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Abstract

Let K be a field andG a quasi-simple subgroup of the Chevalley graggK). We
assume thaG is generated by a class of abstract root subgroups such that there are
A,C e ¥ with[A, C] € ¥ and anyA € X is contained in a long root subgroup B{(K).

We determine the possibilities faf and describe the embedding@fin F4(K).
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Introduction

For an arbitrary commutative fiel&, we denote byF4(K) the universal
Chevalley group of typé; overK. This is the group generated by symhbol§),
t € K,r € &, with respect to the Steinberg relations; we refer to Carter [1, 12.1.1].
Here @ is the root system of typéy, a subset of the Euclidean spaké with
orthonormal basige1, e2, e3, e4}. In the notation of Bourbaki [2], the extended
Dynkin diagram of typeFy is
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where
oy =e1+ e, a1 =e2 —e3, ap =e3 — ey,
1
agz = ey, a4 = 5(e1—e2—e3— ea).

Along root subgroup of4(K) is a conjugate oK, = {xq,(f) | 1 € K}~ (K, +).
The groupFs(K) is generated by its class of long root subgroups and is simple.

In the following, we study subgroups &% (K) which are of ‘Lie type’. Here
a group of Lie type is the subgroup of the automorphism group of any spherical
Moufang building generated by the root subgroups (as defined by Tits [3]). These
groups of Lie type are closely related to the groups generated by a class of so-
called abstract root subgroups in the sense of Timmesfeld [4,5].

A conjugacy class¥' of abelian subgroups of a group is called a class of
abstract root subgroups 6f, if G = (X') and forA, B € X, one of the following
holds:

(@) [A,B]=1.

(b) [A, B] = [a, B] = [A,b] € ¥ for a € A*, b € B¥; moreover[A, B]
commutes withA and with B.

(c) (A, B) isarank 1 group with abelian unipotent subgrodps. (This means
that fora € A#, there existd e B* such thatA” = B¢ and vice versa.)

This paper is devoted to the study of the following problem:

(P) LetX be a class of abstract root subgroupg/cuch that:

(1) There ared, B, C € X such that(A, B) is a rank 1 group anfiA, C] €
X.

(2) ForA,Ce X, Cx(A)=Gx(C) impliesA=C.
We assume tha¥ is a subgroup of = F4(K) such that any element € X
is contained in a long root subgroupof Y.
The problemis to determine the possiileand the embedding @ in Y. By
Timmesfeld [4, (3.17)] or [5, Il (2.14)], any sudhi is quasi-simple. FoG as
in (P), we say (for short) tha® is a group of Lie type embedded ih

Problem (P) contributes to the determination of subgroups of groups of Lie
type generated by long root elements. For a subsystash® with fundamental
root system{pi,..., pr}, we defineM(ps,...,p:) := (X, | r € ¥). These
subgroups ofF4(K) are called subsystem subgroups. Ai(K) there are the
following classical subsystem subgroups:

M (—aty, a1, a2, a3) > Ba(K),
M (a2, a3, as) = C3(K),
M (a2, a3, a4, —e1) >~ C4(K) in characteristic 2
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and the subsystem subgroups of these.

WhenG as in (P) already embeds in a (proper) subsystem subg¥fupen
this reduces to the study of subgroups of classical groups; we refer to Steinbach
[6] and Cuypers and Steinbach [7].

We prove the following theorem.

Theorem 1.For any subgrouf of F4(K) as in(P)above, passing to a conjugate
in F4(K), one of the following holds

(1) G is contained in the classical subsystem subgréfip-a., a1, a2, a3) =~
B4(K).

(2) G is F4(L), L a subfield ofK, or a group F4(L, F) of mixed typeFy in
characteristic2, whereF?2 C L C F, F, L subfields o .

(3) G arises from a Moufang hexagon.

We remark that there is overlap between Cases (1) and (3). Below in
Theorems 2-6, we give more detailed information on the possible subgéups
and their embeddings ifis(K).

In addition to the Steinberg generators and relationsAgiK) mentioned
above, we use the associated building. In this building, there are four types of
objects, called points, lines, planes and symplecta, and the long root subgroups of
F4(K) may be identified with the points.

We use the classification of polar spaces due to Tits [3] and the classification
of Moufang polygons by Tits and Weiss [8] (as stated by Van Maldeghem [9]).
Another important tool is the determination of weakly embedded polar spaces by
Steinbach and Van Maldeghem [10,11].

Our strategy to solve Problem (P) is as follows:debe a subgroup of4(K)
as in (P). By the classification of groups generated by abstract root subgroups,
due to Timmesfeld [4] or [5]G is on a list of groups of Lie type and of infinite-
dimensional classical groups. Some of these candidates are easily eliminated. We
have to deal with the cases whe&Farises from an orthogonal space of Witt index
3 or 4, a building of typef; or a Moufang hexagon. We remark that instead of
using Timmesfeld’s classification we could have taken the latter groups of Lie
type as a starting point for the investigation of subgroupg& ) generated by
parts of long root subgroups.

Next, we state the results obtained in the respective cases. For unexplained
terminology, we refer to the section where the subgroups in question are dealt
with. WhenG arises from an orthogonal space, we are able to reduce to a classical
subsystem subgroup &% (K) as in the next theorem.

Theorem 2.Let G be a subgroup of4(K) as in (P). We assume that there is
a vector spacaV (over the fieldL), endowed with a non-degenerate quadratic
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form g: W — L such thatG := G/Z(G) ~ P2(W, g) with ¥ the class of
(projective Siegel transvection groups.

Then a conjugate aff in F4(K) is contained inM (—a, a1, a2, @3) = B4(K)
(with underlying orthogonal space denot®&). Moreover, the Witt index af is 3
or 4 and the orthogonal polar spaddV, ¢) is weakly embedded iA([V, G]).

WhenG arises from a building of typ&a, we show:

Theorem 3.Let G be a subgroup of4(K) as in (P). We assume that there is
a building F of type F4; such thatG := G/Z(G) is isomorphic to the normal
subgroup ofAut(F) generated by the class of long root subgroups wittthe
class of long root subgroups.

Then, passing to a conjugate M (K), one of the following holds fof:

e WhenchalK) # 2, there is a subfield. of K such thatG is F4(L).
e WhencharK) = 2, there are subfields, F of K with F2 C L C F such that
G is the groupF4(L, F) of mixed typeFy.

WhengG arises from a Moufang hexagdnh then we show thal is ‘classical’.
This means that the exceptional Moufang hexagons related to forifis, 8,
or Eg do not occur; but the so-called mixed hexagons in characteristic 3 do. In
detail we prove the following theorem.

Theorem 4.Let G be a subgroup of4(K) as in (P). We assume that there is
a Moufang hexagor”, such thatG is isomorphic to the subgroup @ut(I")
generated by the class of long root subgroups withthe class of long root
subgroups.

Then I is a Go-hexagon, ar®Dy-, $D4-hexagon, or a mixed hexagon in
characteristic3. WhenKk is algebraically closed and” is not a mixed hexagon
in characteristic3, then a conjugate of; in F4(K) is contained in

M(e1— ez, e2 — e3,e3 — ey, e3 + es) = D4(K).

Furthermore we show that the groups associated @paand 3Ds-, 6Dy-
hexagon embed i#F4(L), whereL is the ground field coordinatizing the long
root subgroups.

Theorem5.LetL : L be a separable cubic field extension with Galois clodiire
Then the groupSDa(L), ®D4(L) (depending on whethef : L is a Galois
extension or ngtembed inF4(L) such that long root subgroups are long root
subgroups.

To complete the study of groups of Lie type embeddedjiK), we also
deal with the Ree groups4(L, o). Here the centers of the long root subgroups
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(which are the central elation subgroups of a Moufang octagon) do not form
a class of abstract root subgroups. We show the following proposition.

Proposition 6. Let K be a field andl” a Moufang octagon admitting central
elations. Then the subgroupAtit(I") generated by the central elation subgroups
of F4(K) cannot be a subgroup d@f;(K) such that the central elation subgroups
are contained in long root subgroups @i (K).

In this paper on subgroups df4(K) the emphasis is on arbitrary fields,
including non-perfect fields in characteristic 2 (as, for example, the field of
rational functions over GF(2)). The latter are involved in many interesting
phenomena, in particular in the groups of mixed tyfe

For finite groups and for algebraic groups over an algebraically closed field,
results on groups of Lie type embeddedri K) are in the literature. Subgroups
of simple algebraic groups over an algebraically closed field, which are generated
by full long root subgroups have been determined by Liebeck and Seitz [12] for
all classical and exceptional types. In their setting the subgroups in question arise
from one of the spherical root systems. Stensholt [13] constructs embeddings
among finite groups of Lie type such that long root subgroups are long root
subgroups. For the exceptional types in the finite case, the embedded groups of
Lie type have been determined by Cooperstein [14,15]. In [14, Part 1] the results
on subgroups generated by full long root subgroups are achieved geometrically;
in [15], on subgroups over a subfield, classification results are used.

The paper is organized as follows: in the preliminary Section 1, we collect
properties ofF4(K) and we state classification results for later use. In Section 2
we begin the proof of the theorems stated above. The groups arising from an
orthogonal space are dealt with in Section 2; the ones arising from a building
of type F4 in Section 3. The subgroups associated to a Moufang hexagon are
investigated in Sections 4 and 5. Finally, we deal with Moufang octagons in
Section 6.

Proof of Theorem 1. We use Timmesfeld’s classification of groups generated by
abstract root subgroups, as stated in Section 1.6. In Section 2.2 we eliminate the
subgroupsE, (L), n =6, 7, 8. In Section 2.4 we deal with groups arising from a
projective space. Now Theorem 2 on orthogonal groups (proved in Section 2) and
Theorem 3 on subgroups arising from a building of tyfagproved in Section 3)

yield Theorem 1. O

This paper was taken from my Habilitationsschrift [16]. There also the
subgroupss of F4(K) as in (P) but generated by a claSsof so-called abstract
transvection subgroups (where Possibility (b) never occurs) are handled; see also
Steinbach [25].
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1. Preliminaries

In this section we collect some properties of the Chevalley groui ) and its
associated building. Furthermore, we state the classification of weakly embedded
classical polar spaces due to Steinbach and Van Maldeghem [10,11] as well as the
classification of groups generated by abstract root subgroups, due to Timmesfeld
[4, Theorem 5] (see also [5, Il Section 9]). Both results will be used later.

For the definition and properties of Chevalley groups and the associated root
systems, we refer to Carter [1], Steinberg [17] and Bourbaki [2].

1.1. Notation for abstract root subgroups.We recall the definition of a class
of abstract root subgroups of the groGpfrom the introduction. Fot/ < G and
Ae X, wedefineXxNU:={TeX |T<U},Cs(A):={BeX|[A Bl=1}
andMy = (Ay).

Let A, B e X. When[A, B] € X' as in Possibility (b), we also writ8 € ¥,4.
FurthermoreB € A4 means thafA, B]=1, A # B, andX N AB is a partition
of AB. Note tha{ A, B] € A4, whenB € Wy,.

1.2. Chevalley commutator relations inF4(K). Lets, u € K andr, s € @. When
0+#r+s ¢ @, then[x, (1), xs(u)] = 1. Whenr + s € @, then the following holds
(with signs depending on, s, but not orv, u):

(@) Ifr, s arelong orifr, s, r + s are short, thefix, (¢), x; ()] = x,45(£tu).
(b) If r, s are short and + s is long, then[x, (¢), x;(u)] = x, 15 (£2tu).
(c) If ris long ands is short, therix, (1), x; ()] = Xr4s (1) X, 425 (£112).

Furthermore(X,, X_,) ~ SLy(K).

1.3. The F4-geometry.We consider the building associateddg K ) (in the sense

of Tits [3]) as a point-line geometry, thBs-geometry. There are four types of
objects: points, lines, planes and symplecta. For properties of symplecta, we refer
to Timmesfeld [5, Il Section 7], Van Maldeghem [9, p. 80], and Cooperstein [14,
p. 333].

Apointis along root subgroup, the standard point beiag,.,. Two long root
subgroupsA, C define a line, a so-calleBs-line, precisely when any element in
AC is a long root element. The standard lineXig, ¢, X, +.;. Three long root
subgroups (not on a line) define a plane, when any two define a line.

The action of the subsystem subgroMCz) := M (a2, a3, s) >~ Sps(K)
on the lines of theFs-geometry passing througK., ., is equivalent to the
action of Sp(K) on the isotropic planes of the underlying symplectic space.
Let E = X¢j4er, F =X _¢)—¢,. Any Fy-line onX,, 4., has a unique poind; in
A NW¥Ep. We letA; correspond to the isotropic plar# in the symplectic space
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underlyingM (C3). WhenAz € A4,, thenE1 N Ey is aline. Wher{Aj, Aol =1,
but Ao ¢ Aa,, thenEy N Ez is a point. Whem, € ¥y, thenE1 N E3 is empty.

As follows from the Dynkin diagram of typé&jy, all points, lines, and planes
of the F4-geometry contained in a symplecton (seen as point-line geometry) yield
a polar space of typ83. Wheneverd, B are commuting long root subgroups of
F4(K) which do not define arts-line, thenA and B define a symplecton of the
F4-geometry. The standard symplectonXg ., andX,, ., is

§:= S(XelJrez’ Xelfez) = (Xeliezv Xeliey X€1i€47 Xe1>-

Note thatS < M(—a,, a1, a2, @3) = B4(K) and thatS = Z(U,) in the par-
abolic subgroupP; = U;L; with Levi complement associated to the diagram
(a1, a2, a3) Of type B3. We may consideS as a 7-dimensional natural module
for B3(K).

Let S be the symplecton oX,, 4., andX,,_., as above. When, B are non-
collinear points inS (i.e., A, B are not on arfs-line), thenS = S(A, B) andS is
spanned by, B and allT which are collinear with botl andB. For a long root
subgroupE generating Sk(K) with X, 1.,, there is a unique long root subgroup
T contained inS which commutes withE. Any point in S, which is not on an
Fy-line with T, generates Sd(k) with E.

1.4. Properties of F4(K). The permutation rank of4(K) on the class of long
root subgroups is five. The class of long root subgroups is a class of abstract root
subgroups of4(K) in the sense of Timmesfeld [4,5].

The center ofF4(K) is trivial. Any diagonal automorphism af4(K) is an
inner automorphism. For any long root subgrdum Y = F4(K) and 1#£¢ € T,
we haveCy(r) = Cy(T). Let A;, B; (i =1,...,4) be long root subgroups of
F4(K) such thatX; := (A;, B;) ~ SLa(K) and[X;, X;]=1fori,j=1,...,4,

i # j. Passing to a conjugate iy (K), we may assume that;, B1, ..., A4, Ba
areXel+egu X—el—ezu Xel—ezu X—L’1+L’21 X63—64| X63+e41 X23+e41 X—eg—e4-

For any long root subgroug in F4(K), we denote byMg the unipotent
radical in the parabolic subgroul(E) (see Carter [1, 8.5]). FOE = X, e,
we haveMg = (X, | r € &), where¥ = {e1 + e2, e1, e2, %(61 + ex ezt ey),
e1  e3, e1 k e4, e + e3, ex + e4}. Furthermore A™ is contained inS(E, A)
for m € Mg wheneverE and A define a symplecton. FinallyMg/E is a
14-dimensional symplectic space over

1.5. Weak embeddings of polar spaces:or polar spaces, we refer to Tits [3]
and Cohen [18]. LeV be a vector space over some skew fi&ldWe say that
a polar spacé” is weakly embedded in the projective spat@/), if there exists
an injective mapr from the set of points of” to the set of points oP (V) such
that

(a) the se{r(x) | x point of I'} generate (V);
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(b) foreachlind of I, the subspace a? (V) spanned by (x) | x €1} is aline;
(c) if x, y are points ofl” such thatr (y) is contained in the subspace BfV)
generated by the st (z) | z collinear withx}, theny is collinear withx.

The mapr is called the weak embedding and (c) is the weak embedding axiom.
We say thatl” is weakly embedded of degree2 in P(V), if each line of P(V)
which is spanned by the images of two non-collinear pointg’afontains the
image of a third point of". Similarly, we define when the weak embedding has
degree 2.

Let W be a vector space endowed with a pseudo-quadratic form(ere-
hermitian form in the sense of Tits [3, Section 8]. The geometry of 1- and 2-
dimensional subspaces Bf where the from vanishes, yields a so-called classical
polar space. Weak embeddings of classical polar spaces and of generalized
guadrangles have been classified by Steinbach and Van Maldeghem [10,11].
The main result is that with known exceptions they are induced by semilinear
mappings.

We close the section with a statement of the classification of groups generated
by abstract root subgroups, due to Timmesfeld [4, Theorem 5] (see also [5,
[l Section 9)).

1.6. Timmesfeld's classification of groups generated by abstract root sub-
groups. Let G be a quasi-simple group generated by the classf abstract

root subgroups such that there ateB, C € X with (A, B) a rank 1 group and
[A, C]e X. ThenG arises from one of the following geometri€'s

(A) a projective space (D) an orthogonal polar space
(E) a building of typeFEs, E7 or Esg, (F) a building of typeF,
(G) a Moufang hexagon

When I' has finite rank (an assumption only in Cases (A), (D)), tiien=
G/Z(G) is isomorphic to the normal subgroup of Ailt) generated by the class
of long root subgroups witlX the class of long root subgroups.

Here long root subgroups are (projective) linear transvection subgroups
(corresponding to incident point—hyperplane pairs) in Case (A) and (projective)
Siegel transvection groups in Case (D). The latter correspond to singular lines; we
refer to Timmesfeld [5, 1l (1.5)].

2. Subgroups of F4(K) arising from an orthogonal or a projective space
Let G be a subgroup off4(K) as in Problem (P) of the introduction.

Considering the centralizer of an glLwe eliminate the case th&/Z(G) ~
E,(L),n=6,7,8. ForG arising from an orthogonal space, we prove Theorem 2.
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WhenG arises from a projective space, we show that a conjugatgiof F4(K)
is contained iV (—a, a1, a2, @3) = Ba(K).

We use the notation of Section 1.1. First, we deduce the following from (P),
which will be used without reference.

2.1.Let A, B € X. ThenA4 is the unique long root subgroup @k (K) which
containsA. If [A, B] =1, then[?f, E] =1 andX, B define alinein thes-geom-
etry, whenB € A,4, and they define a symplecton, whén¢ A 4; we refer to
Section 1.3.

If [A,B]=C € X, then[A,B] =C. If (A, B) is a rank 1 group, then
(A, B) ~ SLy(K). Furthermore A is the unique element it contained inA
(using the assumption in (P) th@tks (A) = Cx(B) impliesA = B).

2.2. Let E, F € ¥ such that(E, F) is a rank 1 group. Then there exist no
A,B € Cx(E) N Cx(F) with [A, B] € X. In particular, G/Z(G) % E,(L),
n==6,7,8.

Proof. We may assume that = Xejters F= Xe1—e,- ThenforA, Be Cx(E)N
Cs(F), A, Baresymplectlctransvectlon subgroupdditez, oz, ag) = C3(K) >~
Sps(K). Hence[A, B] is never a long root subgroup i (K). With Section 2.1
the first claim follows. InE,, (L), n = 6, 7, 8, the centralizer of a long root Slis
of type As, Dg, E7, respectively, and hence contains long root subgrolpBd
with [A, B] again a long root subgroup, a contradictionm

Proof of Theorem 2. For Siegel transvection subgroups, we refer to Section 1.6.
By Section 2.2 the Witt index of is 3 or 4. Any elementd € ¥ may be
identified with the associated Siegel transvection groun £2(W, g). We fix
E,F,B,D € X such that(E, F) and (B, D) are commuting rank 1 groups
which have the same commutator spacéMn By Section 1.4 we may pass to

a conjugate & with E= Xejter F= X _e1—en B= Xej—en D=X_ e14ey- IN

the orthogonal grou® (W, ¢) we verify G = (Ag NWg, F).

Let A € Ag N ¥r. Considering the associated singular lines, we see that
for T one of B or D, we haveC :=[A,T] € Ag. This y|eldsC € Ag N Az
WhenceC is contained in the symplectoﬁ\(E 7) by Section 1.3. We obtain
C < M(By). But A andC are conjugate if{B, D), thus alsoA < M(By). This
provesG < M (By) and Theorem 2 follows with Section 2.3 belowo

2.3.LetK be afield and/ a vector space ovek endowed with a non-degenerate
quadratic form Q of Witt index> 2. Let G be a quasi-simple subgroup of
£2(V, Q) generated by the clasy of abstract root subgroups, such that any
A € X is contained in some Siegel transvection groTpr £2(V, Q). We assume
G = G/Z(G) ~ PR2(W, ¢q) with X the class of(projective Siegel transvection
subgroups oriv.
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LetE, F, B, D € ¥ suchthat{E, F) and(B, D) are commuting rank groups
which have the same commutator spac@inif also[V, E]1+ [V, F]1=[V, B]+
[V, D], then the orthogonal spac@V, ¢) is weakly embedded of degr@ein
P(LV,G)).

Proof. By I' we denote the orthogonal polar space associatedta;). We

consider the map : I" — P (V) which maps the lin€ of I" to the singular line
[V, A], provided thatd € X corresponds to the Siegel transvection gréypand

each singular poinp of I' is mapped to the intersection of aW, T'], where
T € X corresponds to a Siegel transvection gr@upvith p C ¢.

We prove thatr is a weak embedding. Clearly, maps lines to lines and
is injective on lines. We fix a poinp of I". Let A and C be elements of¥
corresponding to Siegel transvection gro@psTs with p = ¢ Ns. First, we show
that[V, A]N[V, C]is a point ofV. Indeed, whet + s is 3-dimensional singular,
then also[V, A] + [V, C] is 3-dimensional singular. Next assume that s is
3-dimensional and non-singular. We may assume that E and C = B. By
assumption[V, A1+ [V, C]is contained in the orthogonal sum of two hyperbolic
lines inV and hence is 3-dimensional non-singular.

We deduce that maps points to points. For non-collinear pointy of I and
different pointsz, ¢ of I" collinear with bothx andy, the same relations hold for
the images of these four points undein the polar space associated(id, Q).

In particular,z is injective on points. Thus the weak embedding axiom holds and
7 is a weak embedding (of degree 2)a

By Steinbach and Van Maldeghem [11], the weak embedding in Section 2.3
is induced by a semilinear mapping W — V (with respect to an embedding
a: L — K). Furthermorep commutes with the action af.

2.4.WhenG arises from a projective space, then necessaflly= G/Z(G) ~
PSLs(L), PSL4(L), L a commutative field. Furthermore, a conjugate®fin
F4(K) is contained inM (—a, a1, a2, @3) = B4(K).

Proof. For E, F € ¥ generating a rank 1 group, we hayE, F) ~ SLy(L),
L a skew field, orG arises from the non-Desarguesian Moufang plane and
(E, F) ~SL(L), L a Cayley division algebra.

But (E, F) < (E,F) ~ SLy(K) with K a commutative field. We may
construct an embedding: L (or C) — K as in Timmesfeld [19, (6.2)]. Whence
L is necessarily a commutative field. With Section 2.2 eitGer PSl4(L) ~
PQg(L) (and we may apply Theorem 2) @ ~ PSl3(L). In the latter case,
a conjugate ofG is contained iNnM(—ay, a1) = A2(K) >~ SL3(K), as G =
(E,F, A1, Ap) for E, F € X generating a rank 1 group amth, A, distinct in
AgNVYpr. O
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3. Subgroups of F4(K) arising from a building of type F4

Let G be a subgroup of4(K) as in (P). In this section we assume tiaarises
from a building of typeFy, see Section 1.6.

Using the classification of buildings of tyg& due to Tits [3], we prove tha¥
is isomorphic toF4(L), L a field in characteristie: 2, or to a groupFs(L, F) of
mixed typeFy in characteristic 2 (as defined in Section 3.1 below). In both cases
we prove that the embedding 6f in F4(K) is by restriction of scalars, which
proves Theorem 3.

3.1. Groups F4(L, F) of mixed type F4. These groups were defined by Tits [3,
(10.3.2)]. LetF be a field of characteristic 2 and a subfield of F such that
F2C L C F. The associated groufy(L, F) of mixed typeF; is

F4(L, F) :=(x,(t), xs(f) |rlong, t € L, s short f € F) < Fa(F).

The center off4(L, F) is contained in the center ¢4 (F), whence trivial.

We haveF(F) = (B4(F), C3(F)) with B4(F), C3(F) the standard subsystem
subgroups of typeBs and Cz. Similarly, F4(L, F) = (B4(L, F), C3(L, F)),
where the latter two groups of mixed type are classical groups, we refer to Tits [3,
(10.3.2)].

3.2. Proposition.Let G as in(P) arise from a building of typey. For E, F € X
generating a rankl group, Cx (E) N Cx (F) is the point set of a polar space
of rank 3 which is weakly embedded in tl&edimensional symplectic space
underlying Cr,xy((E, F)). Moreover,G is isomorphic toF4(L), L a field in
characteristic#£ 2, or to a groupF4(L, F) of mixed typef, in characteristic2,
with X the class of long root subgroups.

Proof. We use the classification of buildings of typg; due to Tits [3,
Section 10]. LetA := Cx(E) N Cx(F), where E, F € X generate a rank 1
group. SinceG arises from a building of typéy, A is the point set of a (thick)
polar space of rank 3, we refer to Timmesfeld [5, Ill Section 7]. The points
A, C in A are collinear precisely whef, C] = 1. We denote the underlying
symplectic space o€r,k)((E, F)) by V. Then[V, A] is a point inV for
A€ A. For A,B € A, we have[A,B] =1 if and only if [V, A] C Cy(B).
Thus([V,T]| T on ¢) is a singular line inV, for any line ¢ of A. (Indeed,
let F := {A1, B1, A2, B2, A3, B3} € A such that(A;, B;) is a rank 1 group
(i = 1,2,3) but all other pairs inF commute. TherV = @{[V,T]1| T € F},
Cyv(A)=B{V,T]1| T € F\{B;}} and similarly forB; (i =1, 2, 3). For anyC
on the line onA; and A2, we obtain[V, C]1 C ({Cv(T) | T € F\{B1, B2}} =
[V, A1l + [V, A2], as desired.)

This yields thatA is weakly embedded inP(V). The planes ofA are
Desarguesian (we refer to Cuypers and Steinbach [7, (3.6)]). Thus by the
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classification of polar spaces due to Tits [3, (8.22)Jarises from a vector space
W over F endowed with a form. By Steinbach and Van Maldeghem [10, (5.1.1)],
the weak embedding is induced by a semilinear mappingy — V with respect

to an embedding : F — K. We obtain thatF' is commutative.

By the classification of buildings of typE4(K) in Tits [3, Section 10], either
Proposition 3.2 holds oW is a 6-dimensional unitary space, endowed with a
(o, —1)-hermitian form,o # id. But the latter is not possible, because of the
weak embedding in a symplectic space. (Indeed,(iget y1) and (x2, y2) be
orthogonal hyperbolic pairs iW. For 0#£ ¢ € F anda := x2 + cy2, the vector
p = x1—cy1+aisisotropic and: := x2+c?y1, v := y2— y1 andys are isotropic
in p~. Inthe symplectic spacey andpg are perpendicular, sinea is isotropic.
Because ofi = u +cv+ (c —c?)%y1, also(c — ¢ (y1¢) and py are perpendicular.
Whencec® = ¢ ando =id, a contradiction.) O

3.3. Theorem.We assume thaG := G/Z(G) ~ S =: F4(L, F) with X the
class of long root subgroups i. (Here we defing4(L, F) := F4(F) = F4(L)

in characteristic£ 2.) Then there exists an embedding F — K such that
a conjugate ofG in F4(K) is F4(L%, F%).

Proof. (1) We say thatA € X corresponds to the long root subgrodp of
Fa(L, F) iftheimage ofA in S is A1. Passing to a conjugate 6fin Y := F4(K),
we achieve (see Section 1.4):

(%) If r e {x(e1+ e2), x(e1 — €2), £(e3 + e4), £(e3 — ea)} andT € X corre-
sponds taX, (in S), thenT = X, (in Y).

By assumption there is a central extensporG — S, mapping abstract root
elements to long root elements. By and M2 we denote the subgroup of
generated by all elements iF which correspond to a long root subgroup in
the classical subgroupB4(L, F) and C3(L, F) of S, respectively. TherG =
(Mq, M3).

For any embedding : F — K, K a field, lete, : F4(F) — F4(K) be the
injective homomorphism with, (¢) > x,(t*),forr e @, ¢t € F.

(2) Next, we prove that passing to a conjugat&ofve achieve that: = mpe,
for m € M> with an embedding : F — K.

By (%), M2 < M(a2, a3, aq) = C3(K) with underlying 6-dimensional sym-
plectic spacé/. The vector spac® underlyingM> is 6-dimensional symplectic
over F in characteristic£ 2, and is an orthogonal spatielz @& F® over F (of
dimension 6+ dimg2 L) in characteristic 2. By Proposition 3.2, the associated
polar spaceA is weakly embedded i® (V). By Steinbach and Van Maldeghem
[10, (5.1.1)], the weak embedding is induced by a semilinear magpimg — V
with respectto an embeddiag F — K. The action of/> commutes withy; i.e.,
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(w(p)m = (w(mp))e, forw e W, m € M, (we refer to Cuypers and Steinbach
[7, (8.3))).

We write the elements af3(L, F) as 6x 6 matrices on the symplectic space
W/ W+ with respect to the standard hyperbolic baSisSimilarly, we proceed
for C3(K), see Carter [1, p. 186]. By we denote the fundamental matrix of
the symplectic form with respect ©. For m € M», the matrices ofn andmyp
with respect to€ are related vial/é (m) = D=1 - M§ (mp)® - D, whereD is the
diagonal matrix of the base change fréim to £ in V. FurthermorepJ D" is a
scalar multiple of/, sinceDJ DT - J—1 commutes withC3(L%, F*). Therefore
conjugation byD is an automorphism(y) of C3(K), wherey : {a2, a3, as} —
K* is a character of3(K).

We extendy to a character of F4(K) by a1 +— 1. Thenh := h(y) is an
(inner) diagonal automorphism d#(K). Passing to the conjuga(éhil of G,
we achieve that: = mpe,, for m € M. This proves (2).

(3) Next, we prove that there exist an embeddihg” — K and a character
X {—ay, a1, a2, a3} = K* of B4(K) such thain = mpegh(x) form e M.

By (x) and Theorem 2M1 < M (—ay, o1, a2, a3) = B4(K) with underlying
9-dimensional orthogonal spate

First, we assume that chi@) = 2. The orthogonal spadéV, ¢q) associated to
MyisW = F L L8 overL, whereL® is an orthogonal sum of hyperbolic lines and
q(f)= f?e Lfor f € F.By Section 2.3(W, q) is weakly embedded of degree 2
in P(V). By Steinbach and Van Maldeghem [11], the weak embedding is induced
by an injective semilinear mapping: W — V with respect to an embedding
B:L — K. As the action of\/; commutes withp, we have(wg)m = (w(mp))e,
forw e W, m € M1. FurthermoreW+¢ C V1. We write W = Fxq. For f € F,
there existshy € K with (fxo)¢ = by(xop). We consider the singular vector
w:= fxo+ f2x +y, where(x, y) is a hyperbolic pair ifW. Sincewy is singular
in v, we obtain(f)# = b%. Thus by ¥ := by, we extends to an embedding
B:F— K.

We write the elements di4(L, F) andB4(K) as 9x 9 matrices oveF andk,
respectively, with respect to the standard basis as in Carter [1, p. 186]. Similarly
as in (2) forM, < C3(K), we deduce that (3) holds. For ch&r # 2, we have
B4(K)/{—1) = £29(K) and the argument is similar.

(4) Next, we compare the results obtained so far for the elemgnts, ¢ € F,
contained inC3(L, F) N B4(L, F). Letm € My N M2 with mp = x4,(t). We
have shown that,,(t*) =m = xa3(x(a3)tﬂ). Fort =1, we obtainy (a3) = 1.
Hencea = g. Similarly, we deduce («z) = 1. Next we consider_(,,—,) (1),
which is also inC3(L, F) N B4(L, F). Since—(e1 — e2) = —ay + 201 + 200 +
203, necessarilyy (ax) = x («1)2. We define the characteg: I1(F4) — K* by
xo(a1) = x(a1), xola;) =1 (i =2,3,4). Thenh := h(xp) is an (inner) diagonal
automorphism ofF4(K) which inducesh(x) when restricted toB4(K) and
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which centralize<3(K). Passing to the conjugatéh_1 of G, we achieve that
m=mpéey, m € (M1, M2) = G. This proves Theorem 3.3.00

Now Theorem 3 follows from Proposition 3.2 and Theorem 3.8.

4. 3D4(L), 8 D4(L) embed in F4(L)

LetZ:Lbea separable cubic field extension with Galois clogurgirst, we
describe the twisted group®a(L) and®Da(L) as fixed point groups i®a(L).
Then we prove that both types of groups are subgroug&@f) (noteL, notL)
such that long root subgroups are long root subgroups.

4.1. Separable cubic extensionset L : L be a separable cubic field extension.
Foro € L, 6 ¢ L, fixed, letf be the minimal polynomial of over L. We denote
by L the splitting field of f, the so-called Galois closure. If: L is a Galois
extension (e.g., for Gg°) : GF(g)), thenL = L and AU(L : L) = (o) ~ Zs.
Otherwise (e.g., ford(¥2): Q), L is a guadratic Galois extension &f and
Aut(L : L) = (0, t) ~ X3, whereo is of order 3,7 is of order 2,0t = 10?2,
Fix(r)=L

4.2. The standard embedding ofG2(L), 3D4(L), 8 D4(L). For the definition of
twisted groups, see Tits [20], Carter [1], Steinberg [17].

Let L, L, L be as in Section 4.1. Let, t be permutations of order 3 and 2,
respectively, of the root systet(D4) of type D4, which arise from symmetries
of the Dynkin diagram. We choose notation of the fundamental &atsch that
o = (81, 82, 83) with fixed pointsg andt = (82, §3) with fixed pointssg, §1.

The universal Chevalley group4(L) has automorphisms,, 1, with
No - xr(t) > X6 (%), e x-(2) — x,0(t7), Wheret € L, r € ®(Dy4) (compare
Section 4.4 below). We usg only whenL : L is not Galois.

Any orbit of (o, ) on ®(Dy) is of the form {r} with ro =r =rt or
{r,ro, ro?} with ro # r = rr. By definition 3D4(Z) < Fix(ne) and®D4(L) <
Fix({ns, n;)) are generated by all ‘long root elements’(u), wherero =r
(=r1),uecl, and all ‘short root elements (t)xm(t”)xs(,z(t” ), whereso #

s =5T,1 €] L. (The superscriptdand® are the degree of the Galois closure of the
extension’ : L. )

Note thatGo(L) := (xr (u), xs(t)xs(,(t”)xmz(t" )| ro =r, so s = sT,
u,t € L) is contained ifD4(L), ®D4(L). We call the above embeddingGh (L),
3D4(L) and®D4(L) in D4(L) the standard embedding.

The group§D4(L) Dy4(L) are quasi-simple, as G2(L) for L # GF(2). Let
a(c) 1= x5, ()8, (c7)x85(c%),_b(e) 1= x_g (x5, (c)x_3,(c””) and n(r) :=
a)b(—t~Ha(r), wherec, t € L, t # 0. Thena(c)"® = b(—tLer™1).
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For the proof of Theorem 5, we construct automorphigmsn. of F4(L)
such that the restrictions to the subsystem subgid4(d) are as in Section 4.2.
Then we show there is an inner automorphisn¥gfL) which conjugates,, and
n: to the field automorphisms with respectacandzt, respectively; we refer to
Stensholt [13] for the finite case. It is convenient to constnycandy, in Eg(L)
first.

4.3. Symmetries of the root system of typd&g. We denote byd := & (Ep) the
root system of types with the following extended Dynkin diagram in the notion
of Bourbaki [2]:

B3 B
o)
Es o-..
—B* :62 ﬂ4 o)
Bs Be
where
Br=3(e1—e2—es—es—es—ec—er+es), Pa=e1te,

B3 = ez —ex, Ba=e3— e, B =eq — e3, Be = e5 — ey,

Be = 3(ex+ea+ez+es+es—es—e7+eg)
= P14+ 262+ 283+ 3P4+ 285+ Pe.

By (,) we denote the standard scalar product on the underlying Euclidean
spaceR®. The extended diagram has symmetti@sssS2) (8186 — B«) with fixed
point 84 andt := (B385)(B18s) With fixed pointsgs, B2, —Bx, which are induced
by isometricss andt of R® (permuting®).

The permutation ofp of order 2 with Z?:l ciej — Z;‘zl ciej — Z?:s cie;
is induced by an isometry of R® with z: 1 — —(B1 + B2 + 283 + 2B4 + Bs),
Be > —(B2+ B3+ 284+ 285+ Bs), B2, B3, Ba, Bs fixed. Moreoverz commutes
with o and withz.

Letry:=ei1+es,ro:=ep—e3, r3:= —%(61+ez+63—e4+65+ee+e7—es),
ra ‘= e3 — e4. Thenz is the diagram symmetry of order 2 with respect to the
fundamental systerfr1, r2, r3, ra, r3z, r1z} of @ (with lowest rootes + e4). The
vectors% (r+rz),r € @, yield aroot system of typ&, with fundamental system
consisting off1 :=ep—e3,82 :=e3—e4,83 = —%(61-{-62-}-63— eq),andds :=e1
(with lowest rootes + e4).

4.4.Let L : L be a separable cubic field extension with Galois closlras
in Section4.1 and o, t, z permutations of the root system of typg as in
Sectiord.3. Then there exist signs, ; involved in the Steinberg relations of the
universal Chevalley grougs(L), such that the mappings, : x,(t) — x5 (%),

e X (1) = x,.-(t7), wherer € @, t € L, extend to automorphisms 8§(L). (We
considern; only whenL : L is not Galois)
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Also 0. 1xp(1) > xp-(t), Wherer € @, t € L, extends to an automorphism
of Eg(L) with Fa(L) = (x, (1), xs(O)xs:(t) | r,s € P, rz=r, s7#s, 1 €L) C
Fix(n,). Furthermore,, n, restrict to automorphisms df4(L).

Proof. We denote byf the bilinear form orR® with fundamental matrix

1 -1 -1 -1 1 1
0 1 0 0 0 O
0 1 0 -2 O
O 0 O 1 0 -2
-1 0 1 O 1 O
-1 0 O 1 0 1

with respect to the basiga, B2, B3, Bs. B1. Be}- Then(x, y) = f(x, y) + f(y, x),
f(xo,yo) = f(x,y) = f(xt, y7) for x, y € R6. Moreoverf (r,s) € Z forr,s €
@

As did Springer [21, 10.2], we define the following structure constants
of type Eg; i.e., signs involved in the Chevalley commutator relations: we set
€(r) :=1, whenr € @*, ande(r) := —1, whenr € ®~. Forr,s € @ with
r+s € @, we define

Nyy = e(r)e(s)e(r +5) - (=179

and we setV,; := 0 forr, s € @ with r + 5 ¢ @. We verify thatN,s ;o = N5
andN,; s; = N5, forr,s € @. Indeedo, t respectf, and we only have to take
care of the signs(r), e(s). Sincer permutes the positive roots, it preserves these
signs. Foro, we consider several cases according to the coefficiengs of »
ands. Thus the mappings,, n. preserve the Steinberg relations and extend to
automorphisms ofg(L).

Let Z be the matrix ot with respect to the same basis as farThen the only
non-zero entries i€ FZT — F (modulo 2) are a right lower corné{ 1). Thus for
r=Y"% ciBi,s =32 dipi € D, we havef(rz,sz) = f(r,s) modulo 2, if and
only if c1de = ced1. This yields thatV,; ;. = N, for r, s € @. Whence alsoy,
extends to an automorphism &(L). Sincez commutes withs, 7, we obtain
F4(L) as a fixed point group of, which is invariant undef,, n,. O

4.5.We considelF4(L) with automorphisms,, 1. as constructed in Sectiegh4.
Then there is an inner automorphisoof F4(L) such that

wnoafl:fm wr]t‘“il:ft,
where fi i x, () = x- (%), fr:x(t) — x,(¢t7) are field automorphisms.
Proof. The permutations, t permute the roots ob (F4). The action ofy, on

Fa(L) is x,(2) = Xyo (t"l, forr € ®(Fy), t € L, and similarly forn,. The field
automorphisny, of F4(L) is defined by, (z) — x,(¢), and similarly for f;.
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We consider the fundamental systdi, 52, 83, 84} of @ (F4) (with highest
root é,) of Section 4.3. The roots-§,, §1 are fixed byoc andt. Furthermore
(62, —e1 — e2,e1 — e2) by o and(82, e1 — e2) by t.

For 83, 84, the fundamental roots of a root system of type, we have
(63,84, —83 — 84) by o and (83, —384) by 7. In the notation of Bourbaki [2]
we write 63 = f1 — f2, 4 = fo — f3. The above translates iGf1 — fo,
f2— f3, fa— f1) by o (this meanss = (123)) and (f1 — f2, fs — f2) by ©
(this meansr = (13)); also (f1 — f3)t = f3 — f1. This leads to the following
permutation matrice®, and P, associated ter andt, satisfyingM? P, = M
andM*™ P, = M:

010 0 0 1 1 1 1
PU::<0 0 1), Pr:<0 1 0>, M:<a b c>,
100 100 a2 b2 2

wherebe L, b ¢ L, andc :=5b°, a :=c°.

We write elements ob (82, 83, 84) = Sp;(L) as 6x 6 matrices as in Carter [1,
p. 186] (with (71 1) as fundamental matrix of the underlying symplectic form).
In the following we often consider := n, andn, simultaneously. We write then
f=1°,1",fort e L,7 =ro,rt,forr e ®(F4) and we omit the indices in,, P,
f». The action of) on M (82, 83, 64) ~ SQS(Z) is given by

X+—><Pl PT))_(<P PT>’ for X € Sps(L). (%)

as can be checked Of,, X553, X5, X —(e1—ep)- We define
M —
g = ( MT) € M(82, 63, 84) =~ Spe(L).

By » we denote the inner automorphism- g txg of F4(L). Forr € ®(Fy),
t € L, we havex, (Nonw ™t = g(g 1n)xr (1) (gng .
By (%) we know

(7 ) ) ) )

sinceg € Sps(L) andM P = M. Thus we obtaim~tnw = f on M (82, 83, 84) ~
Sps(L) with (x). MoreoverX_s, commutes with SL) and —$. is fixed by
o andt, hencew lnw = f on X_s,. We are left withXs,. Since def, = 1,

(P“ P—T) is contained inM (83, 84) ~ A2(L) < C(Xs,). Hencew 1nw = f, on

— -1
X5, and thus onF4(L). Since deP; = —1, conjugation with(Pr PT) maps
x5,(17) t0 xs,(—t7). We denote byr := h(x) the diagonal automérphism of
F4(L) with respect to the character:61 +—> m, d2 — 1, 83—~ 1, 4 — 1,
where 0+ m := detM with m® = m, m* = —m. Thenhonw th=1 = f (field
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automorphism) fos andz on F4(L). Since any diagonal automorphismiaf(L)
is inner, this proves the claim.O

Proof of Theorem 5. We considerF4(L) with automorphismsy,, 7. as
constructed in Section 4.4. By Section 4.5 there is an inner automorphism
F4(L) such thatj; = w1 f, 0, n; = w1 fyw. We obtain

3Da(L) < Fix(ng) = Fix(fo)w = Fa(L)w = Fa(L),
®Da(L) < Fix((ns. 1:)) = FiX({for. fr)) = Fa(L)w =~ Fa(L).

The long root subgrougxs, (r) | 1 € L} of 3D4(L), ®D4(L) is a long root
subgroup off4(L)w. O

5. Subgroups of F4(K) arising from a Moufang hexagon

Let G be a subgroup of4(K) as in (P). In this section we assume tiaarises
from a Moufang hexagon, see Section 1.6.

Using the classification of Moufang hexagons due to Tits and Weiss [8], we
prove thatG arises from &G -, 3D4-, or ® D4-hexagon or from a mixed hexagon
in characteristic 3. The further investigation of these cases proves Theorem 4.

5.1. Moufang hexagons.For the definition and properties of the Moufang
hexagons, we refer to Tits and Weiss [8] and Van Maldeghem [9, 5.5]. From
the classification of Moufang hexagons due to Tits and Weiss [8], we use the
following facts:

Any Moufang hexagon/” say, belongs to the root system of ty@e. We fix an
apartment ofl” together with the twelve associated root grodpsThere exists
a commutative fieldL such that long root subgroups (with an even index) are
isomorphic to(L, +) and short root subgroups are isomorphi¢to+), whereJ
is one of the following Jordan division algebras oyer

(1) J =L;we sayl' is aG,-hexagon.

(2) J =L, a separable cubic field extensionof we sayI" is a3Ds- or 6 Dy-
hexagon, depending on whether L is a Galois extension or not.

(3) J = F is afield extension of., cha(L) = 3, such thatF® C L C F. We say
thatI” is a mixed hexagon in characteristic 3.

(4) The dimension off over L is 9 or 27; we say" is an exceptional Moufang
hexagon.



A. Steinbach / Journal of Algebra 255 (2002) 463488 481

For the associated groups in Cases (1) and (2), we refer to Section 4.2. In
Case (3), the associated group is the graugL, F) of mixed type G2 in
characteristic 3, which was introduced by Tits [3, (10.3.2)]. By definition

Ga(L, F) :=(x,(t), xs(f) | rlong, t € L, s short f e F)< Ga(F).
The only non-trivial commutator relations amodg, . .., Us are

[uo(®), ua)] =u2@tu),  [us(a), uz(b)] =u2(T(a,b))

forr,ueL,a,be J,whereT:J x J — L is a symmetric bilinear form, which
satisfiesT (a, a®) = 3N(a) for a € J. Here # is the adjoint map and the
(anisotropic) norm ony.

The classz? of long root subgroups af is a class of abstract root subgroups
of S := (X1 < Aut(I"), see Timmesfeld [5, Ill Section 4]. For commuting
long root subgroups&l, B1, any element imA1B! is a long root element (i.e.,
Bl € A1 in the notation of Section 1.1).

5.2.LetI" be a Moufang hexagon as in Secti. We setE! := U and F* :=
UgandMp1 = (Ag1). ThenM 1 := M1/ EL is a symplectic space ovér, which
is non-degenerate provided thAtis not a mixed hexagon in characteris8c

Proof. We haveM g1 = UgU1U2UsUas, see Timmesfeld [5, 111(4.10)(3)]. Thus
W : MEl =Uo® U1 & U3 ® U4 is a vector space ovelt, where the scalar
multiplication is given by the action of the diagonal subgroup (&b, Us)
normalizingU,; andUg, see Timmesfeld [5, 111(2.25)].

We define a symplectic forr,): W x W — L by (m1, m>) :=c € L, when
[m1, m2] = u2(c), for m1, mo € Mg1. Because of the commutator relation given
in Section 5.1 and properties &f, we haveW ' = 0; we refer to Tits and Weiss
[8]. O

5.3. Proposition.Let G as in(P) arise from the Moufang hexagadn. ThenI is
not an exceptional Moufang hexagon.

Proof. We may assume thdt is not a mixed hexagon in characteristic 3. There
is a central extensiop: G — S, whereS is the subgroup of Ag{™) generated by
the classz? of long root subgroups.

Let W be the non-degenerate symplectic space associateMtn see
Section 5.2. Recall that := ME/E is a 14-dimensional symplectic space over
K, see Section 1.4. We defing := m whenv = mp with m € Mg. Since
MgNZ(G)=1,¢:W — V is a semilinear mapping, which satisfigs w) =0
if and only if (ve, we) = 0. Hence an orthogonal sum of hyperbolic linegih
gives rise to an orthogonal sum of hyperbolic lined/inThus Zdim; J + 1) =
dim, W <14anddim J <6. O
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5.4. The standard apartment.Let G be a subgroup of4(K) as in (P), arising
from the (necessarily classical) Moufang hexagan

Let E, A1, B1, F, B2, A» € X correspond to the long root subgroups of an
apartment of/” (in that ordering). Passing to a conjugate Gfin Fa(K),
we may assume that = Xe1+e2, F= = X_¢;—¢,- NoOte that[A1, A2] = E. By
Section 1.3 we achievd; = Xeg—ezs Ay = X143, SiNCE SB(K) is transitive
on pair of disjoint isotropic planes. BecauseR)f=[A1, F] andBo = [A», F],
we obtain thaB1 = X _;—e;, B2 = X—epte5- Whence(E, Ay, By, F, Bz, A) <
M(—as,a1) = A2(K) ~ SL3(K). We say that(E, A1, By, F, B2, A2) is the
standard apartment i@i.

5.5. Short root subgroups.We consider the standard apartmentGh Let
0:G — Aut(I") be a homomorphism with kernel(@) which mapsX to the
class of long root subgroups df. For A € ¥, M4 = (A,) intersects ZG)
trivially. We denote by, U_, the short root subgroups in AUt) associated to
the half apartment&E, A2, B2, F) and(E, A1, B1, F), respectively. Fon € Uy,
v € U_, there exist unique ‘short root elementsé Cg(E) N Cg(F) N M4, and
be CG(E)NCG(F)N My, with ap = u, bp = v; we refer to Timmesfeld [5, IlI
(4.9), (4.10)]. This defines short root subgrougsandA_, in G.

We may coordinatizel,, A_, as follows:A, ={a(c) |ce J}, A_y = {b(c) |
¢ € J} such thata(c)a(d) = a(c + d), b(c)b(d) = b(c + d) and a(c)"?) =
b(—t~Yet™1), for n(r) ;== a(®)b(—t~YHa(t) andc,d,t € J, t # 0. Indeed, this is
possible in the groupS2(F) and3D4(L), 8 D4(L) by Section 4.2.

Moreover, the following relations hold far, d,t € J, t # 0: n(t)"1 = n(—1),
b(e)"® = a(—tct), a(®)?™) = b(—t=1)4® anda(c)"® = a(t~Ler~L), b(c)'®) =
b(tct), whereh(t) :=n(t)n(—1).

5.6. The short root subgroupl, in G with respect to the standard apartment
is contained in the unipotent radical of the stabilizer of an isotropic pléhe
one corresponding tel ) in M (a2, a3, as) = C3(K) >~ Sps(K). This means that
A < (X, | r e W), where¥ :={e1 — e, e3+ ea, €3 — ey, %(61 —e2+e3+es),
%(61 —e2+e3—ey), e3}. Similarly, A_, <(X_, |r e ¥).

Proof. SinceA, centralizestE andF, we haveAd, < M (a2, a3, a4) = C3(K) =
Sps(K). Furthermore,A, stabilizes the isotropic plane correspondingAg
(see Section 1.3). Henck, is contained in the parabolic subgrolp L; with
Levi complementL ; of type A with diagram (a3, «4) and unipotent radical
Uy=(X,|re¥)< Mg, (the unipotent radical of the point stabilize/r(//l\z)
in the F4-geometry). We obtaid, < MpNULy=MzNLHU;=Uy. O

5.7. Notation. We write each element ¥/ (a2, a3, 4) = C3(K) >~ Sps(K) as
a 6 x 6 matrix as in Carter [1, p. 186]. The first/last three basis vectors span
the isotropic plane corresponding #» and A1, respectively. The fundamental
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matrix of the underlying symplectic form (5_1 ’). By Section 5.6 the short root
elementsi(c) € A, andb(c) € A_,, written as 6x 6 matrices, are

(1 _ (1 N()
a(c)—<M(c) I)’ b(c)—< / ) celJ.

Any M (c) is a symmetric matrix, since(c) respects the symplectic form. The
matrix M (¢) is invertible forr # 0, since them‘i(’) corresponds to an isotropic
plane which is disjoint from the planes corresponding {cand A,.

The element,, —,(a)Xes e, (d)xeg_m(f)x%(81_82+63+e4) (b)x%(el_ez+63_e4)

(c) x

Xeg(e) as 6x 6 matrixis(,, ;) with

a b c¢
M=<b d e> and
c e f

(R_l RT)(A; 1)(R RT>:(RT§VIR 1)

for R € GL3(K). The latter describes the action o (a3, as) = A2(K) =~
SL3(K) on the unipotent radical of the plane stabilizer.

5.8.Forc e J, let M(c) be the3 x 3 matrix defined in Sectioh.7. Suppose that
M (1) = I. Then the mappind/ :c — M(c) has the following propertiedor
c,d,teJ, t#0,

M(c+d)=M@)+Md),  M(tct) = M(OMCM(),
M YH=mMmn™, r#0.

Moreover,M is injective and any (¢) is symmetric.

Proof. Lete,d,t € J,t # 0. We use the relations between the short root elements
in Ay, A_, given in Section 5.5. Witla(c + d) = a(c)a(d), we seeM (c + d) =

M (c) + M(d) (and similarly forN). Since anyM (¢) is invertible,M is injective.
Because ofz(1)?" " = b(—t~1)*®, we haveN(—1) = M)~ and n(1) =

(, 7). Sinceb(r) = a(—1)"®, we obtainN (1) = M(r) and M (1Y) = M(1) .

We deducéi (¢) :=n(t)n(—1) = (M(’_l) .Nowb(c)"® = b(tct) implies that
M(tct) =M@E)M(c)M (). O

M(t))

5.9. A subgroup of typeG; in G. Let I'y be aG,-subhexagon of” obtained

by restricting the short root subgroups framto L. (The existence of & ;-
subhexagon in any Moufang hexagon is due to Ronan, see Van Maldeghem [9,
(5.5.12)].) LetGg be the subgroup af generated by all' € 3 which correspond

to a long root subgroup afp.
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5.10. Theorem.Passing to a conjugate iff4(K), the subgroupGo of type G2

is contained in the standard subsystem subgmu@) := M (e1 — e2, e2 — e3,
e3—eq, e3+eq) = Da(K) of F4(K). WhenK is quadratically closed, there exists
an embedding : L — K such that a conjugate &g in F4(K) is G2(L%).

Proof. We pass to a conjugate @f as in Section 5.4. Fat(1) = (Ml(l) 1) as

in Section 5.7, there exists a matwith detR = 1 such thatRT M(1)R is a
diagonal matrix (also in characteristic 2).

We identify R with (R z) € M(a2,03,04) >~ Sp5(K). Then R centralizes
M (—as, a1) >~ SL3(K), sinceR € M (a3, ag) >~ SL3(K). After conjugation with
R we may thus assume thaf(1) is a diagonal matrix. Hence(1) is contained
in M(Dg). SinceGo = (F, A1, A2, a(1)), the first claim follows.

By Steinbach [22], the embedding @fj in the 8-dimensional orthogonal
groupM (Da4)/{—1) is induced by a semilinear mapping. Similarly as in Step (3)
of the proof of Theorem 3.3, we obtain that there exist an embeddiig— K
and a diagonal automorphigimof D4(K) such thalg = gpeyh, for g € G. (Here
€ D4(L) — Dyg(K) with x,(t) > x,(t%), for r € ®(Dy), t € L.) SinceK is
guadratically closed, there is a charagtel1(F4) — K* such that the restriction
of h(x) to M(e1 — e2, e2 — e3, e3 — e4, e3 + eq) = D4(K) is h. Any diagonal
automorphism of4(K) is inner by Section 1.4. This proves the theorerm

5.11.We remark that when a conjugate@p is contained in the standafih (K )

in F4(K), then there exiskR € GL3(K) and 0+ r € K such thatR" M(1)R =¢1.

This means that a form similar to the one definedgl) admits an orthonormal
basis. For arbitrary fields this is not true for all non-degenerate symmetric bilinear
forms in dimension 3.

5.12. We assume that the subgroupp ~ G2(L) of G is embedded via
the standard embedding iF2(K) < Fa(K) (with respect to the embedding
a:L — K). For any short root elemeni(x), x € J, of G, let M(x) be as in
Sectiorb.7. ThenM (cx) = ¢* M (x), for x € J, ¢ € L. Furthermore, wher = L,

a separable cubic extension bf thenM respects multiplication.

Proof. Lett € K*, h := hej4e,(t). FOrs € {e1 — €2, e3 + es, e3 — ea, %(el —
€2+ e3+eq), %(el —e2+e3 — eq), ez}, the standard scalar produetay, s) is 1.
Hencex, (u)" = x (tu).

In G we havea(xl’i: a(cx), fori € J, c € L, whereh is a diagonal element
in (A2, B1), where Ao = X 4e5, B1 = X_¢;—e;. Via the standard embedding
B = heytes(c™®) € Fa(K) anda(cx) = (Cmﬂjm ,); i-e., M(cx) = ¢*M(x). This
proves the first claim. For the second, we wiite- L(0). SinceM (1) = 1 andM
respects addition and products by Section 5.8, we obtain (6") = M (6)" for
n € N. WhenceM respects multiplication. O
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Next, we investigate the embeddings of the groups associated i®theand
6 D4-hexagons, see Section 4.2. Our aim is to show that a conjugét@of (K )
is contained in a subsystem subgroup of typg whenKk is algebraically closed.
We refer to Theorem 5, for an embedding®d@is(L), 6 Da(L) in Fa(L).

5.13. Theorem.Let G arise from a3Ds- or 8Ds-hexagon and assume thét

is algebraically closed. Then a conjugate 6fin F4(K) is contained in the
subsystem subgrould (Dj) := M(e1 — e2, e2 — e3, e3 — e4, e3 + eq) = Da(K)

of F4(K). Furthermore, the embedding is either the standard embedghith
respect to an embeddingy: L — K) or the embedding is in a subgroup of type
B3 in M(Dg).

Proof. By Theorem 5.10, we may assume that the embeddiigpat Go(L) in
F4(K) is the standard embedding, with respect to an embeddidg— K. We
use thaiG = (F, Az, A1,a(t) |t € E), sinceG = (Ag NW¥F, F) by Section 1.6.

We write L = L () and we denote by the minimal polynomial o overL.
SinceL is a separable cubic extensionofthe polynomialf* has three different
roots inK. There is an embedding: L — K with 8|, = o which maps the set
of roots of f to the set of roots of“.

Let M := M(0), a symmetric invertible % 3 matrix, see Section 5.7. Since
f%(M) =0 by Section 5.12, the Jordan normal formMfis diagonal. Thus one
of the following holds:

(1) There exist® with RTR = I and det® = 1 such thatR" MR is a diagonal
matrix (with eigenvalues on the diagonal).
(2) chafK) = 2 and there exist® with

100 a 00
RTR=<0 0 1) such that RTMR=<0 0 b)

010 0 » O

with a, b different eigenvalues af/.

We identify R with (* ;) € M(az, a3, 04) ~ Sps(K). Then R centralizes
M (—as, a1) >~ SL3(K), sinceR € M (a3, ag) >~ SL3(K).

In Possibility (1),R centralizes alsa(1). Thus after conjugation witl® we
may assume tha¥ is diag6”, 7%, 6°°F) or diaga, b, b), where possibly: is
b. Using Sections 5.7 and 5.12, the first case leads to the standard embedding
of G in M(Dgy); in the second casé embeds in the subgrouRs(K), which is
obtained fromM (D4) as a fixed point group under the graph automorphism of
order 2 interchangings — e4 andes + ea.

Similarly, Possibility (2) yields thaG embeds in the subgrouBz(K) with
diagram(e1 — ez, e2 — e3, e3); in particularG < M(D4). O
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We remark that we expect that a reductionBg(K) is not possible. Due to
results in representation theory, there should be no 7-dimensional representation
for 3D4(L), °Da(L).

5.14.WhenG arises from a mixed hexagon in characteristic 3, see Section 5.1, we
remark the following: letf € F\L and setV := M (f), see Section 5.7. Because

of f3 e L, the matrixM2 is a scalar multiple of the identity matrix arld has

only one eigenvalue. Whel has an eigenvectarsuch thawv' # 0, then there
exists a 3« 3 matrixR overK with RR" = I such thatk " M R is a diagonal block
matrix with an upper left Xk 1 block. Thus the associated long root elemaft)

is contained il (—a, a1, a2, a3) = Ba(K), see Section 5.7. This reduces to the
study of embeddings afi2(L, L(f)) in B4(K). But the eigenspace aff might

be spanned by with vvT = 0; for example,

f—t it A
M::( it f+t iA),
—A i~ f

where i7, A € K and ¢ = —1, satisfiesM® = £3I and the eigenspace fqf is
spanned by—1,1i, 0).

The results obtained in Section 5.3, Theorems 5.10, and 5.13 yield Theo-
rem4. O

6. Moufang octagons

In this section, we prove Proposition 6. For the definition and properties of
Moufang octagons and the Ree grodg& (L, o), we refer to Van Maldeghem
[9], Tits [23].

Let I be a Moufang octagon admitting central elations. The root subgroups of
I" corresponding to a half apartment with a line in the middle are isomorphic
to (L,+), whereL is a field of characteristic 2 admitting an endomorphism
o:L— L with ¢ =c? for c € L. Let A, B be opposite root subgroups o6f
of the other kind withAg, Bg the set of involutions im andB, respectively. Then
A, B are isomorphic td. x L with addition(x, ) ® (x',y)=(x+x',y+y +
x%x") for x,x’, y,y’ € L. MoreoverAgp, Bp are central elation subgroups b,
isomorphic to(L, +).

The groupX := (A, B) is isomorphic to the Suzuki groufBo(L, o). The
description ofX as a 2-transitive group of. x L) U oo in Tits [24] yields that
Xo := (Ao, Bo) is normalized byX .

Proof of Proposition 6. We use the above notation and assume that Proposition 6
is false. Then the long root subgrougs B of F4(K) containingAg and By,
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respectively, generate $(K) with chalK) = 2; up to conjugation?f: Xo,s
B= X_q,. Now A normalizes(Ao, Bo) and X+,,. The normalizer ofX 1, in
F4(K) is known; it is Hy, X+, Sps(K). We obtain that it is impossible that a
central elation is a square i, a contradiction. O
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