275 0609 ..a). 

The formulas we have derived are valid for any value of 8; thus they could be used to 
calculate results for a 75-25% rule, for example. In particular when 0 = 1 we have 
the uniform distribution. 

4. DIRECT CHAINING 

For the purpose of comparison, we show the effect of unequal probability keys for 
direct chaining hashing (or separate overflow chaining). In this method we hash into 
a sequential list that contains all the elements that share the same hashing address. If 
we insert all the elements in decreasing probability order, we obtain 

E[accesses] = 2 pt 'c (j+ 1) 
i- 1 

( 1 
. m-j(l _ llm)i-l-j 

i=l j=O 

=,$lpi(;+l)il+!i$ 

5. CONCLUSION 

Our analysis has shown that if a hashing table is constructed in the optimal order, 
the average number of accesses remains very low for most of the probability 
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distributions we have studied, even when the table is full. For many distributions the 
expected number of accesses is always less than two. As has been noted, in practical 
applications the probability distribution involved is usually not known. However, 
elements with higher accessing probability are more likely to appear first and be 
inserted first. The real average values can be expected to lie somewhere between 
between our optimistic results and the values which arise from the uniform 
distribution. 
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