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Abstract

Let K be a field andG a quasi-simple subgroup of the Chevalley groupF4(K). We
assume thatG is generated by a classΣ of abstract root subgroups such that there are
A,C ∈Σ with [A,C] ∈Σ and anyA ∈Σ is contained in a long root subgroup ofF4(K).
We determine the possibilities forG and describe the embedding ofG in F4(K).
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Introduction

For an arbitrary commutative fieldK, we denote byF4(K) the universal
Chevalley group of typeF4 overK. This is the group generated by symbolsxr(t),
t ∈K, r ∈Φ, with respect to the Steinberg relations; we refer to Carter [1, 12.1.1].
HereΦ is the root system of typeF4, a subset of the Euclidean spaceR4 with
orthonormal basis{e1, e2, e3, e4}. In the notation of Bourbaki [2], the extended
Dynkin diagram of typeF4 is
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where

α∗ = e1+ e2, α1= e2− e3, α2= e3− e4,

α3= e4, α4= 1
2(e1− e2− e3− e4).

A long root subgroup ofF4(K) is a conjugate ofXα∗ = {xα∗(t) | t ∈K} � (K,+).
The groupF4(K) is generated by its class of long root subgroups and is simple.

In the following, we study subgroups ofF4(K) which are of ‘Lie type’. Here
a group of Lie type is the subgroup of the automorphism group of any spherical
Moufang building generated by the root subgroups (as defined by Tits [3]). These
groups of Lie type are closely related to the groups generated by a class of so-
called abstract root subgroups in the sense of Timmesfeld [4,5].

A conjugacy classΣ of abelian subgroups of a groupG is called a class of
abstract root subgroups ofG, if G= 〈Σ〉 and forA,B ∈Σ , one of the following
holds:

(a) [A,B] = 1.
(b) [A,B] = [a,B] = [A,b] ∈ Σ for a ∈ A#, b ∈ B#; moreover [A,B]

commutes withA and withB.
(c) 〈A,B〉 is a rank 1 group with abelian unipotent subgroupsA,B. (This means

that fora ∈A#, there existsb ∈B# such thatAb = Ba and vice versa.)

This paper is devoted to the study of the following problem:

(P) LetΣ be a class of abstract root subgroups ofG such that:
(1) There areA,B,C ∈Σ such that〈A,B〉 is a rank 1 group and[A,C] ∈

Σ .
(2) ForA,C ∈Σ , CΣ(A)=GΣ(C) impliesA= C.
We assume thatG is a subgroup ofY = F4(K) such that any elementA ∈Σ
is contained in a long root subgroup̂A of Y .
The problem is to determine the possibleG and the embedding ofG in Y . By
Timmesfeld [4, (3.17)] or [5, II (2.14)], any suchG is quasi-simple. ForG as
in (P), we say (for short) thatG is a group of Lie type embedded inY .

Problem (P) contributes to the determination of subgroups of groups of Lie
type generated by long root elements. For a subsystemΨ of Φ with fundamental
root system{p1, . . . , pr }, we defineM(p1, . . . , pr) := 〈Xr | r ∈ Ψ 〉. These
subgroups ofF4(K) are called subsystem subgroups. InF4(K) there are the
following classical subsystem subgroups:

M(−α∗, α1, α2, α3)� B4(K),

M(α2, α3, α4)� C3(K),

M(α2, α3, α4,−e1)� C4(K) in characteristic 2,
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and the subsystem subgroups of these.
WhenG as in (P) already embeds in a (proper) subsystem subgroupM, then

this reduces to the study of subgroups of classical groups; we refer to Steinbach
[6] and Cuypers and Steinbach [7].

We prove the following theorem.

Theorem 1.For any subgroupG ofF4(K) as in(P)above, passing to a conjugate
in F4(K), one of the following holds:

(1) G is contained in the classical subsystem subgroupM(−α∗, α1, α2, α3) �
B4(K).

(2) G is F4(L), L a subfield ofK, or a groupF4(L,F ) of mixed typeF4 in
characteristic2, whereF 2⊆ L⊆ F , F , L subfields ofK.

(3) G arises from a Moufang hexagon.

We remark that there is overlap between Cases (1) and (3). Below in
Theorems 2–6, we give more detailed information on the possible subgroupsG

and their embeddings inF4(K).
In addition to the Steinberg generators and relations forF4(K) mentioned

above, we use the associated building. In this building, there are four types of
objects, called points, lines, planes and symplecta, and the long root subgroups of
F4(K) may be identified with the points.

We use the classification of polar spaces due to Tits [3] and the classification
of Moufang polygons by Tits and Weiss [8] (as stated by Van Maldeghem [9]).
Another important tool is the determination of weakly embedded polar spaces by
Steinbach and Van Maldeghem [10,11].

Our strategy to solve Problem (P) is as follows: letG be a subgroup ofF4(K)

as in (P). By the classification of groups generated by abstract root subgroups,
due to Timmesfeld [4] or [5],G is on a list of groups of Lie type and of infinite-
dimensional classical groups. Some of these candidates are easily eliminated. We
have to deal with the cases whereG arises from an orthogonal space of Witt index
3 or 4, a building of typeF4 or a Moufang hexagon. We remark that instead of
using Timmesfeld’s classification we could have taken the latter groups of Lie
type as a starting point for the investigation of subgroups ofF4(K) generated by
parts of long root subgroups.

Next, we state the results obtained in the respective cases. For unexplained
terminology, we refer to the section where the subgroups in question are dealt
with. WhenG arises from an orthogonal space, we are able to reduce to a classical
subsystem subgroup ofF4(K) as in the next theorem.

Theorem 2. Let G be a subgroup ofF4(K) as in (P). We assume that there is
a vector spaceW (over the fieldL), endowed with a non-degenerate quadratic
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form q :W → L such thatG := G/Z(G) � PΩ(W,q) with Σ the class of
(projective) Siegel transvection groups.

Then a conjugate ofG in F4(K) is contained inM(−α∗, α1, α2, α3)= B4(K)

(with underlying orthogonal space denotedV ). Moreover, the Witt index ofq is 3
or 4 and the orthogonal polar space(W,q) is weakly embedded inP([V,G]).

WhenG arises from a building of typeF4, we show:

Theorem 3. Let G be a subgroup ofF4(K) as in (P). We assume that there is
a building F of typeF4 such thatG := G/Z(G) is isomorphic to the normal
subgroup ofAut(F) generated by the class of long root subgroups withΣ the
class of long root subgroups.

Then, passing to a conjugate inF4(K), one of the following holds forG:

• Whenchar(K) �= 2, there is a subfieldL ofK such thatG is F4(L).
• Whenchar(K)= 2, there are subfieldsL, F ofK withF 2⊆ L⊆ F such that
G is the groupF4(L,F ) of mixed typeF4.

WhenG arises from a Moufang hexagonΓ , then we show thatΓ is ‘classical’.
This means that the exceptional Moufang hexagons related to forms ofE6, 2E6,
or E8 do not occur; but the so-called mixed hexagons in characteristic 3 do. In
detail we prove the following theorem.

Theorem 4. Let G be a subgroup ofF4(K) as in (P). We assume that there is
a Moufang hexagonΓ , such thatG is isomorphic to the subgroup ofAut(Γ )
generated by the class of long root subgroups withΣ the class of long root
subgroups.

ThenΓ is a G2-hexagon, an3D4-, 6D4-hexagon, or a mixed hexagon in
characteristic3. WhenK is algebraically closed andΓ is not a mixed hexagon
in characteristic3, then a conjugate ofG in F4(K) is contained in

M(e1− e2, e2− e3, e3− e4, e3+ e4)=D4(K).

Furthermore we show that the groups associated to aG2- and 3D4-, 6D4-
hexagon embed inF4(L), whereL is the ground field coordinatizing the long
root subgroups.

Theorem 5.Let L̂ :L be a separable cubic field extension with Galois closureL.
Then the groups3D4(L̂), 6D4(L) (depending on whether̂L : L is a Galois
extension or not) embed inF4(L) such that long root subgroups are long root
subgroups.

To complete the study of groups of Lie type embedded inF4(K), we also
deal with the Ree groups2F4(L,σ ). Here the centers of the long root subgroups
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(which are the central elation subgroups of a Moufang octagon) do not form
a class of abstract root subgroups. We show the following proposition.

Proposition 6. Let K be a field andΓ a Moufang octagon admitting central
elations. Then the subgroup ofAut(Γ ) generated by the central elation subgroups
of F4(K) cannot be a subgroup ofF4(K) such that the central elation subgroups
are contained in long root subgroups ofF4(K).

In this paper on subgroups ofF4(K) the emphasis is on arbitrary fields,
including non-perfect fields in characteristic 2 (as, for example, the field of
rational functions over GF(2)). The latter are involved in many interesting
phenomena, in particular in the groups of mixed typeF4.

For finite groups and for algebraic groups over an algebraically closed field,
results on groups of Lie type embedded inF4(K) are in the literature. Subgroups
of simple algebraic groups over an algebraically closed field, which are generated
by full long root subgroups have been determined by Liebeck and Seitz [12] for
all classical and exceptional types. In their setting the subgroups in question arise
from one of the spherical root systems. Stensholt [13] constructs embeddings
among finite groups of Lie type such that long root subgroups are long root
subgroups. For the exceptional types in the finite case, the embedded groups of
Lie type have been determined by Cooperstein [14,15]. In [14, Part I] the results
on subgroups generated by full long root subgroups are achieved geometrically;
in [15], on subgroups over a subfield, classification results are used.

The paper is organized as follows: in the preliminary Section 1, we collect
properties ofF4(K) and we state classification results for later use. In Section 2
we begin the proof of the theorems stated above. The groups arising from an
orthogonal space are dealt with in Section 2; the ones arising from a building
of type F4 in Section 3. The subgroups associated to a Moufang hexagon are
investigated in Sections 4 and 5. Finally, we deal with Moufang octagons in
Section 6.

Proof of Theorem 1. We use Timmesfeld’s classification of groups generated by
abstract root subgroups, as stated in Section 1.6. In Section 2.2 we eliminate the
subgroupsEn(L), n= 6,7,8. In Section 2.4 we deal with groups arising from a
projective space. Now Theorem 2 on orthogonal groups (proved in Section 2) and
Theorem 3 on subgroups arising from a building of typeF4 (proved in Section 3)
yield Theorem 1. ✷

This paper was taken from my Habilitationsschrift [16]. There also the
subgroupsG of F4(K) as in (P) but generated by a classΣ of so-called abstract
transvection subgroups (where Possibility (b) never occurs) are handled; see also
Steinbach [25].



468 A. Steinbach / Journal of Algebra 255 (2002) 463–488

1. Preliminaries

In this section we collect some properties of the Chevalley groupF4(K) and its
associated building. Furthermore, we state the classification of weakly embedded
classical polar spaces due to Steinbach and Van Maldeghem [10,11] as well as the
classification of groups generated by abstract root subgroups, due to Timmesfeld
[4, Theorem 5] (see also [5, III Section 9]). Both results will be used later.

For the definition and properties of Chevalley groups and the associated root
systems, we refer to Carter [1], Steinberg [17] and Bourbaki [2].

1.1. Notation for abstract root subgroups.We recall the definition of a classΣ
of abstract root subgroups of the groupG from the introduction. ForU �G and
A ∈Σ , we defineΣ ∩ U := {T ∈Σ | T � U}, CΣ(A) := {B ∈Σ | [A,B] = 1}
andMA := 〈ΛA〉.

Let A,B ∈Σ . When[A,B] ∈Σ as in Possibility (b), we also writeB ∈ ΨA.
Furthermore,B ∈ΛA means that[A,B] = 1,A �= B, andΣ ∩AB is a partition
of AB. Note that[A,B] ∈ΛA, whenB ∈ΨA.

1.2. Chevalley commutator relations inF4(K). Let t, u ∈K andr, s ∈Φ. When
0 �= r + s /∈Φ, then[xr(t), xs(u)] = 1. Whenr + s ∈Φ, then the following holds
(with signs depending onr, s, but not ont , u):

(a) If r, s are long or ifr, s, r + s are short, then[xr(t), xs(u)] = xr+s(±tu).
(b) If r, s are short andr + s is long, then[xr(t), xs(u)] = xr+s(±2tu).
(c) If r is long ands is short, then[xr(t), xs(u)] = xr+s(±tu)xr+2s(±tu2).

Furthermore,〈Xr,X−r 〉 � SL2(K).

1.3. TheF4-geometry.We consider the building associated toF4(K) (in the sense
of Tits [3]) as a point-line geometry, theF4-geometry. There are four types of
objects: points, lines, planes and symplecta. For properties of symplecta, we refer
to Timmesfeld [5, III Section 7], Van Maldeghem [9, p. 80], and Cooperstein [14,
p. 333].

A point is a long root subgroup, the standard point beingXe1+e2. Two long root
subgroupsA, C define a line, a so-calledF4-line, precisely when any element in
AC is a long root element. The standard line isXe1+e2Xe1+e3. Three long root
subgroups (not on a line) define a plane, when any two define a line.

The action of the subsystem subgroupM(C3) := M(α2, α3, α4) � Sp6(K)

on the lines of theF4-geometry passing throughXe1+e2 is equivalent to the
action of Sp6(K) on the isotropic planes of the underlying symplectic space.
Let E = Xe1+e2, F = X−e1−e2. Any F4-line onXe1+e2 has a unique pointAi in
ΛE ∩ΨF . We letAi correspond to the isotropic planeEi in the symplectic space
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underlyingM(C3). WhenA2 ∈ΛA1, thenE1 ∩E2 is a line. When[A1,A2] = 1,
butA2 /∈ΛA1, thenE1∩E2 is a point. WhenA2 ∈ ΨA1, thenE1 ∩E2 is empty.

As follows from the Dynkin diagram of typeF4, all points, lines, and planes
of theF4-geometry contained in a symplecton (seen as point-line geometry) yield
a polar space of typeB3. WheneverA, B are commuting long root subgroups of
F4(K) which do not define anF4-line, thenA andB define a symplecton of the
F4-geometry. The standard symplecton onXe1+e2 andXe1−e2 is

S := S(Xe1+e2,Xe1−e2)= 〈Xe1±e2,Xe1±e3,Xe1±e4,Xe1〉.
Note thatS � M(−α∗, α1, α2, α3) = B4(K) and thatS = Z(UJ ) in the par-
abolic subgroupPJ = UJLJ with Levi complement associated to the diagram
(α1, α2, α3) of typeB3. We may considerS as a 7-dimensional natural module
for B3(K).

Let S be the symplecton onXe1+e2 andXe1−e2 as above. WhenA, B are non-
collinear points inS (i.e.,A, B are not on anF4-line), thenS = S(A,B) andS is
spanned byA,B and allT which are collinear with bothA andB. For a long root
subgroupE generating SL2(K) with Xe1+e2, there is a unique long root subgroup
T contained inS which commutes withE. Any point in S, which is not on an
F4-line with T , generates SL2(k) with E.

1.4. Properties ofF4(K). The permutation rank ofF4(K) on the class of long
root subgroups is five. The class of long root subgroups is a class of abstract root
subgroups ofF4(K) in the sense of Timmesfeld [4,5].

The center ofF4(K) is trivial. Any diagonal automorphism ofF4(K) is an
inner automorphism. For any long root subgroupT in Y = F4(K) and 1�= t ∈ T ,
we haveCY (t) = CY (T ). Let Ai , Bi (i = 1, . . . ,4) be long root subgroups of
F4(K) such thatXi := 〈Ai,Bi〉 � SL2(K) and[Xi,Xj ] = 1 for i, j = 1, . . . ,4,
i �= j . Passing to a conjugate inF4(K), we may assume thatA1,B1, . . . ,A4,B4
areXe1+e2, X−e1−e2, Xe1−e2, X−e1+e2, Xe3−e4, Xe3+e4, Xe3+e4, X−e3−e4.

For any long root subgroupE in F4(K), we denote byME the unipotent
radical in the parabolic subgroupN(E) (see Carter [1, 8.5]). ForE = Xe1+e2,
we haveME = 〈Xr | r ∈ Ψ 〉, whereΨ := {e1+ e2, e1, e2, 1

2(e1+ e2± e3± e4),
e1 ± e3, e1 ± e4, e2 ± e3, e2 ± e4}. Furthermore,Am is contained inS(E,A)
for m ∈ ME wheneverE and A define a symplecton. Finally,ME/E is a
14-dimensional symplectic space overK.

1.5. Weak embeddings of polar spaces.For polar spaces, we refer to Tits [3]
and Cohen [18]. LetV be a vector space over some skew fieldK. We say that
a polar spaceΓ is weakly embedded in the projective spaceP(V ), if there exists
an injective mapπ from the set of points ofΓ to the set of points ofP(V ) such
that

(a) the set{π(x) | x point ofΓ } generatesP(V );
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(b) for each linel of Γ , the subspace ofP(V ) spanned by{π(x) | x ∈ l} is a line;
(c) if x, y are points ofΓ such thatπ(y) is contained in the subspace ofP(V )

generated by the set{π(z) | z collinear withx}, theny is collinear withx.

The mapπ is called the weak embedding and (c) is the weak embedding axiom.
We say thatΓ is weakly embedded of degree> 2 in P(V ), if each line ofP(V )
which is spanned by the images of two non-collinear points ofΓ contains the
image of a third point ofΓ . Similarly, we define when the weak embedding has
degree 2.

Let W be a vector space endowed with a pseudo-quadratic form or a(σ, ε)-
hermitian form in the sense of Tits [3, Section 8]. The geometry of 1- and 2-
dimensional subspaces ofW where the from vanishes, yields a so-called classical
polar space. Weak embeddings of classical polar spaces and of generalized
quadrangles have been classified by Steinbach and Van Maldeghem [10,11].
The main result is that with known exceptions they are induced by semilinear
mappings.

We close the section with a statement of the classification of groups generated
by abstract root subgroups, due to Timmesfeld [4, Theorem 5] (see also [5,
III Section 9]).

1.6. Timmesfeld’s classification of groups generated by abstract root sub-
groups. Let G be a quasi-simple group generated by the classΣ of abstract
root subgroups such that there areA,B,C ∈Σ with 〈A,B〉 a rank 1 group and
[A,C] ∈Σ . ThenG arises from one of the following geometriesΓ :

(A) a projective space, (D) an orthogonal polar space,
(E) a building of typeE6, E7 orE8, (F) a building of typeF4,

(G) a Moufang hexagon.

When Γ has finite rank (an assumption only in Cases (A), (D)), thenG :=
G/Z(G) is isomorphic to the normal subgroup of Aut(Γ ) generated by the class
of long root subgroups withΣ the class of long root subgroups.

Here long root subgroups are (projective) linear transvection subgroups
(corresponding to incident point–hyperplane pairs) in Case (A) and (projective)
Siegel transvection groups in Case (D). The latter correspond to singular lines; we
refer to Timmesfeld [5, II (1.5)].

2. Subgroups ofF4(K) arising from an orthogonal or a projective space

Let G be a subgroup ofF4(K) as in Problem (P) of the introduction.
Considering the centralizer of an SL2, we eliminate the case thatG/Z(G) �
En(L), n= 6,7,8. ForG arising from an orthogonal space, we prove Theorem 2.
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WhenG arises from a projective space, we show that a conjugate ofG in F4(K)

is contained inM(−α∗, α1, α2, α3)= B4(K).
We use the notation of Section 1.1. First, we deduce the following from (P),

which will be used without reference.

2.1. Let A,B ∈ Σ . ThenÂ is the unique long root subgroup ofF4(K) which
containsA. If [A,B] = 1, then[Â, B̂] = 1 andÂ, B̂ define a line in theF4-geom-
etry, whenB ∈ ΛA, and they define a symplecton, whenB /∈ ΛA; we refer to
Section 1.3.

If [A,B] = C ∈ Σ , then [Â, B̂] = Ĉ. If 〈A,B〉 is a rank 1 group, then
〈Â, B̂〉 � SL2(K). Furthermore,A is the unique element inΣ contained inÂ
(using the assumption in (P) thatCΣ(A)= CΣ(B) impliesA= B).

2.2. Let E,F ∈ Σ such that〈E,F 〉 is a rank 1 group. Then there exist no
A,B ∈ CΣ(E) ∩ CΣ(F) with [A,B] ∈ Σ . In particular, G/Z(G) �� En(L),
n= 6,7,8.

Proof. We may assume that̂E =Xe1+e2, F̂ =Xe1−e2. Then forA,B ∈CΣ(E)∩
CΣ(F), Â, B̂ are symplectic transvection subgroups inM(α2, α3, α4)= C3(K)�
Sp6(K). Hence[Â, B̂] is never a long root subgroup inF4(K). With Section 2.1
the first claim follows. InEn(L), n= 6,7,8, the centralizer of a long root SL2 is
of typeA5, D6, E7, respectively, and hence contains long root subgroupsA, B
with [A,B] again a long root subgroup, a contradiction.✷
Proof of Theorem 2. For Siegel transvection subgroups, we refer to Section 1.6.
By Section 2.2 the Witt index ofq is 3 or 4. Any elementA ∈ Σ may be
identified with the associated Siegel transvection groupT7 in Ω(W,q). We fix
E,F,B,D ∈ Σ such that〈E,F 〉 and 〈B,D〉 are commuting rank 1 groups
which have the same commutator space inW . By Section 1.4 we may pass to

a conjugate aG with Ê = Xe1+e2, F̂ = X−e1−e2, B̂ = Xe1−e2, D̂ = X−e1+e2. In
the orthogonal groupΩ(W,q) we verifyG= 〈ΛE ∩ΨF ,F 〉.

Let A ∈ ΛE ∩ ΨF . Considering the associated singular lines, we see that
for T one ofB or D, we haveC := [A,T ] ∈ ΛE . This yieldsĈ ∈ ΛÊ ∩ ΛT̂ .
WhenceĈ is contained in the symplectonS(Ê, T̂ ) by Section 1.3. We obtain
C � M(B4). But A andC are conjugate in〈B,D〉, thus alsoA � M(B4). This
provesG�M(B4) and Theorem 2 follows with Section 2.3 below.✷
2.3.LetK be a field andV a vector space overK endowed with a non-degenerate
quadratic formQ of Witt index� 2. Let G be a quasi-simple subgroup of
Ω(V,Q) generated by the classΣ of abstract root subgroups, such that any
A ∈Σ is contained in some Siegel transvection groupÂ ofΩ(V,Q). We assume
G := G/Z(G)� PΩ(W,q) with Σ the class of(projective) Siegel transvection
subgroups onW .
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LetE,F,B,D ∈Σ such that〈E,F 〉 and〈B,D〉 are commuting rank1 groups
which have the same commutator space inW . If also[V,E]+ [V,F ] = [V,B]+
[V,D], then the orthogonal space(W,q) is weakly embedded of degree2 in
P([V,G]).

Proof. By Γ we denote the orthogonal polar space associated to(W,q). We
consider the mapπ :Γ → P(V ) which maps the line7 of Γ to the singular line
[V,A], provided thatA ∈Σ corresponds to the Siegel transvection groupT7, and
each singular pointp of Γ is mapped to the intersection of all[V,T ], where
T ∈Σ corresponds to a Siegel transvection groupT7 with p ⊆ 7.

We prove thatπ is a weak embedding. Clearly,π maps lines to lines and
is injective on lines. We fix a pointp of Γ . Let A andC be elements ofΣ
corresponding to Siegel transvection groupsT7, Ts with p = 7∩ s. First, we show
that[V,A]∩ [V,C] is a point ofV . Indeed, when7+ s is 3-dimensional singular,
then also[V,A] + [V,C] is 3-dimensional singular. Next assume that7 + s is
3-dimensional and non-singular. We may assume thatA = E andC = B. By
assumption,[V,A]+ [V,C] is contained in the orthogonal sum of two hyperbolic
lines inV and hence is 3-dimensional non-singular.

We deduce thatπ maps points to points. For non-collinear pointsx, y of Γ and
different pointsz, t of Γ collinear with bothx andy, the same relations hold for
the images of these four points underπ in the polar space associated to(V ,Q).
In particular,π is injective on points. Thus the weak embedding axiom holds and
π is a weak embedding (of degree 2).✷

By Steinbach and Van Maldeghem [11], the weak embedding in Section 2.3
is induced by a semilinear mappingϕ :W → V (with respect to an embedding
α :L→K). Furthermore,ϕ commutes with the action ofG.

2.4. WhenG arises from a projective space, then necessarilyG := G/Z(G) �
PSL3(L), PSL4(L), L a commutative field. Furthermore, a conjugate ofG in
F4(K) is contained inM(−α∗, α1, α2, α3)= B4(K).

Proof. For E,F ∈ Σ generating a rank 1 group, we have〈E,F 〉 � SL2(L),
L a skew field, orG arises from the non-Desarguesian Moufang plane and
〈E,F 〉 � SL(L), L a Cayley division algebra.

But 〈E,F 〉 � 〈Ê, F̂ 〉 � SL2(K) with K a commutative field. We may
construct an embeddingα :L (or C)→K as in Timmesfeld [19, (6.2)]. Whence
L is necessarily a commutative field. With Section 2.2 eitherG � PSL4(L) �
PΩ+

6 (L) (and we may apply Theorem 2) orG � PSL3(L). In the latter case,
a conjugate ofG is contained inM(−α∗, α1) = A2(K) � SL3(K), as G =
〈E,F,A1,A2〉 for E,F ∈ Σ generating a rank 1 group andA1, A2 distinct in
ΛE ∩ΨF . ✷
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3. Subgroups ofF4(K) arising from a building of type F4

LetG be a subgroup ofF4(K) as in (P). In this section we assume thatG arises
from a building of typeF4, see Section 1.6.

Using the classification of buildings of typeF4 due to Tits [3], we prove thatG
is isomorphic toF4(L), L a field in characteristic�= 2, or to a groupF4(L,F ) of
mixed typeF4 in characteristic 2 (as defined in Section 3.1 below). In both cases
we prove that the embedding ofG in F4(K) is by restriction of scalars, which
proves Theorem 3.

3.1. GroupsF4(L,F) of mixed typeF4. These groups were defined by Tits [3,
(10.3.2)]. LetF be a field of characteristic 2 andL a subfield ofF such that
F 2⊆ L⊆ F . The associated groupF4(L,F ) of mixed typeF4 is

F4(L,F ) :=
〈
xr(t), xs(f )

∣∣ r long, t ∈ L, s short, f ∈ F 〉� F4(F ).

The center ofF4(L,F ) is contained in the center ofF4(F ), whence trivial.
We haveF4(F )= 〈B4(F ),C3(F )〉with B4(F ),C3(F ) the standard subsystem

subgroups of typeB4 and C3. Similarly, F4(L,F ) = 〈B4(L,F ),C3(L,F )〉,
where the latter two groups of mixed type are classical groups, we refer to Tits [3,
(10.3.2)].

3.2. Proposition.LetG as in(P) arise from a building of typeF4. For E,F ∈Σ
generating a rank1 group,CΣ(E) ∩ CΣ(F) is the point set of a polar space
of rank 3 which is weakly embedded in the6-dimensional symplectic space
underlyingCF4(K)(〈E,F 〉). Moreover,G is isomorphic toF4(L), L a field in
characteristic�= 2, or to a groupF4(L,F ) of mixed typeF4 in characteristic2,
withΣ the class of long root subgroups.

Proof. We use the classification of buildings of typeF4 due to Tits [3,
Section 10]. Let∆ := CΣ(E) ∩ CΣ(F), whereE,F ∈ Σ generate a rank 1
group. SinceG arises from a building of typeF4, ∆ is the point set of a (thick)
polar space of rank 3, we refer to Timmesfeld [5, III Section 7]. The points
A, C in ∆ are collinear precisely when[A,C] = 1. We denote the underlying
symplectic space ofCF4(K)(〈E,F 〉) by V . Then [V,A] is a point in V for
A ∈ ∆. For A,B ∈ ∆, we have[A,B] = 1 if and only if [V,A] ⊆ CV (B).
Thus 〈[V,T ] | T on 7〉 is a singular line inV , for any line 7 of ∆. (Indeed,
let F := {A1,B1,A2,B2,A3,B3} ⊆ ∆ such that〈Ai,Bi〉 is a rank 1 group
(i = 1,2,3) but all other pairs inF commute. ThenV =⊕{[V,T ] | T ∈ F},
CV (Ai)=⊕{[V,T ] | T ∈ F\{Bi}} and similarly forBi (i = 1,2,3). For anyC
on the line onA1 andA2, we obtain[V,C] ⊆⋂{CV (T ) | T ∈ F\{B1,B2}} =
[V,A1] + [V,A2], as desired.)

This yields that∆ is weakly embedded inP(V ). The planes of∆ are
Desarguesian (we refer to Cuypers and Steinbach [7, (3.6)]). Thus by the
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classification of polar spaces due to Tits [3, (8.22)],∆ arises from a vector space
W overF endowed with a form. By Steinbach and Van Maldeghem [10, (5.1.1)],
the weak embedding is induced by a semilinear mappingϕ :W → V with respect
to an embeddingα :F →K. We obtain thatF is commutative.

By the classification of buildings of typeF4(K) in Tits [3, Section 10], either
Proposition 3.2 holds orW is a 6-dimensional unitary space, endowed with a
(σ,−1)-hermitian form,σ �= id. But the latter is not possible, because of the
weak embedding in a symplectic space. (Indeed, let(x1, y1) and (x2, y2) be
orthogonal hyperbolic pairs inW . For 0 �= c ∈ F anda := x2 + cy2, the vector
p := x1−cy1+a is isotropic andu := x2+cσ y1, v := y2−y1 andy1 are isotropic
in p⊥. In the symplectic space,aϕ andpϕ are perpendicular, sinceaϕ is isotropic.
Because ofa = u+cv+(c−cσ)αy1, also(c−cσ (y1ϕ) andpϕ are perpendicular.
Whencecσ = c andσ = id, a contradiction.) ✷
3.3. Theorem. We assume thatG := G/Z(G) � S =: F4(L,F ) with Σ the
class of long root subgroups inS. (Here we defineF4(L,F ) := F4(F ) = F4(L)

in characteristic �= 2.) Then there exists an embeddingα :F → K such that
a conjugate ofG in F4(K) is F4(L

α,Fα).

Proof. (1) We say thatA ∈ Σ corresponds to the long root subgroupA1 of
F4(L,F ) if the image ofA in S isA1. Passing to a conjugate ofG in Y := F4(K),
we achieve (see Section 1.4):

(∗) If r ∈ {±(e1 + e2),±(e1 − e2),±(e3 + e4),±(e3 − e4)} andT ∈ Σ corre-
sponds toXr (in S), thenT̂ =Xr (in Y ).

By assumption there is a central extensionρ :G→ S, mapping abstract root
elements to long root elements. ByM1 andM2 we denote the subgroup ofG
generated by all elements inΣ which correspond to a long root subgroup in
the classical subgroupsB4(L,F ) andC3(L,F ) of S, respectively. ThenG =
〈M1,M2〉.

For any embeddingα :F → K, K a field, let εα :F4(F )→ F4(K) be the
injective homomorphism withxr(t) �→ xr(t

α), for r ∈Φ, t ∈ F .

(2) Next, we prove that passing to a conjugate ofG, we achieve thatm=mρεα
for m ∈M2 with an embeddingα :F →K.

By (∗), M2 � M(α2, α3, α4) = C3(K) with underlying 6-dimensional sym-
plectic spaceV . The vector spaceW underlyingM2 is 6-dimensional symplectic

overF in characteristic�= 2, and is an orthogonal spaceL
1
2 ⊕ F 6 overF (of

dimension 6+ dimF 2 L) in characteristic 2. By Proposition 3.2, the associated
polar space∆ is weakly embedded inP(V ). By Steinbach and Van Maldeghem
[10, (5.1.1)], the weak embedding is induced by a semilinear mappingϕ :W→ V

with respect to an embeddingα :F →K. The action ofM2 commutes withϕ; i.e.,
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(w(ϕ)m = (w(mρ))ϕ, for w ∈W , m ∈M2 (we refer to Cuypers and Steinbach
[7, (8.3)]).

We write the elements ofC3(L,F ) as 6× 6 matrices on the symplectic space
W/W⊥ with respect to the standard hyperbolic basisE . Similarly, we proceed
for C3(K), see Carter [1, p. 186]. ByJ we denote the fundamental matrix of
the symplectic form with respect toE . Form ∈M2, the matrices ofm andmρ
with respect toE are related viaME

E (m)=D−1 ·ME
E (mρ)

α ·D, whereD is the
diagonal matrix of the base change fromEϕ to E in V . Furthermore,DJDT is a
scalar multiple ofJ , sinceDJDT · J−1 commutes withC3(L

α,Fα). Therefore
conjugation byD is an automorphismh(χ) of C3(K), whereχ : {α2, α3, α4} →
K∗ is a character ofC3(K).

We extendχ to a characterχ of F4(K) by α1 �→ 1. Thenh := h(χ) is an
(inner) diagonal automorphism ofF4(K). Passing to the conjugateGh−1

of G,
we achieve thatm=mρεα , form ∈M2. This proves (2).

(3) Next, we prove that there exist an embeddingβ :F → K and a character
χ : {−a∗, α1, α2, α3}→K∗ of B4(K) such thatm=mρεβh(χ) for m ∈M1.

By (∗) and Theorem 2,M1 � M(−α∗, α1, α2, α3) = B4(K) with underlying
9-dimensional orthogonal spaceV .

First, we assume that char(K)= 2. The orthogonal space(W,q) associated to
M1 isW = F ⊥ L8 overL, whereL8 is an orthogonal sum of hyperbolic lines and
q(f )= f 2 ∈ L for f ∈ F . By Section 2.3,(W,q) is weakly embedded of degree 2
in P(V ). By Steinbach and Van Maldeghem [11], the weak embedding is induced
by an injective semilinear mappingϕ :W → V with respect to an embedding
β :L→K. As the action ofM1 commutes withϕ, we have(wϕ)m= (w(mρ))ϕ,
for w ∈W ,m ∈M1. Furthermore,W⊥ϕ ⊆ V ⊥. We writeW⊥ = Fx0. Forf ∈ F ,
there existsbf ∈ K with (f x0)ϕ = bf (x0ϕ). We consider the singular vector
w := f x0+f 2x+y, where(x, y) is a hyperbolic pair inW . Sincewϕ is singular
in V , we obtain(f 2)β = b2

f . Thus byf β := bf , we extendβ to an embedding
β :F →K.

We write the elements ofB4(L,F ) andB4(K) as 9×9 matrices overF andK,
respectively, with respect to the standard basis as in Carter [1, p. 186]. Similarly
as in (2) forM2 � C3(K), we deduce that (3) holds. For char(K) �= 2, we have
B4(K)/〈−1〉 =Ω9(K) and the argument is similar.

(4) Next, we compare the results obtained so far for the elementsxα3(t), t ∈ F ,
contained inC3(L,F ) ∩ B4(L,F ). Let m ∈ M1 ∩ M2 with mρ = xα3(t). We
have shown thatxα3(t

α) = m = xα3(χ(α3)t
β ). For t = 1, we obtainχ(α3) = 1.

Henceα = β . Similarly, we deduceχ(α2) = 1. Next we considerx−(e1−e2)(1),
which is also inC3(L,F ) ∩ B4(L,F ). Since−(e1− e2)=−α∗ + 2α1+ 2α2+
2α3, necessarilyχ(α∗) = χ(α1)

2. We define the characterχ0 :C(F4)→ K∗ by
χ0(α1)= χ(α1), χ0(αi)= 1 (i = 2,3,4). Thenh := h(χ0) is an (inner) diagonal
automorphism ofF4(K) which inducesh(χ) when restricted toB4(K) and
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which centralizesC3(K). Passing to the conjugateGh−1
of G, we achieve that

m=mρεα , m ∈ 〈M1,M2〉 =G. This proves Theorem 3.3.✷
Now Theorem 3 follows from Proposition 3.2 and Theorem 3.3.✷

4. 3D4(L̂), 6D4(L) embed inF4(L)

Let L̂ : L be a separable cubic field extension with Galois closureL. First, we
describe the twisted groups3D4(L̂) and6D4(L) as fixed point groups inD4(L).
Then we prove that both types of groups are subgroups ofF4(L) (noteL, notL)
such that long root subgroups are long root subgroups.

4.1. Separable cubic extensions.Let L̂ : L be a separable cubic field extension.
For θ ∈ L̂, θ /∈ L, fixed, letf be the minimal polynomial ofθ overL. We denote
by L the splitting field off , the so-called Galois closure. If̂L : L is a Galois
extension (e.g., for GF(q3) : GF(q)), thenL = L̂ and Aut(L : L) = 〈σ 〉 � Z3.
Otherwise (e.g., forQ( 3

√
2) : Q), L is a quadratic Galois extension of̂L and

Aut(L : L) = 〈σ, τ 〉 � Σ3, whereσ is of order 3,τ is of order 2,στ = τσ 2,
Fix(τ )= L̂.

4.2. The standard embedding ofG2(L), 3D4(L̂), 6D4(L). For the definition of
twisted groups, see Tits [20], Carter [1], Steinberg [17].

Let L, L̂, L be as in Section 4.1. Letσ , τ be permutations of order 3 and 2,
respectively, of the root systemΦ(D4) of typeD4, which arise from symmetries
of the Dynkin diagram. We choose notation of the fundamental rootsδi such that
σ = (δ1, δ2, δ3) with fixed pointδ0 andτ = (δ2, δ3) with fixed pointsδ0, δ1.

The universal Chevalley groupD4(L) has automorphismsησ , ητ with
ησ :xr(t) �→ xrσ (t

σ ), ητ :xr(t) �→ xrτ (t
τ ), where t ∈ L, r ∈ Φ(D4) (compare

Section 4.4 below). We useητ only whenL̂ :L is not Galois.
Any orbit of 〈σ, τ 〉 on Φ(D4) is of the form {r} with rσ = r = rτ or

{r, rσ, rσ 2} with rσ �= r = rτ . By definition 3D4(L̂) � Fix(ησ ) and6D4(L) �
Fix(〈ησ , ητ 〉) are generated by all ‘long root elements’xr(u), where rσ = r

(= rτ ), u ∈ L, and all ‘short root elements’xs(t)xsσ (tσ )xsσ2(tσ
2
), wheresσ �=

s = sτ , t ∈ L̂. (The superscripts3 and6 are the degree of the Galois closure of the
extension̂L :L.)

Note thatG2(L) := 〈xr(u), xs(t)xsσ (tσ )xsσ2(tσ
2
) | rσ = r, sσ �= s = sτ ,

u, t ∈L〉 is contained in3D4(L̂), 6D4(L). We call the above embedding ofG2(L),
3D4(L̂) and6D4(L) in D4(L) the standard embedding.

The groups3D4(L̂), 6D4(L) are quasi-simple, as isG2(L) for L �=GF(2). Let
a(c) := xδ1(c)xδ2(c

σ )xδ3(c
σ2
), b(c) := x−δ1(c)x−δ2(cσ )x−δ3(cσ

2
) and n(t) :=

a(t)b(−t−1)a(t), wherec, t ∈ L̂, t �= 0. Thena(c)n(t)= b(−t−1ct−1).
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For the proof of Theorem 5, we construct automorphismsησ , ητ of F4(L)

such that the restrictions to the subsystem subgroupD4(L) are as in Section 4.2.
Then we show there is an inner automorphism ofF4(L) which conjugatesησ and
ητ to the field automorphisms with respect toσ andτ , respectively; we refer to
Stensholt [13] for the finite case. It is convenient to constructησ andητ in E6(L)

first.

4.3. Symmetries of the root system of typeE6. We denote byΦ :=Φ(E6) the
root system of typeE6 with the following extended Dynkin diagram in the notion
of Bourbaki [2]:

where

β1 = 1
2(e1− e2− e3− e4− e5− e6− e7+ e8), β2= e1+ e2,

β3 = e2− e1, β4= e3− e2, β5= e4− e3, β6= e5− e4,

β∗ = 1
2(e1+ e2+ e3+ e4+ e5− e6− e7+ e8)

= β1+ 2β2+ 2β3+ 3β4+ 2β5+ β6.

By ( , ) we denote the standard scalar product on the underlying Euclidean
spaceR6. The extended diagram has symmetries(β3β5β2)(β1β6−β∗) with fixed
pointβ4 andτ := (β3β5)(β1β6) with fixed pointsβ4, β2,−β∗, which are induced
by isometricsσ andτ of R6 (permutingΦ).

The permutation ofΦ of order 2 with
∑8

i=1 ciei �→
∑4

i=1 ciei −
∑8

i=5 ciei
is induced by an isometryz of R6 with z :β1 �→ −(β1+ β2 + 2β3+ 2β4+ β5),
β6 �→ −(β2+ β3+ 2β4+ 2β5+ β6), β2, β3, β4, β5 fixed. Moreover,z commutes
with σ and withτ .

Let r1 := e1+e5, r2 := e2−e3, r3 := −1
2(e1+e2+e3−e4+e5+e6+e7−e8),

r4 := e3 − e4. Thenz is the diagram symmetry of order 2 with respect to the
fundamental system{r1, r2, r3, r4, r3z, r1z} of Φ (with lowest roote3+ e4). The
vectors1

2(r + rz), r ∈Φ, yield a root system of typeF4 with fundamental system
consisting ofδ1 := e2−e3, δ2 := e3−e4, δ3=−1

2(e1+e2+e3−e4), andδ4 := e1
(with lowest roote3+ e4).

4.4. Let L̂ : L be a separable cubic field extension with Galois closureL as
in Section4.1 and σ , τ , z permutations of the root system of typeE6 as in
Section4.3. Then there exist signsNr,s involved in the Steinberg relations of the
universal Chevalley groupE6(L), such that the mappingsησ :xr(t) �→ xrσ (t

σ ),
ητ :xr(t) �→ xrτ (t

τ ), wherer ∈Φ, t ∈ L, extend to automorphisms ofE6(L). (We
considerητ only when̂L :L is not Galois.)
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Also ηz :xr(t) �→ xrz(t), wherer ∈ Φ, t ∈ L, extends to an automorphism
of E6(L) with F4(L) = 〈xr(t), xs(t)xsz(t) | r, s ∈ Φ, rz = r, sz �= s, t ∈ L〉 ⊆
Fix(ηz). Furthermore,ησ , ητ restrict to automorphisms ofF4(L).

Proof. We denote byf the bilinear form onR6 with fundamental matrix

F :=


1 −1 −1 −1 1 1
0 1 0 0 0 0
0 0 1 0 −2 0
0 0 0 1 0 −2
−1 0 1 0 1 0
−1 0 0 1 0 1


with respect to the basis{β4, β2, β3, β5, β1, β6}. Then(x, y)= f (x, y)+f (y, x),
f (xσ, yσ)= f (x, y)= f (xτ, yτ) for x, y ∈ R6. Moreoverf (r, s) ∈ Z for r, s ∈
Φ.

As did Springer [21, 10.2], we define the following structure constantsNr,s

of type E6; i.e., signs involved in the Chevalley commutator relations: we set
ε(r) := 1, when r ∈ Φ+, and ε(r) := −1, when r ∈ Φ−. For r, s ∈ Φ with
r + s ∈Φ, we define

Nr,s := ε(r)ε(s)ε(r + s) · (−1)f (r,s)

and we setNr,s := 0 for r, s ∈ Φ with r + s /∈ Φ. We verify thatNrσ,sσ = Nr,s

andNrτ,sτ =Nr,s , for r, s ∈Φ. Indeed,σ , τ respectf , and we only have to take
care of the signsε(r), ε(s). Sinceτ permutes the positive roots, it preserves these
signs. Forσ , we consider several cases according to the coefficients ofβ6 in r

ands. Thus the mappingsησ , ητ preserve the Steinberg relations and extend to
automorphisms ofE6(L).

LetZ be the matrix ofz with respect to the same basis as forF . Then the only
non-zero entries inZFZT−F (modulo 2) are a right lower corner

( 1
1

)
. Thus for

r =∑6
i=1 ciβi , s =

∑6
i=1diβi ∈Φ, we havef (rz, sz)= f (r, s) modulo 2, if and

only if c1d6 = c6d1. This yields thatNrz,sz = Nr,s for r, s ∈ Φ. Whence alsoηz
extends to an automorphism ofE6(L). Sincez commutes withσ , τ , we obtain
F4(L) as a fixed point group ofηz which is invariant underησ , ητ . ✷
4.5.We considerF4(L) with automorphismsησ , ητ as constructed in Section4.4.
Then there is an inner automorphismω of F4(L) such that

ωησω
−1 = fσ , ωητω

−1 = fτ ,

wherefσ :xr(t) �→ xr(t
σ ), fτ :xr(t) �→ xr(t

τ ) are field automorphisms.

Proof. The permutationsσ , τ permute the roots ofΦ(F4). The action ofησ on
F4(L) is xr(t) �→ xrσ (t

σ ), for r ∈ Φ(F4), t ∈ L, and similarly forητ . The field
automorphismfσ of F4(L) is defined byxr(t) �→ xr(t

σ ), and similarly forfτ .
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We consider the fundamental system{δ1, δ2, δ3, δ4} of Φ(F4) (with highest
root δ∗) of Section 4.3. The roots−δ∗, δ1 are fixed byσ and τ . Furthermore
(δ2,−e1− e2, e1− e2) by σ and(δ2, e1− e2) by τ .

For δ3, δ4, the fundamental roots of a root system of typeA2, we have
(δ3, δ4,−δ3 − δ4) by σ and (δ3,−δ4) by τ . In the notation of Bourbaki [2]
we write δ3 = f1 − f2, δ4 = f2 − f3. The above translates in(f1 − f2,
f2− f3, f3− f1) by σ (this meansσ = (123)) and (f1 − f2, f3 − f2) by τ

(this meansτ = (13)); also (f1 − f3)τ = f3 − f1. This leads to the following
permutation matricesPσ andPτ associated toσ andτ , satisfyingMσPσ =M

andMτPτ =M :

Pσ :=
(0 1 0

0 0 1
1 0 0

)
, Pτ =

(0 0 1
0 1 0
1 0 0

)
, M =

( 1 1 1
a b c

a2 b2 c2

)
,

whereb ∈ L̂, b /∈L, andc := bσ , a := cσ .
We write elements ofM(δ2, δ3, δ4)� Sp6(L) as 6×6 matrices as in Carter [1,

p. 186] (with
(

I
−I

)
as fundamental matrix of the underlying symplectic form).

In the following we often considerη := ησ andητ simultaneously. We write then
t̄ = tσ , tτ , for t ∈ L, r̄ = rσ, rτ , for r ∈Φ(F4) and we omit the indices inησ , Pσ ,
fσ . The action ofη onM(δ2, δ3, δ4)� Sp6(L) is given by

X �→
(
P−1

P T

)
X

(
P

P−T

)
, for X ∈ Sp6

(
L
)
, (∗)

as can be checked onXδ2, Xδ3, Xδ4, X−(e1−e2). We define

g :=
(
M

M−T

)
∈M(δ2, δ3, δ4)� Sp6

(
L
)
.

By ω we denote the inner automorphismx �→ g−1xg of F4(L). For r ∈ Φ(F4),
t ∈ L, we havexr(t)ωηω−1= g(g−1η)xr̄(t)(gη)g

−1.
By (∗) we know

gη=−
(
P−1

P T

)(
M

M−T

)(
P

T −T

)
=
(
P−1

P T

)
g,

sinceg ∈ Sp6(L) andMP =M. Thus we obtainω−1ηω = f onM(δ2, δ3, δ4)�
Sp6(L) with (∗). MoreoverX−δ∗ commutes with Sp6(L) and−δ∗ is fixed by
σ and τ , henceω−1ηω = f on X−δ∗ . We are left withXδ1. Since detPσ = 1,(Pσ

P−T
σ

)
is contained inM(δ3, δ4) � A2(L) � C(Xδ1). Henceω−1ηω = fσ on

Xδ1 and thus onF4(L). Since detPτ = −1, conjugation with
(P−1

τ

P T
τ

)
maps

xδ1(t
τ ) to xδ1(−tτ ). We denote byh := h(χ) the diagonal automorphism of

F4(L) with respect to the characterχ : δ1 �→ m, δ2 �→ 1, δ3 �→ 1, δ4 �→ 1,
where 0�= m := detM with mσ = m, mτ = −m. Thenhωηω−1h−1 = f (field
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automorphism) forσ andτ onF4(L). Since any diagonal automorphism ofF4(L)

is inner, this proves the claim.✷
Proof of Theorem 5. We considerF4(L) with automorphismsησ , ητ as
constructed in Section 4.4. By Section 4.5 there is an inner automorphismω of
F4(L) such thatησ = ω−1fσω, ητ = ω−1fτω. We obtain

3D4
(
L̂
)
� Fix(ησ )= Fix(fσ )ω = F4(L)ω� F4(L),

6D4
(
L
)
� Fix

(〈ησ , ητ 〉)= Fix
(〈fσ ,fτ 〉)ω = F4(L)ω� F4(L).

The long root subgroup{xδ∗(t) | t ∈ L} of 3D4(L̂), 6D4(L) is a long root
subgroup ofF4(L)ω. ✷

5. Subgroups ofF4(K) arising from a Moufang hexagon

LetG be a subgroup ofF4(K) as in (P). In this section we assume thatG arises
from a Moufang hexagon, see Section 1.6.

Using the classification of Moufang hexagons due to Tits and Weiss [8], we
prove thatG arises from aG2-, 3D4-, or 6D4-hexagon or from a mixed hexagon
in characteristic 3. The further investigation of these cases proves Theorem 4.

5.1. Moufang hexagons.For the definition and properties of the Moufang
hexagons, we refer to Tits and Weiss [8] and Van Maldeghem [9, 5.5]. From
the classification of Moufang hexagons due to Tits and Weiss [8], we use the
following facts:

Any Moufang hexagon,Γ say, belongs to the root system of typeG2. We fix an
apartment ofΓ together with the twelve associated root groupsUi . There exists
a commutative fieldL such that long root subgroups (with an even index) are
isomorphic to(L,+) and short root subgroups are isomorphic to(J,+), whereJ
is one of the following Jordan division algebras overL:

(1) J = L; we sayΓ is aG2-hexagon.
(2) J = L̂, a separable cubic field extension ofL; we sayΓ is a 3D4- or 6D4-

hexagon, depending on whetherL̂ : L is a Galois extension or not.
(3) J = F is a field extension ofL, char(L)= 3, such thatF 3⊆ L⊆ F . We say

thatΓ is a mixed hexagon in characteristic 3.
(4) The dimension ofJ overL is 9 or 27; we sayΓ is an exceptional Moufang

hexagon.
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For the associated groups in Cases (1) and (2), we refer to Section 4.2. In
Case (3), the associated group is the groupG2(L,F ) of mixed typeG2 in
characteristic 3, which was introduced by Tits [3, (10.3.2)]. By definition

G2(L,F ) :=
〈
xr(t), xs(f )

∣∣ r long, t ∈L, s short, f ∈ F 〉�G2(F ).

The only non-trivial commutator relations amongU0, . . . ,U4 are[
u0(t), u4(u)

]= u2(tu),
[
u1(a), u3(b)

]= u2
(
T (a, b)

)
for t, u ∈ L, a, b ∈ J , whereT :J × J → L is a symmetric bilinear form, which
satisfiesT (a, a#) = 3N(a) for a ∈ J . Here # is the adjoint map andN the
(anisotropic) norm onJ .

The classΣ1 of long root subgroups ofΓ is a class of abstract root subgroups
of S := 〈Σ1〉 � Aut(Γ ), see Timmesfeld [5, III Section 4]. For commuting
long root subgroupsA1, B1, any element inA1B1 is a long root element (i.e.,
B1 ∈ΛA1 in the notation of Section 1.1).

5.2.LetΓ be a Moufang hexagon as in Section5.1. We setE1 := U2 andF 1 :=
U8 andME1 = 〈ΛE1〉. ThenM̃E1 :=ME1/E1 is a symplectic space overL, which
is non-degenerate provided thatΓ is not a mixed hexagon in characteristic3.

Proof. We haveME1 = U0U1U2U3U4, see Timmesfeld [5, III(4.10)(3)]. Thus
W := M̃E1 = Ũ0 ⊕ Ũ1 ⊕ Ũ3 ⊕ Ũ4 is a vector space overL, where the scalar
multiplication is given by the action of the diagonal subgroup of〈U2,U8〉
normalizingU2 andU8, see Timmesfeld [5, III(2.25)].

We define a symplectic form( , ) :W ×W → L by (m̃1, m̃2) := c ∈ L, when
[m1,m2] = u2(c), for m1,m2 ∈ME1. Because of the commutator relation given
in Section 5.1 and properties ofT , we haveW⊥ = 0; we refer to Tits and Weiss
[8]. ✷
5.3. Proposition.LetG as in (P) arise from the Moufang hexagonΓ . ThenΓ is
not an exceptional Moufang hexagon.

Proof. We may assume thatΓ is not a mixed hexagon in characteristic 3. There
is a central extensionρ :G→ S, whereS is the subgroup of Aut(Γ ) generated by
the classΣ1 of long root subgroups.

Let W be the non-degenerate symplectic space associated toME1, see
Section 5.2. Recall thatV :=MÊ/Ê is a 14-dimensional symplectic space over
K, see Section 1.4. We definevϕ := m̃ when v = m̃ρ with m ∈ ME . Since
ME ∩ Z(G)= 1, ϕ :W → V is a semilinear mapping, which satisfies(v,w)= 0
if and only if (vϕ,wϕ) = 0. Hence an orthogonal sum of hyperbolic lines inW
gives rise to an orthogonal sum of hyperbolic lines inV . Thus 2(dimL J + 1)=
dimLW � 14 and dimL J � 6. ✷
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5.4. The standard apartment.Let G be a subgroup ofF4(K) as in (P), arising
from the (necessarily classical) Moufang hexagonΓ .

Let E,A1,B1,F,B2,A2 ∈ Σ correspond to the long root subgroups of an
apartment ofΓ (in that ordering). Passing to a conjugate ofG in F4(K),
we may assume that̂E = Xe1+e2, F̂ = X−e1−e2. Note that[A1,A2] = E. By
Section 1.3 we achievêA1 = Xe2−e3, Â2 = Xe1+e3, since Sp6(K) is transitive
on pair of disjoint isotropic planes. Because ofB1 = [A1,F ] andB2 = [A2,F ],
we obtain that̂B1 = X−e1−e3, B̂2 = X−e2+e3. Whence〈E,A1,B1,F,B2,A2〉 �
M(−α∗, α1) = A2(K) � SL3(K). We say that(E,A1,B1,F,B2,A2) is the
standard apartment inG.

5.5. Short root subgroups. We consider the standard apartment inG. Let
ρ :G→ Aut(Γ ) be a homomorphism with kernel Z(G) which mapsΣ to the
class of long root subgroups ofΓ . For A ∈ Σ , MA = 〈ΛA〉 intersects Z(G)
trivially. We denote byUα , U−α the short root subgroups in Aut(Γ ) associated to
the half apartments(E,A2,B2,F ) and(E,A1,B1,F ), respectively. Foru ∈ Uα ,
v ∈U−α there exist unique ‘short root elements’a ∈ CG(E)∩CG(F)∩MA2 and
b ∈ CG(E) ∩CG(F) ∩MA1 with aρ = u, bρ = v; we refer to Timmesfeld [5, III
(4.9), (4.10)]. This defines short root subgroupsAα andA−α in G.

We may coordinatizeAα , A−α as follows:Aα = {a(c) | c ∈ J }, A−α = {b(c) |
c ∈ J } such thata(c)a(d) = a(c + d), b(c)b(d) = b(c + d) and a(c)n(t) =
b(−t−1ct−1), for n(t) := a(t)b(−t−1)a(t) andc, d, t ∈ J , t �= 0. Indeed, this is
possible in the groupsG2(F ) and3D4(L̂), 6D4(L) by Section 4.2.

Moreover, the following relations hold forc, d, t ∈ J , t �= 0: n(t)−1 = n(−t),
b(c)n(t) = a(−tct), a(t)b(t1) = b(−t−1)a(t) anda(c)h(t) = a(t−1ct−1), b(c)h(t) =
b(tct), whereh(t) := n(t)n(−1).

5.6. The short root subgroupAα in G with respect to the standard apartment
is contained in the unipotent radical of the stabilizer of an isotropic plane(the
one corresponding toA2) in M(α2, α3, α4)= C3(K)� Sp6(K). This means that
Aα � 〈Xr | r ∈ Ψ 〉, whereΨ := {e1− e2, e3+ e4, e3− e4, 1

2(e1− e2+ e3+ e4),
1
2(e1− e2+ e3− e4), e3}. Similarly,A−α � 〈X−r | r ∈ Ψ 〉.

Proof. SinceAα centralizesE andF , we haveAα �M(α2, α3, α4)= C3(K)∼=
Sp6(K). Furthermore,Aα stabilizes the isotropic plane corresponding toA2
(see Section 1.3). HenceAα is contained in the parabolic subgroupUJLJ with
Levi complementLJ of type A2 with diagram(α3, α4) and unipotent radical
UJ = 〈Xr | r ∈ Ψ 〉 � MÂ2

(the unipotent radical of the point stabilizerN(Â2)

in theF4-geometry). We obtainAα �MÂ2
∩UJLJ = (MÂ2

∩LJ )UJ =UJ . ✷
5.7. Notation.We write each element ofM(α2, α3, α4) = C3(K) � Sp6(K) as
a 6× 6 matrix as in Carter [1, p. 186]. The first/last three basis vectors span
the isotropic plane corresponding toA2 andA1, respectively. The fundamental
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matrix of the underlying symplectic form is
(

I
−I

)
. By Section 5.6 the short root

elementsa(c) ∈Aα andb(c) ∈A−α , written as 6× 6 matrices, are

a(c)=
(

I

M(c) I

)
, b(c)=

(
I N(c)

I

)
, c ∈ J.

Any M(c) is a symmetric matrix, sincea(c) respects the symplectic form. The
matrixM(t) is invertible for t �= 0, since thenAa(t)1 corresponds to an isotropic
plane which is disjoint from the planes corresponding toA1 andA2.

The elementxe1−e2(a)xe3+e4(d)xe3−e4(f )x 1
2 (e1−e2+e3+e4)

(b)x 1
2 (e1−e2+e3−e4)

(c)×
xe3(e) as 6× 6 matrix is

(
I
M I

)
with

M =
(
a b c

b d e

c e f

)
and

(
R−1

RT

)(
I

M I

)(
R

R−T

)
=
(

I

RTMR I

)
for R ∈ GL3(K). The latter describes the action ofM(α3, α4) = A2(K) �
SL3(K) on the unipotent radical of the plane stabilizer.

5.8.For c ∈ J , letM(c) be the3× 3 matrix defined in Section5.7. Suppose that
M(1) = I . Then the mappingM : c �→ M(c) has the following properties: for
c, d, t ∈ J , t �= 0,

M(c+ d)=M(c)+M(d), M(tct)=M(t)M(c)M(t),

M
(
t−1)=M(t)−1, t �= 0.

Moreover,M is injective and anyM(c) is symmetric.

Proof. Let c, d, t ∈ J , t �= 0. We use the relations between the short root elements
in Aα , A−α given in Section 5.5. Witha(c+ d)= a(c)a(d), we seeM(c+ d)=
M(c)+M(d) (and similarly forN ). Since anyM(t) is invertible,M is injective.
Because ofa(t)b(t

−1) = b(−t−1)a(t), we haveN(t−1) = M(t)−1 and n(1) =( −I
I

)
. Sinceb(t) = a(−t)n(1), we obtainN(t) =M(t) andM(t−1) =M(t)−1.

We deduceh(t) := n(t)n(−1)= (M(t−1)

M(t)

)
. Nowb(c)h(t) = b(tct) implies that

M(tct)=M(t)M(c)M(t). ✷
5.9. A subgroup of typeG2 in G. Let Γ0 be aG2-subhexagon ofΓ obtained
by restricting the short root subgroups fromJ to L. (The existence of aG2-
subhexagon in any Moufang hexagon is due to Ronan, see Van Maldeghem [9,
(5.5.12)].) LetG0 be the subgroup ofG generated by allT ∈Σ which correspond
to a long root subgroup ofΓ0.
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5.10. Theorem.Passing to a conjugate inF4(K), the subgroupG0 of typeG2
is contained in the standard subsystem subgroupM(D) :=M(e1 − e2, e2− e3,

e3−e4, e3+e4)=D4(K) ofF4(K). WhenK is quadratically closed, there exists
an embeddingα :L→K such that a conjugate ofG0 in F4(K) isG2(L

α).

Proof. We pass to a conjugate ofG as in Section 5.4. Fora(1) = (
I

M(1) I

)
as

in Section 5.7, there exists a matrixR with detR = 1 such thatRTM(1)R is a
diagonal matrix (also in characteristic 2).

We identify R with
(
R
R

) ∈ M(α2, α3, α4) � Sp6(K). ThenR centralizes
M(−α∗, α1)� SL3(K), sinceR ∈M(α3, α4)� SL3(K). After conjugation with
R we may thus assume thatM(1) is a diagonal matrix. Hencea(1) is contained
in M(D4). SinceG0= 〈F,A1,A2, a(1)〉, the first claim follows.

By Steinbach [22], the embedding ofG0 in the 8-dimensional orthogonal
groupM(D4)/〈−1〉 is induced by a semilinear mapping. Similarly as in Step (3)
of the proof of Theorem 3.3, we obtain that there exist an embeddingα :L→K

and a diagonal automorphismh of D4(K) such thatg = gρεαh, for g ∈G. (Here
εα :D4(L)→ D4(K) with xr(t) �→ xr(t

α), for r ∈ Φ(D4), t ∈ L.) SinceK is
quadratically closed, there is a characterχ :C(F4)→K∗ such that the restriction
of h(χ) to M(e1 − e2, e2 − e3, e3 − e4, e3 + e4) = D4(K) is h. Any diagonal
automorphism ofF4(K) is inner by Section 1.4. This proves the theorem.✷
5.11.We remark that when a conjugate ofG0 is contained in the standardG2(K)

in F4(K), then there existR ∈GL3(K) and 0�= t ∈K such thatRTM(1)R = tI .
This means that a form similar to the one defined byM(1) admits an orthonormal
basis. For arbitrary fields this is not true for all non-degenerate symmetric bilinear
forms in dimension 3.

5.12. We assume that the subgroupG0 � G2(L) of G is embedded via
the standard embedding inG2(K) � F4(K) (with respect to the embedding
α :L→K). For any short root elementa(x), x ∈ J , of G, let M(x) be as in
Section5.7. ThenM(cx)= cαM(x), for x ∈ J , c ∈ L. Furthermore, whenJ = L̂,
a separable cubic extension ofL, thenM respects multiplication.

Proof. Let t ∈ K∗, h := he1+e2(t). For s ∈ {e1 − e2, e3 + e4, e3 − e4, 1
2(e1 −

e2+ e3+ e4), 1
2(e1− e2+ e3− e4), e3}, the standard scalar product(−α1, s) is 1.

Hencexs(u)h = xs(tu).
In G we havea(x)h = a(cx), for x ∈ J , c ∈ L, whereh is a diagonal element

in 〈A2,B1〉, whereÂ2 = Xe1+e3, B̂1 = X−e1−e3. Via the standard embedding
h = he1+e3(c

−α) ∈ F4(K) anda(cx) = (
I

cαM(x) I

)
; i.e.,M(cx) = cαM(x). This

proves the first claim. For the second, we writeL̂= L(θ). SinceM(1)= 1 andM
respects addition and productstct by Section 5.8, we obtainM(θn)=M(θ)n for
n ∈N. WhenceM respects multiplication. ✷
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Next, we investigate the embeddings of the groups associated to the3D4- and
6D4-hexagons, see Section 4.2. Our aim is to show that a conjugate ofG in F4(K)

is contained in a subsystem subgroup of typeD4, whenK is algebraically closed.
We refer to Theorem 5, for an embedding of3D4(L̂), 6D4(L) in F4(L).

5.13. Theorem.Let G arise from a3D4- or 6D4-hexagon and assume thatK
is algebraically closed. Then a conjugate ofG in F4(K) is contained in the
subsystem subgroupM(D4) :=M(e1− e2, e2− e3, e3− e4, e3+ e4)=D4(K)

of F4(K). Furthermore, the embedding is either the standard embedding(with
respect to an embeddingβ :L→ K) or the embedding is in a subgroup of type
B3 in M(D4).

Proof. By Theorem 5.10, we may assume that the embedding ofG0�G2(L) in
F4(K) is the standard embedding, with respect to an embeddingα :L→K. We
use thatG= 〈F,A2,A1, a(t) | t ∈ L̂〉, sinceG= 〈ΛE ∩ΨF ,F 〉 by Section 1.6.

We writeL̂= L(θ) and we denote byf the minimal polynomial ofθ overL.
SinceL̂ is a separable cubic extension ofL, the polynomialf α has three different
roots inK. There is an embeddingβ :L→K with β|L = α which maps the set
of roots off to the set of roots off α .

Let M :=M(θ), a symmetric invertible 3× 3 matrix, see Section 5.7. Since
f α(M)= 0 by Section 5.12, the Jordan normal form ofM is diagonal. Thus one
of the following holds:

(1) There existsR with RTR = I and detR = 1 such thatRTMR is a diagonal
matrix (with eigenvalues on the diagonal).

(2) char(K)= 2 and there existsR with

RTR =
(1 0 0

0 0 1
0 1 0

)
such that RTMR =

(
a 0 0
0 0 b

0 b 0

)

with a, b different eigenvalues ofM.

We identify R with
(
R
R

) ∈ M(α2, α3, α4) � Sp6(K). Then R centralizes
M(−α∗, α1)� SL3(K), sinceR ∈M(α3, α4)� SL3(K).

In Possibility (1),R centralizes alsoa(1). Thus after conjugation withR we
may assume thatM is diag(θβ, θσβ, θσ

2β) or diag(a, b, b), where possiblya is
b. Using Sections 5.7 and 5.12, the first case leads to the standard embedding
of G in M(D4); in the second caseG embeds in the subgroupB3(K), which is
obtained fromM(D4) as a fixed point group under the graph automorphism of
order 2 interchanginge3− e4 ande3+ e4.

Similarly, Possibility (2) yields thatG embeds in the subgroupB3(K) with
diagram(e1− e2, e2− e3, e3); in particularG�M(D4). ✷
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We remark that we expect that a reduction toB3(K) is not possible. Due to
results in representation theory, there should be no 7-dimensional representation
for 3D4(L̂), 6D4(L).

5.14.WhenG arises from a mixed hexagon in characteristic 3, see Section 5.1, we
remark the following: letf ∈ F\L and setM :=M(f ), see Section 5.7. Because
of f 3 ∈ L, the matrixM3 is a scalar multiple of the identity matrix andM has
only one eigenvalue. WhenM has an eigenvectorv such thatvvT �= 0, then there
exists a 3×3 matrixR overK with RRT = I such thatRTMR is a diagonal block
matrix with an upper left 1×1 block. Thus the associated long root elementa(f )

is contained inM(−α∗, α1, α2, α3)= B4(K), see Section 5.7. This reduces to the
study of embeddings ofG2(L,L(f )) in B4(K). But the eigenspace ofM might
be spanned byv with vvT = 0; for example,

M :=
(
f − t it λ

it f + t iλ
−λ iλ f

)
,

where i, t, λ ∈ K and i2 = −1, satisfiesM3 = f 3I and the eigenspace forf is
spanned by(−1, i,0).

The results obtained in Section 5.3, Theorems 5.10, and 5.13 yield Theo-
rem 4. ✷

6. Moufang octagons

In this section, we prove Proposition 6. For the definition and properties of
Moufang octagons and the Ree groups2F4(L,σ ), we refer to Van Maldeghem
[9], Tits [23].

LetΓ be a Moufang octagon admitting central elations. The root subgroups of
Γ corresponding to a half apartment with a line in the middle are isomorphic
to (L,+), whereL is a field of characteristic 2 admitting an endomorphism
σ :L→L with cσ

2 = c2 for c ∈ L. Let A, B be opposite root subgroups ofΓ
of the other kind withA0,B0 the set of involutions inA andB, respectively. Then
A, B are isomorphic toL×L with addition(x, y)⊕ (x ′, y ′)= (x + x ′, y + y ′ +
xσx ′) for x, x ′, y, y ′ ∈ L. MoreoverA0, B0 are central elation subgroups ofΓ ,
isomorphic to(L,+).

The groupX := 〈A,B〉 is isomorphic to the Suzuki group2B2(L,σ ). The
description ofX as a 2-transitive group on(L× L) ∪̇ ∞ in Tits [24] yields that
X0 := 〈A0,B0〉 is normalized byX.

Proof of Proposition 6. We use the above notation and assume that Proposition 6
is false. Then the long root subgroupŝA, B̂ of F4(K) containingA0 andB0,
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respectively, generate SL2(K) with char(K) = 2; up to conjugation̂A = Xα∗ ,
B̂ = X−α∗ . Now A normalizes〈A0,B0〉 andX±α∗ . The normalizer ofX±α∗ in
F4(K) is known; it isHα1X±α∗Sp6(K). We obtain that it is impossible that a
central elation is a square inA, a contradiction. ✷

Acknowledgments

I wish to express my gratitude to Professor F.G. Timmesfeld for his permanent
support. I also thank Professor Th. Meixner for useful discussions.

References

[1] R. Carter, Simple Groups of Lie Type, in: Pure Appl. Math., Vol. XXVIII, Wiley, London, 1972.
[2] N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris, 1968, Chapitres IV–VI.
[3] J. Tits, Buildings of Spherical Type and Finite BN-Pairs, in: Lecture Notes in Math., Vol. 386,

Springer, Berlin, 1974.
[4] F.G. Timmesfeld, Abstract root subgroups and quadratic action, Adv. Math. 142 (1999) 1–150.
[5] F.G. Timmesfeld, Abstract Root Subgroups and Simple Groups of Lie-Type, in: Monogr. Math.,

Vol. 95, Birkhäuser, Basel, 2001.
[6] A. Steinbach, Subgroups of classical groups generated by transvections or Siegel transvections I,

II, Geom. Dedicata 68 (1997) 281–322, Geom. Dedicata 68 (1997) 323–357.
[7] H. Cuypers, A. Steinbach, Linear transvection groups and embedded polar spaces, Invent.

Math. 137 (1999) 169–198.
[8] J. Tits, R. Weiss, Moufang polygons, to appear.
[9] H. Van Maldeghem, Generalized Polygons, in: Monogr. Math., Vol. 93, Birkhäuser, Basel, 1998.

[10] A. Steinbach, H. Van Maldeghem, Generalized quadrangles weakly embedded of degree> 2 in
projective space, Forum Math. 11 (1999) 139–176.

[11] A. Steinbach, H. Van Maldeghem, Generalized quadrangles weakly embedded of degree 2 in
projective space, Pacific J. Math. 193 (2000) 227–248.

[12] M.W. Liebeck, G.M. Seitz, Subgroups generated by root elements in groups of Lie type, Ann. of
Math. 139 (1994) 293–361.

[13] E. Stensholt, Certain embeddings among finite groups of Lie type, J. Algebra 53 (1978) 136–187.
[14] B. Cooperstein, The geometry of root subgroups in exceptional groups I, II, Geom. Dedicata 8

(1979) 317–381, Geom. Dedicata 15 (1983) 1–45.
[15] B. Cooperstein, Subgroups of exceptional groups of Lie type generated by long root elements I,

II, J. Algebra 70 (1981) 270–282, J. Algebra 70 (1981) 283–298.
[16] A. Steinbach, Groups of Lie type generated by long root elements inF4(K), Habilitationsschrift,

Justus-Liebig-Universität Gießen, 2000.
[17] R. Steinberg, Lectures on Chevalley Groups, in: Yale University Lecture Notes, 1967.
[18] A.M. Cohen, Point-line spaces related to buildings, Chapter 12, in: F. Buekenhout (Ed.),

Buildings and Foundations, in: Handbook of Incidence Geometry, North-Holland, Amsterdam,
1995, pp. 647–737.

[19] F.G. Timmesfeld, Moufang planes and the groupsEK6 and SL2(K),K a Cayley division algebra,
Forum Math. 6 (1994) 209–231.

[20] J. Tits, Classification of algebraic semisimple groups, in: Algebraic Groups and Discontinuous
Groups, Boulder, 1965, in: Proc. Sympos. Pure Math., Vol. 9, 1966, pp. 32–62.

[21] T.A. Springer, Linear Algebraic Groups, 2nd edn., Birkhäuser, Boston, 1998.



488 A. Steinbach / Journal of Algebra 255 (2002) 463–488

[22] A. Steinbach, Subgroups isomorphic toG2(L) in orthogonal groups, J. Algebra 205 (1998) 77–
90.

[23] J. Tits, Moufang octagons and the Ree groups of type2F4, Amer. J. Math. 105 (1983) 539–594.
[24] J. Tits, Les groupes simples de Suzuki et Ree, Exp. 210, in: Seminaire Bourbaki, Vol. 13, 1960,

pp. 1–18.
[25] A. Steinbach, Subgroups of the Chevalley groups of typeF4 arising from a polar space,

submitted.


