Characters and Complexity of Finite Semigroups*

JOHN RHODES†

University of California, Berkeley, California 94720, and
Institute for Advanced Study, Princeton, New Jersey 08540

Communicated by Gian-Carlo Rota

Received March 1968

Abstract

Let S be a finite semigroup and let K be an algebraically closed field of characteristic zero. Herein, we derive a formula for the congruence \equiv induced on S by the direct sum of all the irreducible representations of S over K. This congruence \equiv is proved to be the same as the congruence induced by the minimal homomorphic image of S, which is one-to-one on the subgroups of S and such that two distinct principal ideals of S, each generated by an idempotent, have distinct images.

Assume φ is a faithful finite dimensional representation of S. Let $R(\varphi)$ be the associated completely reducible representation having the same character as φ. That is, $R(\varphi)$ is the direct sum of the Jordan-Hölder factors of φ. Then by applying the Burnside-Steinberg theorem we prove that the congruence induced by $R(\varphi)$ on S equals \equiv. That is, the operator R preserves "one-to-oneness as much as possible."

We next apply these results to compute the complexity, $\#c(S)$, of S when S is a union of groups. A linear transformation $T = B(S)$ is defined on the character ring of S into itself. Then by a theorem of Krohn-Rhodes (which determines the complexity of S in terms of its homomorphic images), together with the previous character results, we prove that T is nilpotent and $\text{index}(T) = \#c(S)$.

Finally the character results proved here imply that, if the Fundamental Lemma on Complexity is valid, then the complexity of S is the maximum of the images of all its irreducible representations. This is known to be the case for all regular semigroups.

In the following all semigroups S are assumed to have finite order and K denotes an algebraically closed field of characteristic zero. We assume the reader is familiar with the following material although this paper is reasonably self-contained:

1. Standard theorems from the representation theory of finite dimensional K algebras. See [2], [7], and [9]. Standard finite dimensional
representation theory of S by matrices with coefficients in K. See Chapter 5 of [1].

(2) The definition and elementary properties of the (group) complexity of S, $\#_g(S)$. See Chapter 6 of [8] and the introduction of [5]. Statement of the main theorem of complexity for semigroups S which are union of groups. See Theorem 9.2.5 of [8] and Theorem A of [5].

(3) Standard theorems for finite semigroups, e.g., Rees Theorem, the Green relations, the Schützenberger representation, etc. See [1] or [8]. The calculus of homomorphisms on S including the definition and existence of the minimal homomorphomorphic image of S which is one-to-one on the subgroups of S, denoted $S \rightarrow S'$, definition and elementary properties of group mapping semigroups, etc. See Chapter 8 of [8].

In the following all undefined notation is given in the previously cited references.

In this paper we derive a formula for the congruence \equiv induced on S by the direct sum of all the irreducible representations of S over K. We show that \equiv is the same as the congruence induced on S by $S \rightarrow S^{\equiv}$, the minimal homomorphomorphic image of S which is one-to-one on each subgroup of S and such that two distinct regular \mathcal{J}-classes of S have disjoint images. (See Chapter 8 of [8].)

Assume φ is a faithful finite dimensional representation of S. Let $R(\varphi)$ be the associated completely reducible representation having the same character as φ. That is, $R(\varphi)$ is the direct sum of the Jordan-Hölder factors of φ. Then by applying the Burnside-Steinberg theorem [7] we prove that the congruence induced by $R(\varphi)$ on S equals \equiv.

We next apply these results to compute the complexity, $\#_g(S)$, of S when S is a union of groups. A linear transformation $T = B(S)$ is defined on the character ring of S into itself. Then by a theorem of Krohn-Rhodes [5, 8] (which determines the complexity of S in terms of its homomorphic images), together with the previous character result, we prove that T is nilpotent and index $(T) = \#_g(S)$. For a detailed exposition see Chapter 9 of [8], which assumes the character theory results proved here.

1. CONGRUENCES INDUCED BY IRREDUCIBLE REPRESENTATIONS

NOTATION 1.1. In the following, all semigroups are of finite order. R, S, T, U, and V denote semigroups. K denotes an algebraically closed field of characteristic zero. All representations \mathcal{R} considered will be finite dimensional right $K[S]$-modules. $K[S]$ denotes the semigroup algebra of S.
over K (which need not have an identity). We will speak interchangeably about ρ as being a representation and a module. See [1, Ch. 5], [2], and [9].

In this paper epimorphism means onto homomorphism.

$L, R, H, D = J$ denote the Green relations (see [1] or [8]). Let α be one of the Green relations and let $\varphi : S \rightarrow T$ be an epimorphism (the double arrow will signify that the mapping is surjective). Then φ is an α-homomorphism iff $[\varphi(s_1) \alpha \varphi(s_2)$ iff $s_1 \alpha s_2]$ for all $s_1, s_2 \in S$. φ is an α'-homomorphism iff $\varphi(s_1) \alpha \varphi(s_2)$ implies $s_1 \alpha s_2$ for all regular elements s_1, s_2 of S. See Chapter 8 of [8]. Notice α' and α epimorphisms coincide if S is regular.

Let $\psi : S \rightarrow T$ (be an epimorphism), then ψ is a γ-homomorphism iff ψ is one-to-one when restricted to each subgroup of S. Let $\varphi_i : S \rightarrow T_i$ be homomorphisms for $1 \leq i \leq n$. Then $\Pi \varphi_i : S \rightarrow T$ is the induced epimorphism defined by $\Pi \varphi_i(s) = (\varphi_1(s), \ldots, \varphi_n(s))$ for $s \in S$ and

$$T = \Pi \varphi_i(S) \triangleleft T_1 \times \cdots \times T_n,$$

where \triangleleft denotes subdirect product. See Chapter 8 of [8].

Let $\mathcal{R}_1, \ldots, \mathcal{R}_n$ be a complete set of inequivalent irreducible representations (IRR) of S. The number n is finite by the Wedderburn theory (see [9] or [2]).

Definition 1.1. Let $S \rightarrow S^{\text{GGM}}$ denote the epimorphism

$$\Pi \mathcal{R}_i : S \rightarrow (\Pi \mathcal{R}_i)(S).$$

Notation 1.2. Let A be a non-empty set. $F_R(A)$ denotes the semigroup of all function of A into A under the multiplication $f \cdot g = h$, $h(a) = g(f(a))$, $f, g \in F_R(A)$.

$F_L(A)$ denotes the reverse semigroup of $F_R(A)$. Let I be a left ideal of S, then $M_I^L : S \rightarrow F_L(I)$ is the homomorphism defined by $(M_I^L(s))(x) = sx$ for $s \in S, x \in I$. M_I^R for J a right ideal is defined dually.

The following definition is fundamental in investigations concerning both the complexity of S (see [5] or [8]) and the irreducible representations of S (see Theorem 1.1(a) below). This definition provides the critical link between the concepts of characters and complexity.

Definition 1.2. S is a **generalized group mapping (GGM) semigroup** iff $S = \{1\}$ or S has a minimal or 0-minimal two-sided ideal I so that both M_I^L and M_I^R are one-to-one homomorphisms.

If $S \neq \{1\}$, and S is a GGM semigroup then the ideal I is necessarily regular, non-zero, and uniquely determined. See 8.2.15 of [8]. As in [8] let $S \rightarrow S^{\text{GGM}}$ denote $\Pi\{\varphi_i \cdot \varphi_i : S \rightarrow T_i, \ T_i\text{GGM and } T_i \neq T_j \text{ if } i \neq j\}$.
Notation 1.3. Let \(q_k : S \to T_k \) be epimorphisms for \(k = 1, 2 \). Then \(q_k \) is equivalent to \(q_2 \) iff there exists an isomorphism \(\alpha : T_1 \to T_2 \) so that \(\alpha q_1 = q_2 \). (This is not to be confused with equivalent of two matrix representations.) For an epimorphism \(\varphi : S \to T \) let \(\text{mod}(\varphi) \) be the congruence induced on \(S \) by \(\varphi \), i.e., \(s_1 \equiv s_2 \text{ mod}(\varphi) \) iff \(\varphi(s_1) = \varphi(s_2) \). Clearly \(q_1 \) is equivalent to \(q_2 \) iff \(\text{mod}(q_1) = \text{mod}(q_2) \).

Let \(q_k : S \to T_k \) be epimorphisms for \(k = 1, 2 \). We write \(q_1 \succeq q_2 \) iff there exists an epimorphism \(\psi : T_1 \to T_2 \) so that \(\psi q_1 = q_2 \). Clearly \(q_1 \succeq q_2 \) iff \(s_1 \equiv s_2 \text{ (mod } q_1 \text{) implies } s_1 \equiv s_2 \text{ (mod } q_2 \text{).}

Let \(S \) be a fixed semigroup. Let \(\mathcal{L} \) be a collection of epimorphisms of \(S \) closed under equivalence. An epimorphism \(\varphi : S \to T \) is functorially minimal with respect to \(\mathcal{L} \) iff \(\varphi \in \mathcal{L} \) and for any \(\psi \in \mathcal{L}, \psi \succeq \varphi \). See Chapter 8 of [8].

Recall Notation 1.1. In this paper \(S \to S^{+\mathcal{F}'} \) denotes the functorially minimal \(\gamma \) and \(\mathcal{F}' \)-homomorphism of \(S \). It will follow from Lemma 1.7 that \(S \to S^{+\mathcal{F}'} \) exists and is clearly unique up to equivalence.

Theorem 1.1. (a) Let \(\mathcal{R} \) be an irreducible representation of \(S \). Then \(\mathcal{R}(S) \) is a GGM semigroup.

(b) \(S \to S^{\ominus\mathcal{RR}} \) is equivalent to \(S \to S^{\ominus\mathcal{GGM}} \).

(c) \(S \to S^{\ominus\mathcal{GGM}} \) is equivalent to \(S \to S^{+\mathcal{F}'} \) so \(S \to S^{\ominus\mathcal{RR}}, S \to S^{\ominus\mathcal{GGM}} \) and \(S \to S^{+\mathcal{F}'} \) are all equivalent.

Proof: The proof will proceed via several lemmas. First, some notation.

Notation 1.4. Let \(S \neq \{ \emptyset \} \) be a 0-simple semigroup. Let \(\mathcal{P}(S) \) be the collection of all pairs \((\varphi, T)\) such that \(\varphi : T \to T, \varphi \) is a \(\gamma \)-homomorphism and \(T \neq \{0\} \). We partially order \(\mathcal{P}(S) \), as in Notation 1.3, under \(\succeq \). Let \(\equiv \) be the congruence on \(S \) given by \(s_1 \equiv s_2 \) iff \(x_1 x_1 x_2 = x_1 x_2 x_2 \) for all \(x_1, x_2 \in S \). Let \(S \to S/\equiv \) denote the canonical epimorphism.

\(M_S^R \) is the right regular representation of \(S \). See Notation 1.2. Let \(\text{mod}(M_S^R) \), the congruence induced by \(M_S^R \), be denoted by \(\equiv(R) \). Thus \(s_1(\equiv(R)) s_2 \) iff \(x_1 s_1 = x_1 s_2 \) for all \(x_1 \in S \). The congruence \(\equiv(L) \) is defined dually.

Lemma 1.1. Let \(S \) be a 0-simple semigroup \(S \neq \emptyset \), then

(a) \(S \to S/\equiv \) is a \(\succeq \)-minimal element of \(\mathcal{P}(S) \). Any \(\succeq \)-minimal element of \(\mathcal{P}(S) \) is equivalent to \(S \to S/\equiv \).

(b) \(S \to S/\equiv \) is equivalent to \(S \to S^{\ominus\mathcal{GGM}} \).

(c) The congruence \(\equiv \) is the transitive closure of \(\equiv(L) \) and \(\equiv(R) \).
CHARACTERS AND COMPLEXITY OF FINITE SEMIGROUPS

Proof: We first prove (a). By the Rees theorem we may assume \(S = \mathcal{M}(G, A, B, C) \) a regular Rees matrix semigroup of \(A \times B \) matrices, with structure group \(G \) and regular structure matrix \(C \). See [1] or [8]. Clearly \(S \to S/\equiv \) is a \(\gamma \)-homomorphism with \(S/\equiv \neq \{0\} \), thus \(S \to S/\equiv \) is an element of \(\mathcal{P}(S) \). Let \(\varphi \in \mathcal{P}(S) \), then to prove (a), it will suffice to show that \(\varphi(s_1) = \varphi(s_2) \) implies \(s_1 \equiv s_2 \). Let \(x_1, x_2 \in S \), then

\[\varphi(x_1s_1x_2) = \varphi(x_1s_1x_2). \]

Now, \(\varphi^{-1}(0) = \{0\} \), since \(S \) is 0-simple and \(\varphi(S) \neq \{0\} \). Thus either \(x_1s_1x_2 = x_1s_2x_2 = 0 \) or both \(x_1s_1x_2 \) and \(x_1s_2x_2 \) lie in \(S - \{0\} \). In the latter case, \(x_1s_1x_2 \equiv x_1s_1x_2 \) and there are \(a_1, a_2, b_1, b_2 \in S \) so that

\[\alpha_1 = a_1x_1s_1x_2a_2^\mathcal{H}a_1x_1s_2x_2a_2 = \alpha_2, \]

\(\alpha_1 \) and \(\alpha_2 \) belong to the same (maximal) subgroup \(G \neq \{0\} \) of \(S \), and \(b_1x_1b_2 = x_1s_1x_2, b_1x_2b_2 = x_1s_2x_2 \). But \(\varphi \) being 1-1 on \(G \), \(\varphi(\alpha_1) = \varphi(\alpha_2) \) implies \(\alpha_1 = \alpha_2 \) and hence \(x_1s_1x_2 = b_1x_2b_2 = x_1s_2x_2 \) and (a) is proved.

We now prove (b). Since \(S^* = S \), it is easy to verify that \(S/\equiv \) is a GGM semigroup. Let \(\varphi : S \to T \) be any epimorphism with \(T \) a GGM semigroup. It will suffice to prove that \(s_1 \equiv s_2 \) implies \(\varphi(s_1) = \varphi(s_2) \). This is trivial if \(T = \{0\} \). Otherwise \(T \) is a 0-simple GGM semigroup and thus for \(t_1, t_2 \in T, y_1t_1 = y_1t_2 \) for all \(y_1 \in T \) or \(t_1y_2 = t_2y_2 \) for all \(y_2 \in T \) implies \(t_1 = t_2 \). Thus \(x_1s_1x_2 = x_1s_2x_2 \) for all \(x_1, x_2 \in S \) implies

\[\varphi(x_1)(\varphi(s_1)(\varphi(x_2)) = \varphi(x_2)(\varphi(s_2)(\varphi(x_2)) \]

for all \(x_1, x_2 \in S \), hence \(y_1(\varphi(s_1)\varphi(x_2)) = y_1(\varphi(s_2)\varphi(x_2)) \) for all \(y_1 \in T \), thus \(\varphi(s_1) = \varphi(s_2) \) and (b) proved.

We now prove (c). Let \(\equiv^* \) denote the transitive closure of \(\equiv(R) \) and \(\equiv(L) \), i.e., the lub of \(\equiv(R) \) and \(\equiv(L) \) in the lattice of congruences on \(S \). Clearly \(s_1 \equiv^* s_2 \) implies \(s_1 \equiv s_2 \). Also, \(s_1 \equiv^* 0 \) iff \(s_1 = 0 \). Now, let \(S = \mathcal{M}(G, A, B, C), s_1 = (g)_{ab}, s_2 = (g')_{a'b'} \) and assume \(x_1s_1x_2 = x_1s_2x_2 \) for all \(x_1, x_2 \in S \). Now \((x_1s_1)x_2 = (x_1s_2)x_2 \) for all \(x_1, x_2 \in S \) implies \(C(b, a) = kC(b', a') \) for some \(k = k(b, b') \in G \), all \(a \in A \). Similarly \(C(b, a) = C(b, a')h \) for some \(h = h(a, a') \in G \), all \(b \in B \). Thus, for all \(a \in A \) and \(x_2 \in S \), \((g)_{ab}x_2 = (gk)_{a'b'}x_2 \) and, for all \(b \in B \) and \(x_1 \in S \), \(x_1(g)_{ab} = x_1(hg)_{a'b'} \), i.e., \((g)_{ab} = (L)(hg)_{a'b'} \) and \((g)_{ab} = (R)(hk)_{a'b'} \) for all \(a \in A \) and \(b \in B \). Hence \(s_1 = (g)_{ab} \equiv^* (h)_{a'b'} = s_3 \), thus \(s_1 \equiv s_3 \) and so \(s_2 \equiv s_3 \). Now we may choose \(a_1, a_2, b_1, b_2 \in S \) so that \(a_1s_3a_2 \equiv a_1s_3a_2 \), \(a_1s_3a_2 \), and \(a_1s_3a_2 \) lie in the same subgroup \(G \neq \{0\} \) of \(S \), and \(b_1a_1s_3a_2b_2 = s_2 \), \(b_1a_1s_3a_2b_2 = s_3 \). Thus \(s_2 \equiv s_3 \equiv s_2 \) and (c) is proved.
Lemma 1.2. Let \(S \) be a 0-simple semigroup with \(S \neq \{0\} \). Let \(\psi : S \rightarrow S^{\oplus_{\text{IRR}}} \). Then \(\psi(S) \neq \{0\} \) and \(\psi \) is a \(\gamma \)-homomorphism, i.e., \(\psi \in \mathcal{P}(S) \). Furthermore, either \(s_1 = (L)s_2 \) or \(s_1 = (R)s_2 \) implies \(\psi(s_1) = \psi(s_2) \).

Proof: By Maschke's theorem, \(G \rightarrow G^{\oplus_{\text{IRR}}} \) is an isomorphism when \(G \) is a group. By the results of Clifford-Suschkewitsch ([1, Sect. 5.4]), we deduce immediately from the above that \(\psi \in \mathcal{P}(S) \).

The last assertion of the lemma is also immediate from the Clifford-Suschkewitsch results. Alternatively, we may argue directly as follows: Let \(L \) be the left regular representation of \(S \), \(R \) the right regular representation of \(S \), and \(L^* \), the dual of \(L \), i.e., the second right regular representation of \(S \). Clearly \(\text{mod } L^* = \text{mod}(L) = (\equiv (L)) \) and \(\text{mod } R = (\equiv (R)) \).

Now, dividing out the radical and observing that every irreducible representation vanishes on the radical, it follows from the Wedderburn theory that every (right) irreducible representation is a constituent of both \(R \) and \(L^* \), thus \(R \supseteq \psi \) and \(L^* \supseteq \psi \) and the lemma is proved.

Lemma 1.3. Let \(S \) be a 0-simple semigroup. Then (b) of Theorem 1.1 holds for \(S \).

Proof: We may assume \(S \neq \{0\} \), since otherwise the lemma is trivial. Then, by Lemma 1.2, \(\psi : S \rightarrow S^{\oplus_{\text{IRR}}} \) belongs to \(\mathcal{P}(S) \). Then Lemma 1.1(a) and (b) implies \((S \rightarrow S^{\oplus_{\text{IRR}}}) \supseteq S \rightarrow S^{\oplus_{\text{GMM}}} \). However, by Lemma 1.2

\[
(S \rightarrow S/\equiv(R)) \supseteq (S \rightarrow S^{\oplus_{\text{IRR}}}) \quad \text{and} \quad ((S \rightarrow S/\equiv(L)) \supseteq (S \rightarrow S^{\oplus_{\text{IRR}}}).
\]

Then by Lemma 1.1(c)

\[
(S \rightarrow S/\equiv) \supseteq (S \rightarrow S^{\oplus_{\text{IRR}}}).
\]

Thus by Lemma 1.1(b)

\[
(S \rightarrow S^{\oplus_{\text{GMM}}}) \supseteq (S \rightarrow S^{\oplus_{\text{IRR}}}).
\]

So \(S \rightarrow S^{\oplus_{\text{GMM}}} \) and \(S \rightarrow S^{\oplus_{\text{IRR}}} \) are equivalent and the lemma is proved.

Lemma 1.4. Let \(I \) be a (two-sided) ideal of \(S \).

(a) Let \(R \) be a non-zero irreducible representation of \(I \). Then \(R \) has a unique extension \(R \) to \(S \). \(R \) is irreducible.

(b) Let \(T \) be any representation of \(S \) and let \(R \) be \(T \) restricted to \(I \). Let \(R_1, \ldots, R_k \) be the non-zero irreducible constituents of \(R \). Then \(R_1, \ldots, R_k \) are among the irreducible constituents of \(T \).

Proof: This lemma is easily proved by the techniques of Munn-
Hewitt-Zuckermann (see [1, Theorem 5.33]). To prove (a), choose \(e \in K[1] \) so that \(\mathcal{A}(e) = I \), the identity matrix. Then let

\[
\mathcal{A}'(s) = \mathcal{A}(e \cdot s) = \mathcal{A}(e \cdot s \cdot e) = \mathcal{A}(s \cdot e)
\]

where \(\cdot \) is the multiplication in \(K[S] \) and \(e \cdot s, e \cdot s \cdot e, s \cdot e \in K[I] \) since \(I \) is an ideal.

To prove (b), let \(M \) be the \(K[S] \)-module associated with \(\mathcal{A} \) and let \(M = M_0 \supset M_1 \supset \cdots \supset M_n = 0 \) be a composition series for \(M \). Then \(M_j/M_{j+1} \) for \(j = 0, 1, \ldots, n-1 \) is a simple \(K[S] \)-module or a 1-dimensional zero action \(K[S] \)-module. In the first case the assumptions about \(K \) and the Wedderburn theory imply that every vector space endomorphism of \(M_j/M_{j+1} \) is a right multiplication by an element of \(K[S] \). Now, since \(I \) is an ideal of \(S \), the right multiplication by elements of \(K[I] \) form an ideal in \(\text{hom}_K(M_j/M_{j+1}, M_j/M_{j+1}) \). But \(\text{hom}_K(M_j/M_{j+1}, M_j/M_{j+1}) \) being a simple algebra, it follows that \(M_j/M_{j+1} \) for \(j = 0, \ldots, n-1 \) is either a simple (i.e., irreducible) \(K[I] \)-module or a zero action \(K[I] \)-module. Let \(M_j/M_{j+1}, M_{j+1}/M_{j+1} \) be the simple non-zero action \(K[I] \)-modules among the \(M_j/M_{j+1} \)'s. Clearly we may assume \(l = k \) and \(\mathcal{A}_r = M_r/M_{r+1} \) for \(1 \leq r \leq l = k \). Let \(\mathcal{A}_r \) be \(M_j/M_{j+1} \) considered as a \(K[S] \)-module. \(\mathcal{A}_r \) is simple since \(\mathcal{A}_r \) is simple. Now \(\mathcal{A}_r \) considered as a representation of \(I \) is \(\mathcal{A}_r \). Thus by (a), \(\mathcal{A}_r = \mathcal{A}'_r \). This proves (b) and hence Lemma 1.4.

Notation 1.5. (see Section 2 of Chapter 8 of [8]). Let \(S \) be a semi-group. For \(s \in S \), let \(s^\# \) denote the \(J \)-class of \(S \) containing \(s \). We write \(s_1^\# \leq s_2^\# \) iff \(S^1 s_2^1 s \subset S^1 s_2^1 S \). Let \(F(s) = F(s^\#) \) be the ideal

\[
\bigcup\{s^\# : s^\# \leq s^\# \text{ is false}\}
\]

Let \(\eta_s : S \to S/F(s) \) be the natural homomorphism with \(\eta_s(s_1) = s_1 \) when \(s_1 \in S - F(s) \) and \(\eta_s(s_1) = 0 \) otherwise. Let \(s \) be a regular element of \(S \). \(\text{GGM}_s(S) = (S/F(s^\#))/\equiv \) where, for \(r_1, r_2 \in S/F(s) \), \(r_1 \equiv r_2 \) iff \(x_1 r_1 x_2 = x_1 r_2 x_2 \) in \(S/F(s^\#) \) for all \(x_1, x_2 \in s^\# \). Let \((\eta \equiv) (\eta_s) = H_s : S \to \text{GGM}_s(S) \), where \((\eta \equiv) : S/F(s^\#) \to (S/F(s^\#))/\equiv \) is the natural homomorphism. For extensive background see 8.2.11 ff. of [8].

We say \(T \) is a basic \(\text{GGM(BGGM)} \) of \(S \) iff \(T = \text{GGM}_s(S) \) for some regular element \(s \in S \). Since \((s^\#)^2 = s^\# \), it is easy to verify that \(\text{GGM}_s(S) \) is a \(\text{GGM} \) semi-group. \(S \to S^{\oplus \text{BGGM}} \) denotes the epimorphism

\[
\Pi H_s : S \to \Pi H_s(S),
\]

where \(s \) runs through the regular elements of \(S \). If \(\varphi : S \to T \) and \(A \subseteq S \varphi \) \(\varphi \) restricted to \(A \).

The following lemma justifies the introduction of \(\text{GGM} \) semi-groups.
LEMMA 1.5. Let \mathcal{R} be an irreducible representation of S. Then $\mathcal{R}(S)$ is a GGM semigroup.

Proof: Since $\{0\}$ is a GGM semigroup, we can assume \mathcal{R} is not the null representation. Let J be the apex of \mathcal{R} (see [1, Ch. 5]), that is, J is the unique \leq-minimal member of $\{s^\# : \mathcal{R}(s^\#) \neq 0\}$. Let $j \in J$, then $\mathcal{R}(F(j)) \subseteq \{0\}$. Now, J is regular (see [1, Ch. 5]), hence $J^0[=J \cup F(j)/F(j)]$ is a 0-simple semigroup. \mathcal{R} induces the non-null irreducible representation $\mathcal{R}^{(1)}$ on J^0 with $\mathcal{R}^{(1)}(j) = \mathcal{R}(j)$ for all $j \in J$ and $\mathcal{R}^{(1)}(0) = 0$. Let $\text{mod}(\mathcal{R}^{(1)})$ be denoted by $\equiv^{(1)}$. Then $\mathcal{R}^{(1)}$ induces a faithful (in particular non-null) irreducible representation $R^{(2)}$ of $J^0(\equiv^{(1)})$ by $R^{(2)}([x]) = R^{(1)}(x)$, where $x \in J^0$ and $[x]$ is the equivalence class of $\equiv^{(1)}$ containing x. Now, $T = J^0(\equiv^{(1)})$ is a 0-simple semigroup having a faithful (non-null) irreducible representation. Thus, by Lemma 1.3, the identity map: $T \rightarrow T$ is equivalent to $T \rightarrow T \bigodot_{\text{GGM}}$. But, by Lemma 1.1, $T \rightarrow T \bigodot_{\text{GGM}}$ is equivalent to $T \rightarrow T/\equiv$ (\equiv as defined in Notation 1.4). Thus $(T/\equiv) = T$.

Let $X = S - (J \cup F(j))$ and $V = X \cup T$. Let $\theta : S/F(j) \rightarrow V$ with $\theta(x) = x$ for $x \in X$ and $\theta(j) = [J]$ for $j \in J$, where $[J]$ is the equivalence class of $\equiv^{(1)}$ containing J. Finally $\theta(0) = 0 \in T$. Now it is very easy to verify that mod θ is a congruence on $S/F(j)$ and thus there is a unique way to define a multiplication in V so that θ is an epimorphism. Thus

$$V \cong (S/F(j))/(\text{mod } \theta).$$

Now consider $\beta = H_v \theta_\eta$, where $v \in T - \{0\}$:

$$\beta : S \rightarrow S/F(j) \rightarrow V \rightarrow \text{GGM}_v(V) = U.$$

By construction, \mathcal{R} and θ_η induce the same congruence on the ideal $J \cup F(j)$. Moreover, H_v is one-to-one on T, since $(T/\equiv) = T$. Thus β and \mathcal{R} induce the same congruence on the ideal $J \cup F(j)$.

Let $I = H_v(T) = \beta(J \cup F(j))$. Then I is 0-simple, being isomorphic to T, so $I^2 = I$. Thus it is easy to verify that $U = \text{GGM}_v(V)$ is a GGM semigroup with respect to the 0-minimal ideal I. See 8.2 of [8].

Now, let ψ be the right Schützenberger representation of $\text{GGM}_v(V) = U$ with respect to I (see Sect. 3.5 of [1] and 8.2 of [8]). Since U is GGM with respect to I, ψ is one-to-one on U. Furthermore, ψ takes values in row-monomial matrices with coefficients in G^0, where G is a maximal subgroup of I, not equal to 0 in I so $\psi : U \rightarrow \text{RM}(m, G)$. Let R be the right regular representation of $K[G]$. Let $R^\#$ be the homomorphism which assigns to the $m \times m$ row-monomial matrix (x_{ij}) over G^0 the $mn \times mn$ matrix $(R(x_{ij}))$ over K. $R^\#$ is one-to-one since R is one-to-one. Let $\varphi = R^\# \psi$, then φ is one-to-one on U, hence also on T, so $\alpha = \varphi \beta$ is a
representation of S which induces the same congruence on the ideal $J \cup F(j)$ as \mathcal{R}. Moreover $\mathcal{R}(F(j)) = 0$ and $\alpha(F(j)) = 0$. Finally, since ψ and φ are one-to-one on U, mod $\alpha = \mod \beta$ and $\beta(S) = U$, a GGM semigroup. Thus, to complete the proof, it suffices to show that $\mathcal{R} \geq \beta$ and $\alpha \geq \alpha \mathcal{R}$.

We first show $\mathcal{R} \geq \beta$. Suppose $\beta(s_1) \neq \beta(s_2)$, then since $\beta(S) = U$ is a GGM, there exists $x \in I$ such that $x\beta(s_1) \neq x\beta(s_2)$, $x\beta(s_1)$, $x\beta(s_2) \in I$. Now, $I = \beta(J \cup F(j))$. Pick $x' \in J \cup F(j)$ so that $\beta(x') = x$. Since $J \cup F(j)$ is an ideal, $x's_1$, $x's_2 \in J \cup F(j)$ and $\beta(x's_1) \neq \beta(x's_2)$. But \mathcal{R} induces the same congruence as β on $J \cup F(j)$, hence $\mathcal{R}(x's_1) \neq \mathcal{R}(x's_2)$. Thus $\mathcal{R}(s_1) \neq \mathcal{R}(s_2)$ proving $\mathcal{R} \geq \beta$.

To show $\alpha \geq \mathcal{R}$, it will suffice to prove that \mathcal{R} is an irreducible constituent of α. Let N be the kernel of α restricted to H, H a maximal subgroup of S contained in J. By Maschke's and Wedderburn's theorem, φ restricted to $\beta(H) = G$ contains all irreducible representations of G as constituents since the right regular representation of G does. Further, G is a maximal subgroup of $I - \{0\}$. (See 7.2.5(c) of [8].) Now, since $G \cong H/N$, every irreducible representation γ of H whose kernel contains N induces an irreducible representation γ' of G where $\gamma = \gamma' \beta | H$. But γ' is a constituent of $\varphi | G$, hence γ is a constituent of α restricted to H.

In particular, \mathcal{R} restricted to H has kernel N. Let $\mathcal{R}^* = R \mid H$. Then \mathcal{R}^* is an irreducible plus (perhaps) null component by the Clifford-Suschkewitsch results. Redefine \mathcal{R}^* by taking only the irreducible part. Then \mathcal{R}^* has H in its kernel so \mathcal{R}^* is a constituent of $\alpha^* = \alpha \mid H$. Now, $\alpha(F(j)) = \mathcal{R}(F(j)) = 0$, so α and \mathcal{R} induce representations $\alpha^{(1)}$, $\mathcal{R}^{(1)}$, respectively on $J^0 = J \cup F(j)/F(j)$, a 0-simple semigroup with $\alpha^{(1)}$ and $\mathcal{R}^{(1)}$ irreducible. Since \mathcal{R}^* is a constituent of α^*, again by Clifford-Suschlewitsch $\mathcal{R}^{(1)}$ is a constituent of $\alpha^{(1)}$. Thus $\mathcal{R}^* = \mathcal{R} | J \cup F(j)$ is a constituent of $\alpha^* = \alpha | J \cup F(j)$. But Lemma 1.4 proves \mathcal{R} is a constituent of α and the proof is complete.

In the following let $\bar{s} = (s^\# \cup F(s))/F(s)(=s^\#^0)$.

Lemma 1.6. Let $H_s : S \rightarrow GGM_s(S)$ be given for some regular $s \in S$.

Then $S \rightarrow S \otimes \text{IRR} \geq H_s$.

Proof: Let $\psi_s = \Pi \mathcal{R} : \mathcal{R}$ is an irreducible representation with apex $s^\#$. By Lemmas 1.4(a) and 1.1, ψ_s induces the congruence \equiv on \bar{s}. But H_s also induces the congruence \equiv on s. Moreover,

$$\psi_s(F(s)) = H_s(F(s)) = 0.$$
Now, \(H_s(S) \) is a GGM semigroup, so it follows easily (as in the preceding proof of \(\mathcal{R} \geq \beta \)) that \(\psi_s \geq H_s \).

Lemma 1.7. \(S \rightarrow S^{\circ \text{BGGM}} \) is equivalent to \(S \rightarrow S^{\circ \text{GGM}} \). Further, \(S \rightarrow S^{\gamma + J'} \) exists and is equivalent to \(S \rightarrow S^{\circ \text{GGM}} \) and \(S \rightarrow S^{\circ \text{BGGM}} \).

Proof: (See 8.3.15 of [8].) The first assertion follows immediately from Fact 8.3.4 of [8]. Let \(s \) be a regular element of \(S \). Then it is very easy to verify that \(H_s \) is one-to-one on the subgroups of \(S \) contained in \(s^\# \), while \(H_s \) is never zero on \(s^\# \). Thus \(S \rightarrow S^{\circ \text{BGGM}} \) is a \(\gamma + J' \) epimorphism. Now suppose \(\varphi : S \rightarrow \varphi(S) \) is a \(\gamma + J' \) epimorphism. To complete the proof it is sufficient to show that, for \(s \in S \) a regular element, \(H_s(s_1) \neq H_s(s_2) \) implies \(\varphi(s_1) \neq \varphi(s_2) \).

Now \(H_s(s_1) \neq H_s(s_2) \) iff there exists \(x_1, x_2 \in s^\# \) so that either (1) \(x_1s_1x_2 \in s^\# \) and \(x_1s_2x_2 \notin s^\# \) or (2) both \(x_1s_1x_2 \) and \(x_1s_2x_2 \) lie in \(s^\# \) and \(x_1s_1x_2 \neq x_1s_2x_2 \). In case (1), since \(\varphi \) is a \(J' \) homomorphism, \(s \) regular and Fact 8.3.9(b) of [8], we have \(\varphi(x_1s_1x_2) \neq \varphi(x_1s_2x_2) \) and so \(\varphi(s_1) \neq \varphi(s_2) \). In case (2), \(x_1s_1x_2 \notin \mathcal{H} \) and so \(\varphi(x_1s_1x_2) \neq \varphi(x_1s_2x_2) \), since \(\varphi \) is one-to-one on the \(H \)-classes of \(S \) contained in the regular \(J \)-class \(s^\# \) by Remark 8.3.13(b) of [8]. Thus again \(\varphi(s_1) \neq \varphi(s_2) \). This proves Lemma 1.7.

Proof of Theorem 1.1: The statement of (a) is Lemma 1.5. Then (a) implies \((S \rightarrow S^{\circ \text{GGM}}) \geq (S \rightarrow S^{\circ \text{IRR}}) \). Lemma 1.6 implies

\[
(S \rightarrow S^{\circ \text{IRR}}) \geq (S \rightarrow S^{\circ \text{BGGM}}).
\]

Lemma 1.7 implies \((S \rightarrow S^{\circ \text{BGGM}}) \) and \((S \rightarrow S^{\circ \text{GGM}}) \) are equivalent. This proves (b).

Finally, (c) follows from (b) and Lemma 1.7. This proves Theorem 1.1.

Notation 1.6. Let \(\mathcal{A} \) be a representation of \(S \). Then \(R(\mathcal{A}) \) is the completely reducible module with the same character as \(\mathcal{A} \). That is, \(R(\mathcal{A}) \) is the direct sum \(\mathcal{A}_1 \oplus \cdots \oplus \mathcal{A}_k \) of the Jordan-Hölder factors of \(\mathcal{A} \). Thus

\[
\mathcal{A}(s) = \begin{pmatrix}
\mathcal{A}_1(s) & 0 \\
& \ddots \& \\
& & \mathcal{A}_k(s)
\end{pmatrix}
\]
and

\[
R(\mathcal{R})(s) = \begin{pmatrix}
R_1(s) & 0 \\
& \ddots & \ddots \\
& & R_k(s)
\end{pmatrix}.
\]

Clearly, \(R_j \) is an irreducible representation of \(S \) for \(1 \leq j \leq k \).

The next theorem states that the operator \(R \) "preserves one-to-oneness as much as possible."

Theorem 1.2. (a) Let \(\mathcal{R} \) be a representation of \(S \). Let \(\mathcal{R}(S) = T \). Let \(\psi : T \to T^{\oplus \text{IRR}} \), then \(R(\mathcal{R}) : S \to R(\mathcal{R})(S) \) is equivalent (in the sense of Notation 1.3) to \(\psi R : S \to T^{\oplus \text{IRR}} \).

(b) Thus \(R(\mathcal{R}) \) is equivalent (in the sense of Notation 1.3) to \(\varphi \mathcal{R} \), where \(\varphi : T \to T^{r+\text{IRR}} \).

Proof: Theorem 1.2 follows from the Burnside-Steinberg theorem [7] and Theorem 1.1. The details are as follows: To prove (a) we may assume \(\mathcal{R} \) is a faithful representation of \(T \) and then we must show

\[
R(\mathcal{R}) : T \to R(\mathcal{R})(T)
\]

is equivalent to \(T \to T^{\oplus \text{IRR}} \).

Let \(U \) be a representation and let \(U^n = U \otimes \cdots \otimes U \) (\(n \) terms) for \(n = 0, 1, 2, \ldots \), where \(\otimes \) denotes the tensor product and \(U \) denotes the representation always taking the value \((1) \), the one by one matrix with entry \(1 \in K \). Let \(\chi(U) \) denote the character of \(U \).

Let \(\chi_1 = \chi(\mathcal{R}_1), \ldots, \chi_q = \chi(\mathcal{R}_q) \) be the non-zero irreducible characters of \(S \). Let \(\chi(\mathcal{R}^n) = \sum_{j=1}^{q} a_{nj} \chi_j \). Then the Burnside-Steinberg theorem asserts that, for each \(j \) with \(1 \leq j \leq q \), there exists an \(m(j) = m \geq 0 \) so that \(a_{mj} \neq 0 \).

\[
\chi(\mathcal{R}^n) = [\chi(\mathcal{R})]^n = [\chi(R[\mathcal{R}])]^n = \chi[(R(\mathcal{R})^n] = \sum_{j=1}^{q} a_{nj} \chi_j.
\]

It is well known that, if \(K \) has characteristic zero, every completely reducible module is uniquely determined by its character (see [9]). Let \(R(\mathcal{R})^{(n)} = \bigoplus_{p=0}^{n} R(\mathcal{R})^p \). Then it is easy to check that \(R(\mathcal{R})^{(n)} \) is a completely reducible module and the irreducible representation \(\mathcal{R}_j \) occurs as a constituent of \(R(\mathcal{R})^{(m)} \) where \(m = m(j), a_{mj} \neq 0 \). Thus \(R(\mathcal{R})^{(m)} \supseteq \mathcal{R}_j \) (in the sense of Notation 1.3). But clearly \(R(\mathcal{R})^{(1)}, R(\mathcal{R})^{(2)}, \ldots \) all induce
congruences equal to mod $R(\mathcal{R})$. Thus $R(\mathcal{R}) \geq R(\mathcal{R})^{(m)} \geq \mathcal{R}_j$ for $1 \leq j \leq q$, and $m = m(j)$. So

$$R(\mathcal{R}) \geq \mathcal{A}_1 \oplus \cdots \oplus \mathcal{A}_q : S \rightarrow S^{\otimes \mathcal{IRR}}.$$

But the reverse inequality is immediate since $R(\mathcal{R})$ is completely reducible. This proves (a).

The assertions of (b) follow immediately from (a) and Theorem 1.1. This proves Theorem 1.2.

2. Characters and Complexity

Notation 2.1. (See Chapters 1 and 5-9 of [8] for extensive background and exposition. For additional references see [3], [4], [5], and [6].)

We recall the definition of the (group) complexity of a finite semigroup S.

If S_1 and S_2 are semigroups and Y is a homomorphism of S_1 into $\text{endo}(S_2)$, the semigroup of endomorphisms of S_2, the semidirect product of S_2 by S_1 with connecting homomorphism Y, denoted by $S_2 \rtimes Y S_1$, is the semigroup with elements $S_2 \times S_1$ and product defined by

$$(s_2, s_1)(s_2', s_1') = (s_2 Y(s_1)(s_2'), s_1 s_1').$$

We write

$$S_n \times Y_{n-1} S_{n-1} \times Y_{n-2} \cdots \times Y_1 S_1 = T_n$$

for the semigroup

$$\cdots (S_n \times Y_{n-1} S_{n-1}) \times Y_{n-2} S_{n-2} \cdots \times Y_1 S_1,$$

where

$$Y_{n-1} : S_{n-1} \rightarrow \text{endo}(S_n), \ldots, Y_j : S_j \rightarrow \text{endo}(S_n \times Y_{n-1} \cdots \times Y_{j+1} S_{j+1}), \ldots,$$

$$Y_1 : S_1 \rightarrow \text{endo}(S_n \times Y_{n-1} \cdots \times Y_2 S_2)$$

are homomorphisms.

$S \mid T$, read S divides T, iff there exists a subsemigroup $T' \subseteq T$ and an epimorphism $\varphi : T' \rightarrow S$.

Definition 2.1. S is a combinatorial semigroup iff each subgroup of S has order 1. Let S be a semigroup. Then $\#(S)$, read the complexity number of S, is the smallest positive integer n so that

$$S \mid T_n \times Y_{n-1} T_{n-1} \times Y_{n-2} \cdots \times Y_2 T_2 \times Y_1 T_1$$

(2.1)
where either

(a) \(T_1, T_3, T_5, \ldots\) are groups and \(T_2, T_4, T_6, \ldots\) are combinatorial semigroups or

(b) \(T_1, T_3, T_5, \ldots\) are combinatorial semigroups and \(T_2, T_4, T_6, \ldots\) are groups. See Chapters 6 and 9 of [8].

Notation 2.2. We define \(C(S) = (n, G)\) iff (a) above holds with \(n = \#(S)\), but (b) never holds with \(n = \#(S)\). Similarly, we define \(C(S) = (n, C)\) iff (b) holds with \(n = \#(S)\) but (a) never holds with \(n = \#(S)\). Finally, \(C(S) = (n, C \lor G)\) iff either (a) or (b) can hold with \(n = \#(S)\). \(C(S)\) is called the complexity of \(S\). That \(C(S)\) is well defined for every finite semigroup follows from [8].

Notation 2.3. (See [8].) Let \(\mathcal{C}\), the set of all complexities, equal

\[
\{1, 2, 3, \ldots\} \times \{C, G, C \lor G\}.
\]

Let \(\#\) be the function from \(\mathcal{C}\) to \(\{1, 2, 3, \ldots\}\) with \(\#(n, \alpha) = n\). We note that \(\#(S) = \#(C(S))\). We order \(\mathcal{C}\) by \(\leq\) where \(C_1 \leq C_2\) iff

(a) \(C_1 = C_2\), or

(b) \(\#(C_1) < \#(C_2)\), or

(c) \(\#(C_1) = \#(C_2) = n\) and \(C_1 = (n, C, \lor G)\).

Then \((\mathcal{C}, \leq)\) is a lattice with minimal element \((1, C, \lor G)\).

Let \((C, \lor G, n) = (n, C \lor G)\) for all \(n \geq 1\). Let \((C, 2n) = (2n, G)\) and \((G, 2n) = (2n, C)\) for \(n = 1, 2, 3, \ldots\). Let \((C, 2n + 1) = (2n + 1, C)\) and \((G, 2n + 1) = (2n + 1, G)\) for \(n = 0, 1, 2, \ldots\).

Let \(\#_G(2n, C) = \#_G(2n + 1, C) = \#_G(2n, G) = n\) for \(n \geq 1\). Let \(\#_G(2n + 1, G) = n + 1\) for \(n \geq 0\) and let \(\#_G(1, C) = 0\). Let

\[
\#_G(k, C \lor G) = \#_G(k, C) \quad \text{for} \quad k \geq 0.
\]

Then \(\#_G(C(S))\) is the smallest number of groups appearing in the solutions of equation (2.1). Let \(\#_G(S) = \#_G(C(S))\).

Finally we introduce the following notation. Let

\[
(C, 1) \oplus (C, n) = (C, 1) \oplus (C, \lor G, n) = (C, n).
\]

Let \((C, 1) \oplus (G, n) = (C, n + 1)\). We notice that

\[
(C, 1) \oplus \text{lub}(X) = \text{lub}(((C, 1) \oplus \alpha : \alpha \in X)) \geq \text{lub}(X),
\]

for \(X\) any finite set of complexities.
Recall Notations 1.1 and 1.3. $S
ightarrow S^v, S
ightarrow S^g$ denote the functorially minimal γ and α-homomorphisms, respectively, where α is any of the Green relations. See Chapter 8 of [8]. Notice if S is regular (e.g., S is a union of groups), then α and α' epimorphisms coincide.

Theorem A (See Chapter 9 of [8], especially Theorem 9.2.5). Let S be a semigroup which is a union of groups, then:

(a) $\#_\sigma(S) = \#_\sigma(S')$.

(b) If $S' \neq \{1\}$, then $\#_\sigma(S^{\gamma+L}) + 1 = \#_\sigma(S')$.

(c) Consider

$$S \rightarrow S^v \rightarrow S^{\gamma+L} \rightarrow S^{\gamma+L} \rightarrow \cdots \rightarrow \{1\}, \quad (2.2)$$

then $\#_\sigma(S)$ equals the number of L operators in (2.2), i.e., the number of non one-to-one L epimorphisms.

(a') S^σ is combinatorial and $\#_\sigma(S) = \#_\sigma(S^{\gamma+L})$.

(b') If $S' \neq \{1\}$, then $\#_\sigma(S^{\gamma+L}) + 1 = \#_\sigma(S^{\gamma+L})$.

(c') Consider

$$S \rightarrow S^{\gamma+L} \rightarrow S^{(\gamma+L)^2} \rightarrow S^{(\gamma+L)^3} \rightarrow \cdots \rightarrow \{1\}, \quad (2.3)$$

then $\#_\sigma(S)$ equals the number of L operators in (2.3), i.e., the number of non one-to-one L epimorphisms.

Proof: The theorem is proved by applying Theorem A of [5] together with its corollaries as developed in [6]. For a detailed exposition see Chapter 9 of [8], especially Definition 9.24 and Theorem 9.2.5.

The assertion of (a) follows by Proposition 6.10 of [6] or Theorem 9.2.15 and Corollary 9.3.4 of [8]. To prove (b) first assume $S^{\gamma+L} = \{1\}$. Then S' is right simple. Thus by the well-known structure theorem for right simple semigroups (see [1] or [8]), $\#_\sigma(S') = 1$, $\#_\sigma(S^{\gamma+L}) = 0$, so (b) is true in this case. Now, assume $S^{\gamma+L} \neq \{1\}$, then Remark 6.5 of [6] (see also [5] and [8]) yields

$$C(S) \leq (C, 1) \oplus (G, 1) \oplus C(S^{\gamma+L}), \quad (2.4)$$

Thus

$$(G, n) = C(S') \leq (C, 1) \oplus (G, 1) \oplus C(S^{\gamma+L}), \quad (2.5)$$

Thus

$$C(S^{\gamma+L}) = (C, k).$$
But (2.5) implies \((G, k) \leq (G, n)\), thus \(k < n\). Also (2.5) implies \((G, n) \leq (G, k + 2)\), thus \((G, n) \leq (G, k + 1)\), so \(n \leq k + 1\). Hence \(n = k + 1\) and (b) is proved.

Now (c) follows from (a) and (b). The series (2.2) reaches \([1]\) by [5] or Chapters 8 and 9 of [8].

That \(S^f\) is combinatorial follows because \(s \rightarrow S^1sS^1\) is a homomorphism of \(S\) into the semigroup of subsets of \(S\) under intersection. See [1, Ch. 4] or [8, Proposition 7.24]. In fact, \(S^f\) is a semilattice or commutative band. Now, \(S^{v+j} \leq S^v \times S^f\), by Proposition 8.3.15 of [8]. Thus

\[
C(S^{v+f}) = \text{lub}(C(S^v), C(S^f)).
\]

Now \(C(S^f) \leq (C, 1)\) so \#_c(S^{v+j}) = \#_c(S^v)\) and (a') follows from (a).

We next prove (b'). Assume \(S^v\) is not a group. Then

\[
C(S^{v+f}) = \text{lub}(C(S^v), C(S^f)) = \text{lub}(C(S^v), (C, 1)) = C(S^v).
\]

Further, assume \(S^{(v+j)}, \varnothing \neq \{1\}\). Then (2.4) implies

\[
(G, n) = C(S^v) = C(S^{v+f}) \leq (C, 1) \oplus (G, 1) \oplus C(S^{(v+f)}, \varnothing),
\]

Then as before, we find \(n = k + 1\). Now suppose \(S^v\) is a group \(\neq \{1\}\). Then \((G, 1) \leq C(S^{v+f}) \leq (C \vee G, 2)\). Further \(S^{v+f}\) divides \(S^v \times S^f\).

Now, by Proposition 6.7 of [6] the projection map \(S^v \times S^f \rightarrow S^f\) is an \(L\)-homomorphism and since \(S^f\) is a commutative band, it is clearly minimal so \((S^v \times S^f, \varnothing) = S^f\). Thus \#_c(S^{(v+f)}, \varnothing) = 0 and \#_c(S^{v+f}) = 1. So (b') holds in this case. Next, assume \(S^{v+f}, \varnothing = \{1\}\), then \(S^{v+f}\) is left simple, so again \#_c(S^{v+f}) = 1 and \#_c(S^{v+f}, \varnothing) = 0. This proves (b').

Now (c') follows from (a') and (b'). The series (2.3) reaches \(S^f\) by Chapters 8 and 9 of [8]. This proves Theorem A.

NOTATION 2.5. (See Definition 9.2.4(j), pp. 238–239 of [8].) Let \(S\) be a finite semigroup. Let \(\mathcal{R}_1, \ldots, \mathcal{R}_k, \ldots, \mathcal{R}_n\) be a complete set of inequivalent non-zero irreducible representations of \(S\). Let \(\chi_j = \chi(\mathcal{R}_j)\) be the associated characters. \(\chi_1, \ldots, \chi_k\) are those characters taking only the values zero and one.

Let \(s\) be a regular element of \(S\). Let \(s^#\) be the \(\mathcal{J}\)-class containing \(s \in S\). Let \(\mathcal{L}_b : b \in B_s\) be the \(\mathcal{L}\) classes of \(S\) contained in \(s^#\). The semigroup \(F_R(A)\) was defined in Notation 1.2. Let \(R_s : S \rightarrow F_R(B_s, 0)\) be the homomorphism given by \(R_s(s')(b) = b'\) where \(b' = 0\) if \(b = 0\), or \((\mathcal{L}_b s') \cap L_b = \phi\) for all \(b \in B\). Otherwise \(b'\) is the (unique) \(b' \in B_s\) satisfying \((\mathcal{L}_b s') \cap L_b \neq \phi\). We denote \(R_s(S)\) by \(\text{RLM}_s(S)\). See Definition 8.2.8 ff. of [8]. Now, by
identifying $0 \in B_0$ with the zero of $K[S]$ and considering the elements of $R_\lambda(S)$ as matrices (having entries 0 and 1) we obtain a right K-representation $R_\lambda(S)$ of S, with character $\chi = \chi(R_\lambda(S))$, written $\chi(RLM_\lambda(S))$, where $\chi(s) = |\{b \in B : L_0s \cap L_b \neq \emptyset\}|$. Here $|X|$ denotes the cardinality of X.

When S has a unique minimal or 0-minimal ideal I (e.g., S a GGM semigroup $\neq \{0\}$) we write $RLM(S)$ for $RLM_\lambda(S) \neq 0, s \in I$.

$$C(S) = \{\sum a_i x_i : a_i \text{ an integer}\}$$

denotes the character ring of S, the operations being pointwise addition and multiplication. As is well known, χ_1, \ldots, χ_n are linearly independent over K, see [2], and hence over the integers.

The following definition is fundamental. (See Definition 9.2.4(j), pp. 238–239 of [8].)

DEFINITION 2.2. $A(S): C(S) \rightarrow C(S)$ is the linear transformation given by

$$A(S)(\chi_i) = \chi(RLM_\lambda(S)))$$

$$A(S)(\sum a_i \chi_i) = \sum a_i A(S)(\chi_i). \quad (2.7)$$

Note that the matrix (α_{ij}) of $A(S)$ has non-negative integer coefficients.

We recall from notation 2.5 that χ_1, \ldots, χ_k are those characters taking only the values of zero and one. A' denotes the semigroup with elements A and multiplication $aa' = a'$. B' denotes the semigroup with elements B and multiplication $b'b = b'$.

LEMMA 2.1. Let S be a semigroup which is a union of groups. Then $A(S)(\chi_i) = \chi_j$ iff $1 \leq j \leq k$ iff $\chi_j(S) \subseteq \{0, 1\} \subset K$.

PROOF: Let J_i be the apex of R_λ. Since S is a union of groups, J_i is a simple subsemigroup of S. Let $I_j = R_\lambda(J_i)$. Then I_j is a simple semigroup which has a faithful irreducible representation (induced by R_λ).

Thus, by Lemma 1.1, $I_j \equiv \simeq J_i$.

Now, suppose that each subgroup of I_j has order one, i.e., I_j is combinatorial. Then it is well known (see [1] or [8]) that $I_j \simeq A_j \times B_j$, but then $I_j \equiv$ has order one. Thus I_j combinatorial implies

$$I_j = R_\lambda(J_i) = \{x\}.$$

Now since x is a non-zero idempotent and R_λ is irreducible it follows easily that $x = 1 \in K$.

Now define an irreducible representation T_λ of S by $T_\lambda(s) = 1$ when $J_0s \subseteq J_i$ and zero otherwise. T_λ agrees with R_λ on the ideal $J_i \cup I(J_i)$.

Thus, by Lemma 1.4, $\mathcal{F}_j = \mathcal{R}_j$, so $1 \leq j \leq k$. Now, from the definition of $\mathcal{F}_j = \mathcal{R}_j$, it follows that $\mathcal{A}(\mathcal{S})(\chi_j) = \chi_j$, $\chi_j = \chi(\mathcal{R}_j) = \mathcal{R}_j$.

Assume now that I_j is non-combinatorial. Then there exists a maximal subgroup G of I_j so that $\mathcal{R}_j \mid G$ has a constituent \mathcal{R} which is an irreducible representation of G whose kernel is properly contained in G. Now, by the character relations for groups $\sum \{\chi(\mathcal{R})(g) : g \in G\} = 0$ and $\chi(\mathcal{R})$ is not identically zero (in fact,

$$\sum \{\chi(\mathcal{R})(g) \chi(\mathcal{R})(g^{-1}) : g \in G\} = |G|.$$

Thus $\chi(\mathcal{R})$ cannot assume only the values zero and one, and the same is true of $\chi(\mathcal{R}_j) = \chi_j$. Let $s \in J_j$, then $\chi(\mathcal{R}_j, (\mathcal{R}_j(s))) \subseteq \{0, 1\}$, thus $\mathcal{A}(\mathcal{S})(\chi_j) \neq \chi_j$. This proves Lemma 2.1.

DEFINITION 2.3. Since, by Lemma 2.1, $\mathcal{A}(\mathcal{S})$ is the identity transformation when restricted to $W = \{\sum_{i=1}^k a_i \chi_i\}$, we can define the linear transformation $B(\mathcal{S}) : \mathcal{C}(\mathcal{S})/W \rightarrow \mathcal{C}(\mathcal{S})/W$ to be the transformation induced by $\mathcal{A}(\mathcal{S})$.

NOTATION 2.6. Let index $(B(\mathcal{S})) = 0$ iff $\mathcal{C}(\mathcal{S})/W = \{0\}$. Let index $(B(\mathcal{S})) = n \geq 1$ iff $\mathcal{C}(\mathcal{S})/W \neq \{0\}$ and n is the smallest positive integer such that $(B(\mathcal{S}))^n$ equals the zero operator. In all other cases let index $(B(\mathcal{S})) = +\infty$.

THEOREM B. Let \mathcal{S} be a semigroup which is a union of groups. Then

(a) $B(\mathcal{S})$ is nilpotent, i.e., index $(B(\mathcal{S})) < +\infty$,
(b) index $(B(\mathcal{S})) = \#_\mathcal{C}(\mathcal{S})$.

PROOF: (For a detailed exposition of the proof of Theorem B assuming the lemmas of this paper proved earlier, see Lemma 9.2.32 of [8].) We introduce the following notation. Let X be a non-empty subset of $\mathcal{C}(\mathcal{S})$. Then $H(X) : \mathcal{S} \rightarrow H(X)(\mathcal{S})$ is the epimorphism

$$H(X) = \prod \left\{ \mathcal{R}_j : \text{there exists } x \in X, x = \sum_{i=1}^n a_i \chi_i, a_i > 0, 1 \leq i \leq n \right\}.$$

By Theorem 1.1 and Lemma 1.7 we have

$$H[\mathcal{C}(\mathcal{S})] : \mathcal{S} \rightarrow \mathcal{S}^{\oplus GGM} = \mathcal{S}^{\oplus GGM} = \mathcal{S}^{\oplus BGM}.$$

By Theorem A,

$$\#_\mathcal{C}(\mathcal{S}) = \#_\mathcal{C}(\mathcal{S})^{\oplus GGM} = \#_\mathcal{C}[H[\mathcal{C}(\mathcal{S})]()] = (2.8)$$

Recall Notation 1.5. Let \(\psi_1 = \prod H_i : S \rightarrow \text{GGM}_s(S) : s^# \text{ is combinatorial} \). Now, when the simple subsemigroup \(s^# \) is combinatorial, \(s^# \) is isomorphic to \(A_r \times B^t \) and thus \(s^/# = \{1\} \). Now, since \(s = S^{1} \cdot s^{1} \) is a homomorphism of \(S \) into the set of subset of \(S \) under intersection, \(H_\psi(x) = 1 \), when \(xs^# \subseteq s^# \) and \(H_\psi(x) = 0 \) otherwise, i.e., \(H_\psi = \chi \), for some \(1 \leq j \leq k \). Thus \(\psi_1 \) is equivalent to \(S \rightarrow S^{#} \) and to \(\prod \{ \mathcal{A}_i : 1 \leq i \leq k \} \).

Now consider the epimorphism

\[
R_\psi \cdot H_\psi : S \rightarrow \text{GGM}_s(S) \rightarrow \text{RLM}_s'(\text{GGM}_s(S)),
\]

where \(s^# \) is non-combinatorial and \(s' = H_\psi(s) \). Now it is easily seen that \([\text{GGM}_s(S)]^* = \text{GGM}_s(S) \) when \(s^# \) is non-combinatorial,

\[
\text{RLM}_s'(\text{GGM}_s(S))^* = \text{RLM}_s'(\text{GGM}_s(S))
\]

and \(R_\psi \) is an \(\mathcal{L} \)-homomorphism. See 8.3.25 of [8]. Thus

\[
\text{RLM}_s'(\text{GGM}_s(S)) \neq \{1\}
\]

and equation (2.4) implies \(C(\text{GGM}_s(S)) = (G, n) \) and

\[
C(\text{RLM}_s'(\text{GGM}_s(S))) = (C, n - 1).
\]

For more details see [5] and Chapters 8 and 9 of [8].

Now consider the epimorphism

\[
\theta_\psi \cdot R_\psi \cdot H_\psi : S \rightarrow \text{GGM}_s(S) \rightarrow \text{RLM}_s'(\text{GGM}_s(S))
\]

\[
\rightarrow \text{RLM}_s'(\text{GGM}_s(S)) \otimes^{\text{BGGM}}.
\]

Then assuming \(\text{RLM}_s'(\text{GGM}_s(S)) \neq \{1\} \) we have

\[
\#_s(\text{GGM}_s(S)) - 1 = \#_G(\text{RLM}_s'(\text{GGM}_s(S)))
\]

\[
= \#_G((\text{RLM}_s'(\text{GGM}_s(S))) \otimes^{\text{BGGM}}).
\]

(2.9)

Note that, by the Proof of Lemma 2.1, all irreducible characters belong to \(W \) iff \(S \) is combinatorial. In the trivial case in which \(S \) is combinatorial, \(\#_G(S) = 0 \), and by our convention index \(B(S) = 0 \), thus the theorem holds in this case. Hence we may assume \(k < n \), i.e., \(\#_G(S) \geq 1 \). For \(k < i \leq n \), we have by (2.9) and Theorems 1.2 and 1.1 that

\[
\#_s(\mathcal{A}_i(S)) - 1 = \#_G(\chi(\text{RLM}[\mathcal{A}_i(S)])(S)).
\]
Hence
\[
\#\sigma(S) - 1 = \#\sigma(S^{\otimes 1}^{\text{IRR}}) - 1 = \max_{k < i \leq n} (\#\sigma(R_i(S)) - 1) \\
= \max_{k < i \leq n} \#\sigma(H(A(S)(X_i))(S)) \\
= \#\sigma[H(A(S)[\xi(S)])(S)].
\]

Thus
\[
\#\sigma(S) - 1 = \#\sigma[H(A(S)[\xi(S)])(S)].
\]

Replacing S by $H(A(S)[\xi(S)])(S)$ and repeating the argument k times, we have
\[
\#\sigma(S) - k = \#\sigma[H(A(S)^k[\xi(S)])(S)]
\]
as long as the right-hand side is positive. When $H(A(S)^k[\xi(S)])(S)$ is combinatorial, $H(A(S)^k[\xi(S)])$ contains only irreducible representations with range $\mathbb{C}\{0, 1\}$, thus $B(S)^k$ is the zero operator. Now (a) and (b) follow from Theorem A.

ACKNOWLEDGMENT

The author wishes to thank the Institute for Advanced Study, Princeton, New Jersey and the Alfred P. Sloan Foundation for their generous support of this research.

REFERENCES