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Let (un) be a bounded sequence in H s, p(Rd) (0<s<d�p). We show that (un) has
a subsequence (u$n) such that each u$n can be expressed as a finite sum (plus a
remainder) of translations�dilations of functions ,m and such that the remainder
has arbitrary small norm in Lq (1�q=(1�p)&(s�d )). This generalizes a result
obtained by Patrick Ge� rard for the case p=2. � 1999 Academic Press

Key Words: Sobolev embeddings; wavelet bases; compact embeddings; Besov
spaces.

1. INTRODUCTION AND STATMENT OF RESULTS

We will analyze the lack of compactness of the embedding

H4 s, p(Rd)/�Lq(Rd) (s>0, 1<p<q<�) (1)

in the critical case

s
d

=
1
p

&
1
q

. (2)

Recall that H4 s, p is the homogeneous Sobolev space of functions u satisfying

&(&2)s�2 u&Lp<�.

If (2j ( f ))j # Z denotes a Littlewood�Paley decomposition of f, the
homogeneous Besov space B4 :, �

� is defined by the condition

&2j ( f )&L��C2&:j.
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The following inequality due to Ge� rard, Meyer, and Oru (see [6]) can be
interpreted as a sharpened form of the embedding (1)

& f &Lq�C & f & p�q
H4 s, p& f &1&p�q

B4 �
&d�q, � . (3)

If a function u belongs to H4 s, p, the functions

\1
h+

d�q

u \x&x0

h +
have H4 s, p and Lq norms independent of h and x0 . These invariances induce
a lack of compactness in the embedding H4 s, p(Rd)/�Lq(Rd). Indeed, if
(log hn , xn) is a sequence that tends to infinity, the sequence of functions

un(x)=\ 1
hn+

d�q

u \x&xn

hn + (4)

converges weakly to 0 in H4 s, p, however it does not converge to 0 in Lq.
Thus a sequence (un) that converges weakly to 0 in H4 s, p can fail to
converge to 0 in Lq because the un are translates and dilates of a single
function, or more generally, because the un are sums of translates and
dilates of a set of functions. The purpose of this paper is to show precisely
in which sense this phenomena is responsible for the lack of compactness
in the embedding (1).

Wavelet analysis will be used to elucidate this phenomena. Since the
elements of a wavelet basis can be obtained by translations�dilations of
2d&1 functions, wavelet bases are well suited for detecting sequences such
as (4) or sums of them. This arguments will be made precise at the end of
this section. We next introduce some notation that will facilitate the discus-
sion.

Define the translation�dilation {={(a, b), a>0, b # Rd, by

{(x)=
x&b

a

and define the action on { of a function ,: Rd � C by

{(,)(x)=a&d�q,({(x)).

If {n=(x&bn) �an is a sequence of translations�dilations, we say that {n

tends to infinity if |log an |+|bn | � +� as n � �. Two sequences {n and
{$n are called orthogonal if {n({$n)&1 tends to infinity. We will prove the
following theorem. This result generalizes in the H4 s, p setting a result by
Patrick Ge� rard in the case p=2, see [5].
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Theorem 1. Let (un) be a bounded sequence in H4 s, p(Rd) Then there
exists a subsequence (u$n) of (un), functions ,m in H4 s, p and sequences {n, m of
translations�dilations that have the following properties:

(1) If m{m$, then {n, m and {n, m$ are orthogonal.
(2) For all l�1, the u$n can be decomposed as

u$n= :
l

m=1

{n, m(,m)+r l
n , (5)

and

lim sup
n � �

&r l
n &Lq==l with =l � 0 when l � �. (6)

(3) The following estimates hold in H4 s, p,

:
�

m=1

&,m& p
H4 s, p�C lim sup

N � �
&u$N & p

H4 s, p , (7)

&r l
n& p

H4 s, p�C lim sup
N � �

&u$N & p
H4 s, p (8)

for all n and l.

Remarks.

v The series ��
m=1 {n, m(,m) is usually not convergent for a given n;

hence the necessity to write only finite sums in (5).

v We cannot expect the H4 s, p norm of r l
n to tend to 0 because there

are other reasons why weak convergence in H4 s, p does not imply strong
convergence (such as oscillations, etc.).

v Estimate (7) can be interpreted as a kind of ``L p quasi-
orthogonality'' of the functions {n, m(,m) that appear in (5). This property
is a consequence of the orthogonality condition satisfied by the {n, m , which
implies that, for l fixed and n large, the functions ({n, m(,m)), m=1, ..., l,
live either at very different scales or very far from each other.

v Once a subsequence u$n has been selected, the decomposition (5) is
unique; indeed the ,m are clearly characterized as being all possible weak
limits in H4 s, p of translations�dilations of u$n . Thus, only the selection of the
subsequence u$n depends on the particular technique we will describe.

v The result of Ge� rard for p=2 is more precise, since in this case (7)
and (8) are replaced by

:
l

m=1

&,m&2
H4 s, 2+&r l

n&2
H4 s, 2=&u$n&2

H4 s, 2+o(1). (9)
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Note that the result of Ge� rard has applications in the description of
solutions of nonlinear wave equations with critical exponent (see [1]) and
implies the microlocal compacity-concentration criterium (see [4]).

We first show that (9) cannot hold in general if p{2 by constructing an
explicit counterexample for p=4. Take f and | in S(R) such that f�
vanishes in a neighborhood of 0, |̂ is compactly supported, and f and |
are both even and define

un(x)= f (x)+
einx|(x)

ns .

Here we have l=1, ,1= f, and {n, 1(x)=x, thus r1
n=einx|(x)�ns. Clearly, if

4s denotes the operator (&2)s�2,

4s \einx|(x)
ns +=eins'n(x),

where 'n has the same regularity and localization estimates as | (uniformly
in n) and 'n � | when n � �. Thus

| |4sun | 4=| |4sf |4+| |'n |4+2 | |4sf |2 |'n |2 (2+cos 2nx)+ } } }

+4 | ((4sf )3 'n+4sf ('n)3) cos nx

which converges to

| |4sf |4+| |||4+4 | |4sf |2 |||2.

The result is obtained by choosing f and | such that the last term does not
vanish.

Our main tool for proving Theorem 1 will be an orthonormal basis of
compactly supported wavelets (�(i)) i=1, ..., 2d&1 that are sufficiently smooth
(at least C s+1). Such bases are described in [3], for instance. Thus the
functions

2dj�2�(i)(2 jx&k), j # Z, k # Zd (10)

form an orthonormal basis of L2(Rd). We index the wavelets in terms of
the dyadic cubes: If * is the cube

*=[x # Rd : 2 jx&k # [0, 1]d],
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we use the notation

� (i)
* (x)=2dj�q�(i)(2 jx&k).

Thus

f (x)=:
i, *

c (i)
* �(i)

* (x), (11)

where the wavelet coefficients of f are given by

c(i)
* =|

Rd
2dj(1&2�q)� (i)

* (t) f (t) dt.

(Note that we do not use the usual L2 normalization; the natural nor-
malization for the problem we consider is the H4 s, p normalization, which is
the same as the Lq normalization.) We will call the functions c (i)

* � (i)
* (x) that

appear in (11) the wavelet components of f. Let us now come back to the
model case supplied by (4) and sketch what a wavelet decomposition of
this sequence looks like. Since the un in (4) are obtained by (correctly
normalized) translations�dilations of a given function, the supremum of the
moduli of the wavelet coefficients of un does not tend to 0 when n � �.
Conversely, if this is the case at least one wavelet component of un will be
of the form

cn�(i)(2 jnx&kn), (12)

where cn � c{0 (after perhaps extracting a subsequence from (un)).
Our technique for proving Theorem 1 will be to substract from un

wavelet components like (12), where cn is the largest wavelet coefficient of
un . This will reduce the B4 &d�q, �

� norm of the remaining part of un , since the
space B4 &d�q, �

� has the following wavelet caracterization (see [7]):

f # B4 &d�q, �
� � sup

*, i
|c (i)

* |<�. (13)

In view of (3), it will also reduce the Lq norm of the remainder. In other
words, the proof of Theorem 1 will shed new light on the ``Sobolev
inequality made precise'' (3), since it will show that the B4 &d�q, �

� norm
``controls'' this lack of compactness.

2. EXTRACTION OF THE WAVELET COEFFICIENTS

Before starting the proof of Theorem 1, we review some functional spaces
characterizations taken from [7] that will be useful. If /* denotes the
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characteristic function of the cube *, then, in view of (2) and the Lq wavelet
normalization we chose, the characterizations in [7] are as follows:

f # Lq � \:
*, i

|c (i)
* |2 22dj�q/*(x)+

1�2

# Lq, (14)

f # H4 s, p � \:
*, i

|c (i)
* |2 22dj�p/*(x)+

1�2

# L p. (15)

We denote by |( f ) the function

|( f )(x)=\:
*, i

|c (i)
* | 2 22dj�p/*(x)+

1�2

. (16)

Let (un) be a bounded sequence of functions in H4 s, p. The wavelet
coefficients of un , which will be denoted by c (i)

*, n , satisfy

| \:
*, i

|c (i)
*, n | 2 22dj�p/*(x)+

1�2

dx�C. (17)

Of course, by restricting the sum to one term, we see that, a fortiori,

\n, *, i, |c (i)
*, n |�C

which simply means that (un) is a bounded sequence in B4 &d�q, �
� .

There are two cases: Either sup*, i |c(i)
*, n | � 0 when n � � (which just

means that the sequence (un) tends to 0 in B4 &d�q, �
� ), and, using (3), the

result is proved; or, perhaps after extracting a subsequence, we can suppose
that the sequence sup*, i |c (i)

*, n | converges to a non-vanishing limit |c1 | when
n � � (we will pick the sign of c1 later). Note that, because of (17), for
each n this supremum is attained for at least one cube *1

n . After, perhaps,
extracting another subsequence, we may assume that the indices i for which
this supremum is attained are all the same and that the corresponding coef-
ficients c (i)

*, n have the same sign (we require these coefficients to be of
the same sign so that the sequence c (i1)

*1
n , n

converges). Finally, after these
extractions, there exists an index i1 and a sequence of cubes *1

n such that
for all n

|c (i1)
*1

n , n
|=sup

*, i
|c (i)

*, n |

= (18)
_c1 {0 |c (i1)

*1
n , n

&c1 |�2&n |c1 |.

Denote by {n, 1 the translation�dilation such that

{n, 1([0, 1]d)=*1
n .
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The functions c (i1)
*1

n , n
� (i1)

*1
n

form the first sequence of wavelet components
extracted from un , and by definition, they define the function ,1, 1

n (the first
index 1 refers to the fact that we are dealing with the first sequence of
translations�dilations and the second index 1 refers to the fact that we are
dealing with the first extraction); c1� (i1)

*1
n

is the first wavelet component of
{n, 1(,1). (Following the terminology introduced by Patrick Ge� rard, the
center of the cube *1

n and its width are respectively the first extracted
sequences of hearts and scales.) To simplify (slightly) the notation, we will
from now on drop the index (i) of the wavelets and wavelet coefficients.
This is of no consequence provided that, in the following, each time that
a sequence of wavelet components is extracted, it is understood that we
perform a second extraction so that all the wavelets are indexed by the
same (i). We thus denote our first sequence of wavelet components
c*1

n , n�*1
n
. The first remainder u1

n is defined by

un=c*1
n , n�*1

n
=u1

n .

We now consider this sequence u1
n , which is just the sequence un

modified by replacing its largest coefficient c*1
n , n by zero. We will still

denote the coefficients of u1
n by c*, n . If the supremum of their moduli tends

to 0, we conclude as before; otherwise, we obtain as before an index (i2)
and a new sequence of dyadic cubes *2

n such that (18) holds. The limit of
the corresponding wavelet coefficients will be denoted by c2 . Let {1, 2

n be the
translation�dilation such that

{1, 2
n (*1

n)=*2
n .

Now, two cases can occur:

First Case. The sequence {1, 2
n is bounded. After reextracting a sub-

sequence, we can suppose that the respective positions of *1
n and *2

n remain
the same, i.e., that there exists a unique translation�dilation {1, 2 such that

\n {1, 2(*1
n)=*2

n . (19)

The sum c1 �*1
n
+c2�*2

n
is obtained by translations�dilations of a single

function; the function c2�*2
n

thus becomes the second wavelet component of
{n, 1(,1), and c*2

n , n�*2
n

is the second wavelet component of ,1, 2
n .

Second Case. {1, 2
n � � (in which case, the two sequences of dyadic

cubes *1
n and *2

n will be called orthogonal). We pick *2
n as a new sequence

of dyadic cubes, which defines a new sequence of translations�dilations {n, 2

orthogonal to {n, 1 . The coefficients c*2
n , n satisfy (18); the limit wavelet

component c2 �*2
n

is the first wavelet component of {n, 2(,2), and c*2
n , n�*2

n
is

the first wavelet component of ,2, 2
n .
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In both cases, the remainder u2
n is defined by

un=c*1
n , n�*1

n
+c*2

n , n�*2
n
+u2

n .

The extraction procedure that we initiated is continued, and after N
extractions, we obtain the decomposition

un(x)= :
l

m=1

,m, N
n (x)+uN

n (x), (20)

where l�N is the number of sequences of dyadic cubes orthogonal two by
two, that have been extracted (the equality holds only for the values of n
that remain after the N extractions). The wavelet components of ,m, N

n are
the extracted wavelet components indexed by the sequences of dyadic cubes
that were not orthogonal to *m

n . Note that the decomposition (20) is
nothing but a partition of the wavelet coefficients of un .

Each term ,m, N
n can thus be written

,m, N
n =cn, m

*
1
n, m �*

1
n, m+ } } } +cn, m

*k
n, m �*k

n, m . (21)

(Here we have changed the notations concerning the indexing of these
wavelet coefficients to show explicitly the sequences of dyadic cubes to
which they correspond.) The cubes *n, m

1 , ..., *n, m
k keep the same respective

positions, i.e., there exists translation�dilations {k, m such that

\n *n, m
k ={k, m(*n, m

1 ), (22)

and k is the number of wavelet components indexed by the sequences of
dyadic cubes that were not orthogonal to *m

n ; thus k depends on N.
The extraction at order N+1 is performed as follows:

v If &uN
n &B4 �

&d�q, � � 0 when n � �, then we stop the extractions at this
point, and the theorem is proved.

v If not we extract as before a sequence of coefficients c*n
N+1, n that

converges to a limit cN+1 {0. There are two cases:

(1) The sequence *N+1
n of dyadic cubes thus defined remains in

a bounded neighborhood of one of the sequences previously obtained (the
p-th for instance), and the wavelet component c*n

N+1, n�*n
N+1 will contribute

to the function , p, N+1
n , and at the limit, cN+1�*n

N+1 will be a new wavelet
component of {n, p(, p).

(2) The sequence *N+1
n of dyadic cubes remains in a bounded

neighborhood of none of the sequences previously obtained. It thus defines
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a new sequence of translations�dilations {n, l+1 that is orthogonal to the
previous ones, and the wavelet component c*n

N+1, n , �*n
N+1 will be a wavelet

component of a new function , l+1, N
n , and at the limit, cN+1 �*n

N+1 will be
the first wavelet component of {n, l+1(,l+1).

The subsequence of (un) that we will finally consider is the one obtained
from the previous extraction procedures using a diagonal extraction. We
still denote it by (un).

Furthermore, we will drop the index N in ,m, N
n , and write this function

,m
n since, after the diagonal extraction, the index N becomes a function of n.

3. NORM ESTIMATES ON EXTRACTED SEQUENCES

If u # H4 s, p let PN(u) be defined as the ``nonlinear projection'' obtained by
keeping the N wavelet components of u that have the N largest wavelet
coefficients (in modulus), and let QN be the remainder, defined by QN(U )
=u&PN(u). The following lemma shows how the B4 &d�q, �

� seminorm of
QN(u) decays.

Lemma 1. Let r=max( p, 2). Then

sup
&u&H4 s, p�1

&QN(u)&B4 �
&d�q, ��

C
N1�r .

Proof of Lemma 1. The embedding H4 s, p/�B4 s, r
r yields

&u&H4 s, p�C \:
*

|c* | r+
1�r

.

If the N largest coefficients |c* | are larger than a given value A,

1�&u&H4 s, p�CN1�rA

so that A�C&1N&1�r, hence the lemma.

Unless otherwise mentioned, we use in the following the equivalent
``wavelet norms'' defined by the right-hand sides of (13), (14), and (15).
The decomposition (20) of un is nothing but a partition of its wavelet
coefficients; thus,

\n, m &,m
n &H4 s, p�&un&H4 s, p .
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Each coefficient cn, m
*k

n, m of (21) has a limit when n � �. Using (22) and (15),
there exists a function ,m # H4 s, p such that

,m
n &{n, m(,m) � 0 in H4 s, p (23)

(recall that, if { : x � (x&b)�a, {(,)(x)=a&d�q,({(x))). Note that the
limn � �cn, m

*k
n, m are not necessarily the wavelet coefficients of ,m; however, for

each value of k, {n, m(,m) has the wavelet coefficients limn � �cn, m
*k

n, m if n is
large enough.

We used (20) for only one value of m. Let L, N>0 be fixed. We will now
reproduce the same argument for the whole set of functions ,1

n , ..., ,L
n . If we

keep only the N largest wavelet coefficients of ,m
n , we can write

un= :
L

m=1

PN(,m
n )+s l

n . (24)

We pick n large enough so that the N_L wavelet coefficients of the ,m
n

satisfy (18), and hence

\m=1, ..., L &PN(,m
n )&PN({n, m(,m)))&H4 s, p � 0 as n � �. (25)

Using again that (20) is a partition of the wavelet coefficients of un , and
using (15) and (16),

" :
L

m=1

|(PN(,m
n ))2"Lp�2

�C

thus, because of (25),

| \ :
L

m=1

|(PN({n, m,m))2+
p�2

�C. (26)

Since we use a basis of compactly supported wavelets, each function
PN({n, m ,m)) is supported in a cube C*m

n ; the same property holds for
|(PN({n, m ,m)). Note also that for n large enough, the L p norms of these
functions is independent of n. We now decompose the integral (26) into a
sum of L integrals on domains 0k

n defined as follows.
The domain 0k

n is the cube C*k
n from which we have excluded the

intersection with the other cubes C*k$
n of smaller size. (Note that because of

the orthogonality hypothesis, two cubes C*k
n of comparable size cannot

intersect for sufficiently large n.)
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Since the sequences *m
n are orthogonal,

\k=1, ..., L |
0n

k \ :
L

m=1

|(PN({n, m ,m))2+
p�2

(27)

converges to

|
C*n

k
(|(PN({n, k,k))2) p�2=&PN({n, k,k)& p

H4 s, p . (28)

Indeed, one distinguishes two types of errors when comparing (27) and the
left-hand side of (28): First, the error coming from the small cubes that
were taken out in the definition of 0k

n . This error tends to 0 because the
relative size of these small cubes becomes negligible. The second source of
errors comes from the big cubes C*k$

n that contain the 0k
n ; but the functions

which live at the scale of these big cubes have a negligible size on 0k
n . Thus,

summing the contributions of all domains 0k
n ,

:
L

k=1

&PN({n, k,k)& p
H4 s, p�lim sup

l � �
&ul & p

H4 s, p ,

since the left-hand term is independent of n for n large enough. The H4 s, p

norms of the {n, k,k are all equivalent (because the ``usual'' H4 s, p norm is
invariant under {n, k). Letting N, L � � we obtain

:
�

k=1

&,k& p
H4 s, p�lim sup

l � �
&ul& p

H4 s, p .

When comparing (5) and (20), we see that the remainder r l
n is composed

of two terms:

v The term uN
n in (20), which poses no problem. Indeed, since (20) is

a partition of the wavelet coefficients, using again the equivalent norm (17),
&uN

n &s, p�&un&s, p hence the bound (8) for that term. Furthermore, since uN
n

was obtained by replacing the N largest coefficients c*, n of un by zero,
Lemma 1 implies that the B4 &d�q, �

� norm of uN
n decays like 1�N1�r. Thus (6)

follows from (3).

v The term � l
m=1 {n, m,m&,m

n . But (23) implies that the H4 s, p norm
of each term of this sum tends to 0.

Remarks. The main ingredients in the proof above are two function
spaces that are invariant under the same transformations (normalized the
same way) and simultaneously that there exists a basis which is uncondi-
tional for both spaces, and whose elements are mapped to each other
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by these transformations. Thus the above techniques could certainly be
adapted in other situations where this type of abstract setting is provided.
We just illustrate this point by a particularly simple example.

The spaces l p(Z) and l q(Z) (1<p<q<�) are invariant under the
shifts, and the elements of the canonical basis, which is the same for l p(Z)
and l q(Z), are mapped to each other by the shifts. Using this basis and the
Ho� lder inequality

&u&l q�&u& p�q
l p &u&1& p�q

l�

(which, in this setting, plays the role of (3)), one obtains the following
description of the lack of compactness of the l p/� l q embedding. (If { is
the shift by l on the right, we write A({)=l; two sequences {n and {$n of
shifts are called orthogonal if A({n({$n)&1) � �).

Proposition 1. Let (un) be a bounded sequence in l p. There exists a sub-
sequence (u$n) of (un), elements ,m in l p and sequences {n, m of shifts such that
if m{m$, the sequences {n, m and {n, m$ are orthogonal, and the following
decomposition holds

\l�1 u$n= :
l

m=1

{n, m(,m)+r l
n ,

with the following l p and l q norm estimates

lim sup
n � �

&r l
n&l q==l with =l � 0 when l � �,

:
�

m=1

&,m& p
l p�C lim sup

N � �
&uN& p

l p ,

\n, l &r l
n& p

l p�C lim sup
N � �

&uN& p
l p .

It is also clear that the above proof works for any of the critical Sobolev
embeddings H4 s, p/�H4 s$, p$ with (s&s$)�d=1�p&1�p$, since (3) still holds
when replacing Lq by H4 s$, p$, with different weights on the right-hand side.

The case p=1 in Theorem 1 cannot be treated using similar ideas.
Indeed, although Cohen, DeVore, Petrushev, and Xu proved that some
Sobolev embeddings made precised hold in that case (see [2]), wavelets
are not an unconditional basis for H s, 1 (in fact H s, 1 has no unconditional
basis). This means that the technique of substracting the largest wavelet
components might increase the H s, 1 norm.
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