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Abstract

Let W r
p(Bd ) be the usual Sobolev class of functions on the unit ball Bd in Rd , and W ◦,rp (Bd ) be the

subclass of all radial functions in W r
p(Bd ). We show that for the classes W ◦,rp (Bd ) and W r

p(Bd ), the

orders of best approximation by polynomials in Lq (Bd ) coincide. We also obtain exact orders of best
approximation in L2(Bd ) of the classes W ◦,rp (Bd ) by ridge functions and, as an immediate consequence,
we obtain the same orders in L2(Bd ) for the usual Sobolev classes W r

p(Bd ).
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction and the main results

Let d ∈ N and let Bd be the open unit ball in the space Rd . A function x : Bd
7→ R is called

a radial function if x(t) = y(|t |), t = (t1, . . . , td) ∈ Bd , where |t | := (t2
1 + · · · + t2

d )
1/2. For
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r ∈ N and 1 ≤ p ≤ ∞, we denote by W r
p(Bd) the usual Sobolev class of r -times differentiable

functions x : Bd
7→ R such that∑

|k|=r

‖Dk x‖L p(Bd ) ≤ 1,

where k = (k1, . . . , kd) ∈ Zd
+ and Dk x is the partial derivative, in the Sobolev sense, of order

|k| := k1 + · · · + kd . By W ◦,rp (Bd) we denote the subclass of all radial functions in W r
p(Bd).

The main purpose of this paper is to estimate the orders of best approximation by polynomials
and ridge functions of the classes W ◦,rp (Bd) in the spaces Lq(Bd).

Let Pn(Bd), be the space of polynomials

Pn(t) :=
∑
|k|≤n

ak tk, t ∈ Bd ,

where k = (k1, . . . , kd) ∈ Zd
+, |k| := k1 + · · · + kd , ak ∈ R, and tk

:= tk1
1 . . . tkd

d . For
r − d(1/p − 1/q) > 0, which guarantees the compact embedding of the classes W ◦,rp (Bd)

and W r
p(Bd) into the space Lq(Bd), we denote

E
(

W ◦,rp

(
Bd
)
,Pn

(
Bd
))

Lq (Bd )
:= sup

x∈W ◦,rp (Bd )

inf
Pn∈Pn(Bd )

‖x − Pn‖Lq (Bd ),

and

E
(

W r
p

(
Bd
)
,Pn

(
Bd
))

Lq (Bd )
:= sup

x∈W r
p(Bd )

inf
Pn∈Pn(Bd )

‖x − Pn‖Lq (Bd ).

For a subset K of R, let M(K ) denote the space of all real-valued functions on K . For d > 1,
we denote by r(a · t), a ∈ Rd , a ridge function defined as a function of t ∈ Rd , where a · t is the
usual inner product and r ∈ M(R).

Let Sd−1
:= ∂Bd be the unit sphere in Rd and I := (−1, 1). We denote by Rn , the (nonlinear)

manifold consisting of all possible linear combinations of n ridge functions

Rn(t) :=
n∑

k=1

rk(ak · t), ak ∈ Sd−1, rk ∈ M(I ).

If rk ∈ Lq(I ), 1 ≤ k ≤ n, then we write Rn,q(Bd) := Rn(Bd), and under the condition
r − d(1/p − 1/q) > 0, we denote by

E
(

W ◦,rp

(
Bd
)
,Rn,q

(
Bd
))

Lq (Bd )
:= sup

x∈W ◦,rp (Bd )

inf
Rn∈Rn,q (Bd )

‖x − Rn‖Lq (Bd ),

and

E
(

W r
p

(
Bd
)
,Rn,q

(
Bd
))

Lq (Bd )
:= sup

x∈W r
p(Bd )

inf
Rn∈Rn,q (Bd )

‖x − Rn‖Lq (Bd ),

the deviations, in Lq(Bd), of W ◦,rp (Bd) and W r
p(Bd), respectively, from Rn,q(Bd).

Finally, let

E
(

x,Pn

(
Bd
))

Lq (Bd )
:= inf

Pn∈Pn(Bd )
‖x − Pn‖Lq (Bd ),
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and

E
(

x,Rn,q

(
Bd
))

Lq (Bd )
:= inf

Rn∈Rn,q (Bd )
‖x − Rn‖Lq (Bd )

be the distances of x ∈ Lq(Bd) from the space Pn(Bd), and from the manifold Rn,q(Bd),
respectively.

An important special case of elements in the manifold of ridge functions is neural-network
functions of the form

Hn(t) =
n∑

k=1

ckh(ak · t + bk), ak ∈ Rd , ck, bk ∈ R,

where h : R→ R is a given activation function and n is the number of hidden units.
Approximation by ridge functions in general and by the neural networks in particular, has been

extensively investigated in recent years (see, e.g., [17,12–14]). Ridge functions frequently appear
in mathematics and its applications. Various aspects of the approximation by ridge functions
are natural components in many theoretical and applied problems such as the Radon transform,
tomography [3,18], mathematical physics equations, and geometry [5].

As an illustration we take the question of quadrature. Let f have an integral representation
of the form f (t) =

∫
h(a · t + b) dµ(a, b), with an activation function h : R → R and a unit

measure µ(a, b) defined on Rd
×R. The question of finding a quadrature formula for the integral

is closely connected (see [11,6]) to the question of approximation of the function f by a linear
combination of n neural-network units h(ak · t + bk), k = 1, . . . , n. A similar connection exists
between the approximation of the integral f (t) =

∫
Sd−1 g(a, a · t) da, where g(a, a · t) is the

ridge function related to the Radon transform of the function f , and the approximation of f by
linear combination of ridge functions g(ak, ak · t).

A series of results about estimating the degree of approximation of special functions by the
ridge-manifold Rn(Bd) in the two-dimensional case were established by Oskolkov [15,16]. In
particular, Oskolkov showed [15] that in the case d = 2 orders of approximation of every radial
function by the ridge-manifold Rn(Bd) and by the space Pn of algebraic polynomials of degree
n coincide, and also (see [16]) orders of approximation of every harmonic function by Rn(Bd)

are (roughly) twice more than by the space Pn . The result of Oskolkov [15] for radial functions
was extended to the general case, d ≥ 2, in the work of the authors [7].

Results about approximation of the Sobolev classes W r
2 (B

d) functions (worst case setting) by
the ridge-manifold Rn(Bd) were obtained by Maiorov [8], namely,

E
(

W r
2

(
Bd
)
,Rn,2

(
Bd
))

L2(Bd )
� n−r/(d−1),

where for sequences {an}n≥1 and {bn}n≥1, of positive numbers we write an � bn , n ≥ 1, if there
exist constants 0 < c1 ≤ c2 such that c1 ≤ an/bn ≤ c2, for all n ≥ 1. In addition, Maiorov, Meir
and Ratsaby [9] show that the set of functions for which the estimate n−r/(d−1) holds is of large
measure. In other words, this is not simply a worst case setting. Other interesting results may be
found in papers [20,10,4].

Throughout the paper c := c(α, β, . . . , γ ) denotes a constant which depends on the given
parameters, but may differ from one occasion to another even if it appears in the same line. Also,
as usual, (a)+ := max{a, 0}, a ∈ R.

We are ready to state the main results.
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Theorem 1. Let d, r ∈ N, and 1 ≤ p, q ≤ ∞ be such that r − d(1/p − 1/q) > 0. Then

E
(

W ◦,rp (Bd),Pn(Bd)
)

Lq (Bd )
� E

(
W r

p(B
d),Pn(Bd)

)
Lq (Bd )

� n−r+d(1/p−1/q)+ ,

and

Theorem 2. Let d, r ∈ N, d > 1, and 1 ≤ p ≤ ∞ be such that r − d(1/p − 1/2) > 0. Then

E
(

W ◦,rp (Bd),Rn,2(Bd)
)

L2(Bd )
� E

(
W r

p(B
d),Rn,2(Bd)

)
L2(Bd )

� n−
r−d(1/p−1/2)+

d−1 .

It is well known that for d > 1, the space Pn(Bd) may be embedded in the manifold
Rcnd−1(Bd) where c = c(d). More precisely (see, e.g., [17], Page 164), the space Pn(Bd) is

contained in the manifold R N (Bd), where N =
(

n+d−1
d−1

)
. Thus, an immediate consequence of

Theorems 1 and 2 is:

Corollary 3. Let d, r ∈ N, d > 1, and 2 < q ≤ p ≤ ∞. Then

E
(

W ◦,rp (Bd),Rn,q(Bd)
)

Lq (Bd )
� E

(
W r

p(B
d),Rn,q(Bd)

)
Lq (Bd )

� n−r/(d−1).

2. Auxiliary lemmas

The following Remez-type inequality is well known for d = 1 and q = ∞ (see, e.g., [1], p.
414, E21). For d = 1 and 1 ≤ q < ∞ it was recently proved in [7]. We need to extend it to the
case d > 1 and 1 ≤ q ≤ ∞.

Lemma 4. Let d, n ∈ N, 1 ≤ q ≤ ∞, and

Bd
n := {t : |t | ≤ 1/(4n), t ∈ Rd

}.

Then there exists c∗ = c∗(d, q) > 0 such that for any polynomial Pn ∈ Pn(Bd),

‖Pn‖Lq (Bd ) ≤ c∗‖Pn‖Lq (Bd\Bd
n )
.

Proof. Let I := (−1, 1) and In := (−1/(4n), 1/(4n)). As mentioned above, for d = 1 the
inequality

‖Pn‖Lq (In) ≤ c̄‖Pn‖Lq (I\In), (2.1)

where c̄ = c̄(q) > 0, is known (see [1,7]). To prove such an inequality for d > 1 we
use the spherical coordinates (ρ, ϕ) := (ρ, ϕ1, . . . , ϕd−1), defined by t1 = ρ cosϕ1, t2 =
ρ sinϕ1 cosϕ2, . . . , td−2 = ρ sinϕ1 . . . sinϕd−3 cosϕd−2, td−1 = ρ sinϕ1 . . . sinϕd−2 cosϕd−1,
td = ρ sinϕ1 . . . sinϕd−2 sinϕd−1, where 0 ≤ ρ < 1; 0 ≤ ϕi ≤ π , i = 1, . . . , d − 2;
0 ≤ ϕd−1 < 2π . In these coordinates, the volume element dt of Bd becomes

dξ = Jd(ρ, ϕ)dρdϕ,

where Jd(ρ, ϕ) is the Jacobian given by

Jd(ρ, ϕ) := ρ
d−1(sinϕ1)

d−2(sinϕ2)
d−3 . . . sinϕd−2,
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and for any x ∈ L1(Bd), we have∫
Bd

x(t)dt =
∫ 1

0

∫ π

0
· · ·

∫ π

0

∫ 2π

0
x(t (ρ, ϕ))Jd(ρ, ϕ)dρdϕ1 . . . dϕd−2dϕd−1.

Denote ϕ̃ := (ϕ1, . . . , ϕd−2, ϕd−1), and let

Jd−1(ϕ̃) := (sinϕ1)
d−2(sinϕ2)

d−3 . . . sinϕd−2.

Then

Jd(ρ, ϕ) = ρ
d−1 Jd−1(ϕ̃),

and it follows that∫ 1

0

∫ π

0
· · ·

∫ π

0

∫ 2π

0
x(t (ρ, ϕ))Jd(ρ, ϕ)dρdϕ1 . . . dϕd−2dϕd−1

=

∫ 1

0

∫
[0,π ]d−2

∫ 2π

0
x(t (ρ, ϕ̃, ϕd−1))ρ

d−1 Jd−1(ϕ̃)dρdϕ̃dϕd−1

=

∫
[0,π ]d−2

Jd−1(ϕ̃)

(∫ 2π

0

∫ 1

0
ρd−1x(t (ρ, ϕ̃, ϕd−1))dρdϕd−1

)
dϕ̃.

Note that∫ 2π

0

∫ 1

0
ρd−1x(t (ρ, ϕ̃, ϕd−1))dρdϕd−1

=

∫ π

0

(∫ 1

0
ρd−1x(t (ρ, ϕ̃, ϕd−1))dρ +

∫ 1

0
ρd−1x(t (ρ, ϕ̃, ϕd−1 + π))dρ

)
dϕd−1.

Thus we let ϕ = (ϕ̃, ϕd−1) be such that ϕ̃ ∈ [0, π]d−2 and ϕd−1 ∈ [0, π], and denote by Iϕ
the chord connecting the two points (1, ϕ̃, ϕd−1) and (1, ϕ̃, ϕd−1 + π) on the unit sphere Sd−1.
Then, the interval Iϕ can be represented as the set of all points t = τe(ϕ), τ ∈ (−1, 1) =: I ,
where e(ϕ) := (1, ϕ̃, ϕd−1) ∈ Rd .

Let x(τ ; Iϕ), τ ∈ I , be the univariate function that is the restriction of the function x(·) to the
interval Iϕ . Then, we have∫ 1

0
ρd−1x(t (ρ, ϕ̃, ϕd−1))dρ +

∫ 1

0
ρd−1x(t (ρ, ϕ̃, ϕd−1 + π))dρ =

∫
I
|τ |d−1x(τ ; Iϕ)dτ.

Hence, we get∫
Bd

x(t)dt =
∫
[0,π ]d−2

Jd−1(ϕ̃)

(∫
[0,π ]

(∫
I
|τ |d−1x(τ ; Iϕ)dτ

)
dϕd−1

)
dϕ̃. (2.2)

For 1 ≤ q < ∞, we replace x in (2.2) with |Pn|
q , where Pn is any fixed polynomial

Pn ∈ Pn(Bd), and we obtain∫
Bd
|Pn(t)|

qdt =
∫
[0,π ]d−2

Jd−1(ϕ̃)

(∫
[0,π ]

(∫
I
|τ |d−1

|Pn(τ ; Iϕ)|
qdτ

)
dϕd−1

)
dϕ̃. (2.3)

Similarly,∫
Bd

n

|Pn(t)|
qdt =

∫
[0,π ]d−2

Jd−1(ϕ̃)

(∫
[0,π ]

(∫
In

|τ |d−1
|Pn(τ ; Iϕ)|

qdτ
)

dϕd−1

)
dϕ̃. (2.4)
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Now, ∫
In

|τ |d−1
|Pn(τ ; Iϕ)|

qdτ ≤ (4n)−d+1
∫

In

|Pn(τ ; Iϕ)|
qdτ

= (4n)−d+1
‖Pn(·; Iϕ)‖

q
Lq (In)

, (2.5)

and ∫
I\In

|τ |d−1
|Pn(τ ; Iϕ)|

qdτ ≥ (4n)−d+1
∫

I\In

|Pn(τ ; Iϕ)|
qdτ

= (4n)−d+1
‖Pn(·; Iϕ)‖

q
Lq (I\In)

. (2.6)

By virtue of (2.1), we have

‖Pn(·; Iϕ)‖
q
Lq (In)

≤ c̄q
‖Pn(·; Iϕ)‖

q
Lq (I\In)

.

Hence, by (2.5) and (2.6),∫
I
|τ |d−1

|Pn(τ ; Iϕ)|
qdτ ≤ (c̄q

+ 1)
∫

I\In

|τ |d−1
|Pn(τ ; Iϕ)|

qdτ,

and substituting in (2.3), we obtain

‖Pn‖Lq (Bd ) ≤ c∗‖Pn‖Lq (Bd\Bd
n )
, 1 ≤ q <∞,

where c∗ := c∗(d, q) > 0. For q = ∞ the proof is similar. This completes the proof of Lemma 4.
�

The next result generalizes for d > 2, the corresponding result, for d = 2, by Oskolkov ([15],
Theorem 1). For the proof see [7].

Lemma 5. Let d ∈ N and d > 1. There exist c̄ = c̄(d) > 0, and integers ĉ = ĉ(d) and č = č(d),
such that for any radial function x ∈ L2(Bd),

c̄E
(

x,Pĉn

(
Bd
))

L2(Bd )
≤ E

(
x,Rnd−1,2

(
Bd
))

L2(Bd )
≤ E

(
x,Pčn

(
Bd
))

L2(Bd )
.

3. Proofs

Proof of Theorem 1. The upper bound

E
(

W r
p(B

d),Pn(Bd)
)

Lq (Bd )
≤ c∗n−r+d(1/p−1/q)+

is essentially known as this estimate may be easily obtained from well-known extension
theorems, the Jackson-type theorem for periodic functions and Nikol’skii’s inequalities
comparing various norms of trigonometric polynomials. However, we could find no reference
which gives it in the above form, therefore we sketch a proof.

Let W r
p(Td) be the Sobolev class of 2π -periodic functions on the d-dimensional torus Td ,

and let Tn(Td) be the space of trigonometric polynomials Tn of order ≤ n. If 1 ≤ p = q ≤ ∞
then the estimate

E
(

W r
p(T

d), Tn(Td)
)

L p(Td )
≤ ćn−r , 1 ≤ p ≤ ∞, (3.1)
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is an immediate consequence of [21], Thm 5.3.1. This in turn immediately implies applying
Hölder’s inequality

E
(

W r
p(T

d), Tn(Td)
)

Lq (Td )
≤ ćn−r , 1 ≤ q < p ≤ ∞.

From (3.1) and Nikol’skii’s inequalities (see, e.g., [21], 4.9.4 (18))

‖Tn‖Lq (Td ) ≤ c̀nd(1/p−1/q)
‖Tn‖L p(Td ), 1 ≤ p < q ≤ ∞,

it is readily seen that under the condition r − d(1/p − 1/q) > 0 we have

E
(

W r
p(T

d), Tn(Td)
)

Lq (Td )
≤ cn−r+d(1/p−1/q), 1 ≤ p < q ≤ ∞.

Fix 0 < ε < 1, and a function v ∈ C∞0 (R
d), supported on Bd

ε := {t : |t | ≤ ε}, such that∫
Rd
v(t)dt = 1.

Set

Pr−1(t; x) :=
∑
|k|<r

1
k!

∫
Bd
ε

x(τ )Dk
τ

(
(t − τ)kv(τ)

)
dτ,

where Dk
τ is the partial derivative with respect to τ of order |k|. Then any function x ∈ W r

p(Bd)

may be represented (see [2]) a.e. in t ∈ Bd by

x(t) = Pr−1(t; x)+ r
∑
|k|=r

1
k!

∫
V d

t,ε

(t − τ)k

|t − τ |d
w(t, τ )Dk x(τ )dτ,

where V d
t,ε is the convex hull of the set {t,Bd

ε }, and

w(t, τ ) :=
∫
∞

|t−τ |
v (t + θ(τ − t)/|τ − t |) θd−1dθ. (3.2)

Evidently, Pr−1(·; x) is a polynomial of total degree ≤ r − 1.
Let

xr (t) := x(t)− Pr−1(t; x), t ∈ Bd .

Then, it follows easily by (3.2) that∑
|k|≤r

‖Dk xr‖L p(Bd ) ≤ c◦
∑
|k|=r

‖Dk x‖L p(Bd ),

where c◦ = c◦(d, r, p, ε, v).
The function xr can be extended to the cube Qd

:= {t : |ti | ≤ 2, i = 1, . . . , d} preserving
the smoothness class (see, e.g. [19], Thm 6.3.5). More precisely, there exists a function x̄r on Qd

such that x̄r (t) = xr (t) for t ∈ Bd , and∑
|k|≤r

‖Dk x̄r‖L p(Qd
π )
≤ c̄

∑
|k|≤r

‖Dk xr‖L p(Bd ),

where c̄ = c̄(d, r, p, ε, v).
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Fix ω ∈ C∞0 (R
d) such that ω(t) ≡ 1 for t ∈ Bd , and its support is contained in the interior of

Qd , and write yr (t) := x̄r (t)ω(t), t ∈ Qd . Evidently, yr (t) ≡ xr (t) for t ∈ Bd . Moreover, it is
easy to check that∑

|k|≤r

‖Dk yr‖L p(Qd ) ≤ ĉ
∑
|k|=r

‖Dk x‖L p(Bd ),

where ĉ = ĉ(d, r, p, ε, v).
The 2π -periodic function ỹr (τ1, . . . , τd) := yr (2 cos τ1, . . . , 2 cos τd) on the torus Td , is even

and satisfies∑
|k|≤r

‖Dk ỹr‖L p(Td ) ≤ c̃
∑
|k|=r

‖Dk x‖L p(Bd ),

where c̃ = c̃(d, r, p, ε, v). Hence, there exists an even trigonometric polynomial Tn(·; ỹr ) ∈

Tn(Td), such that

‖ỹr (·)− Tn(·; ỹr )‖Lq (Td ) ≤ čn−r+d(1/p−1/q).

Setting Pn(t1, . . . , td; xr ) := Tn (arccos(t1/2), . . . , arccos(td/2); ỹr ), we obtain an (algebraic)
polynomial that satisfies

‖xr (·)− Pn(·; xr )‖Lq (Bd ) ≤ c∗n−r+d(1/p−1/q).

Clearly, the polynomial Pn(·; x) := Pr−1(·; x)+ Pn(·; xr ) satisfies

‖x(·)− Pn(·; x)‖Lq (Bd ) ≤ c∗n−r+d(1/p−1/q),

and we have the required upper bound in the case 1 ≤ p < q ≤ ∞.
Since W ◦,rp (Bd) ⊂ W r

p(Bd), it remains to prove the lower bound, namely,

E
(

W ◦,rp (Bd),Pn(Bd)
)

Lq (Bd )
≥ c∗n

−r+d(1/p−1/q)+ . (3.3)

Let r, n ∈ N be fixed, and let 1 ≤ p < q ≤ ∞ be such that r−d(1/p−1/q) > 0. Let v ∈ C∞0 (R)
be a nonnegative even function with supp v = [−1, 1] and v(t) = 1 for t ∈ [−1/2, 1/2]. Given α
and β > 0, the function αv(β|t |), t ∈ Rd , is obviously radial and belongs to the space C∞0 (R

d).
Take un(t) := v(4n|t |) where t ∈ Bd and denote

B̃d
n := {t : |t | ≤ 1/(8n), t ∈ Rd

}.

Then, obviously un(t) = 1 for t ∈ B̃d
n and it is supported on Bd

n . Hence it is readily seen that
there exists c◦ = c◦(r, d, p, v) > 0, such that

ωn(t) := c◦n
−r+d/pun ∈ W ◦,rp (Bd).

Then ωn(t) = c◦n−r+d/p for t ∈ B̃d
n , it is supported on Bd

n , and

‖ωn‖Lq (B̄d )
≥ c◦n−r+d(1/p−1/q), (3.4)

where c◦ = c◦(r, d, p, q, v) > 0.
We will show that there exists c∗ = c∗(r, d, p, q, v) > 0, such that for every polynomial

Pn ∈ Pn(Bd),

‖ωn − Pn‖Lq (Bd ) ≥ c∗n
−r+d(1/p−1/q), 1 ≤ p < q ≤ ∞. (3.5)
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To this end, set c̄ := c◦(c∗+2)−1, where c◦ is the constant from (3.4) and c∗ is the constant from
Lemma 4, and assume to the contrary that

‖ωn − Pn‖Lq (Bd ) ≤ c̄n−r+d(1/p−1/q). (3.6)

Since ωn is supported on Bd
n , it follows that

‖Pn‖Lq (Bd\Bd
n )
≤ c̄n−r+d(1/p−1/q).

By virtue of Lemma 4 we conclude that

‖Pn‖Lq (Bd
n )
≤ c∗c̄n−r+d(1/p−1/q),

which, in turn, implies

‖Pn‖Lq (B̃d
n )
≤ c∗c̄n−r+d(1/p−1/q).

Hence, by (3.4),

‖ωn − Pn‖Lq (B̃d
n )
≥ ‖ωn‖Lq (B̃d

n )
− ‖Pn‖Lq (B̄d

n )

≥ (c◦ − c∗c̄)n−r+d(1/p−1/q)

= 2c̄n−r+d(1/p−1/q),

which contradicts (3.6). This proves (3.5), which readily implies

E
(
ωn,Pn(Bd)

)
Lq (Bd )

≥ c∗n
−r+d(1/p−1/q), 1 ≤ p < q ≤ ∞.

Therefore,

E
(

W ◦,rp (Bd),Pn(Bd)
)

Lq (Bd )
≥ c∗n

−r+d(1/p−1/q), 1 ≤ p < q ≤ ∞, (3.7)

and (3.3) is proved for 1 ≤ p < q ≤ ∞.
We believe that if 1 ≤ q ≤ p ≤ ∞, then the lower bounds for the best approximation by

polynomials of the classes W ◦,rp (Bd) are essentially known. However, we could find no reference
which provides the lower bound that we need, so we provide a simple proof of (3.3) in this case,
namely,

E
(

W ◦,r∞ (Bd),Pn(Bd)
)

L1(Bd )
≥ c∗n

−r , (3.8)

where c∗ = c∗(r, d, v) > 0 depends on r , d and some fixed function v.
To this end, fix n > 1 and divide [1/2, 1] into n subintervals,

In,i := [1/2+ (i − 1)/2n, 1/2+ i/2n], i = 1, . . . , n,

and similarly, divide [−1,−1/2] into n subintervals

In,i := [−1/2− i/2n,−1/2− (i + 1)/2n], i = −1, . . . ,−n.

Take a nonnegative function v ∈ C∞0 (R) with supp v = [−1, 1] and such that v(t) = 1 for
t ∈ [−1/2, 1/2]. Let

tn,i :=

{
1/2+ (2i − 1)/(4n), i = 1, . . . , n,
−1/2+ (2i + 1)/(4n), i = −1, . . . ,−n,
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and denote

fn(t) :=
±n∑

i=±1

(−1)iv(4n(t − tn,i )), t ∈ I := (−1, 1).

Note that fn is even and alternates in sign between In,i and In,i+1, i = 1, . . . , n − 1. Finally, let
wn(t) := c◦n−r fn(|t |), t ∈ Bd , where c◦ = c◦(r, d, v) > 0 is so chosen that wn(t) ∈ W ◦,r∞ (Bd).
By definition it clearly satisfies

wn(t) sgn(−1)i = c◦n
−r ,

1
2
+

4i − 3
8n

≤ |t | ≤
1
2
+

4i − 1
8n

, i = 1, . . . , n. (3.9)

In order to prove (3.8) it suffices to prove that there exists c∗ = c∗(r, d, v), such that for every
polynomial Pn ∈ Pn(Bd) the inequality holds

‖wn − Pn‖L1(Bd ) ≥ c∗n
−r . (3.10)

We recall the spherical coordinates defined above, namely, let ϕ = (ϕ̃, ϕd−1) be such that
ϕ̃ ∈ [0, π]d−2, and ϕd−1 ∈ [0, π]. Again, denote by Iϕ the chord connecting the two points
(1, ϕ̃, ϕd−1) and (1, ϕ̃, ϕd−1 + π) on the unit sphere Sd−1, and recall that Iϕ can be represented
as the set of all points t = τe(ϕ), τ ∈ (−1, 1) =: I , where e(ϕ) := (1, ϕ̃, ϕd−1) ∈ Rd .

For τ ∈ I we denote by wn(τ ; Iϕ) and Pn(τ ; Iϕ) the restrictions, to Iϕ , of the function wn(·)

and the polynomial Pn(·), respectively. Clearly, Pn(τ ; Iϕ) is the univariate polynomial in τ ∈ I
of degree ≤ n.

By (3.9) and the fact that wn is even, we have

wn(τ ; Iϕ) sgn(−1)i ≥ c◦n
−r , τ ∈ I ′n,i , i = ±1, . . . ,±n, (3.11)

where

I ′n,i :=

[
1
2
+

4i − 3
8n

,
1
2
+

4i − 1
8n

]
, i = 1, . . . , n,

and

I ′n,i :=

[
−

1
2
+

4i + 1
8n

,−
1
2
+

4i + 3
8n

]
, i = −1, . . . ,−n.

Since the univariate polynomial Pn(·; Iϕ) changes its sign at most n times in I , we conclude that
there exist (n − 1) distinct indices ik , k = 1, . . . , n − 1 (recall that n − 1 ≥ 1), such that

sgn Pn(τ ; Iϕ) 6= sgnwn(τ ; Iϕ), τ ∈ I ′n,ik
, k = 1, . . . , n − 1,

which in turn implies by (3.11),

|wn(τ ; Iϕ)− Pn(τ ; Iϕ)| ≥ |wn(τ ; Iϕ)|

≥ c◦n
−r , τ ∈ I ′n,ik

, k = 1, . . . , n − 1. (3.12)

Now, ∫
I
|τ |d−1

|wn(τ ; Iϕ)− Pn(τ ; Iϕ)|dτ

≥

∫
[−1,−1/2]∪[1/2,1]

|τ |d−1
|wn(τ ; Iϕ)− Pn(τ ; Iϕ)|dτ
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≥ 2−d+1
∫
[−1,−1/2]∪[1/2,1]

|wn(τ ; Iϕ)− Pn(τ ; Iϕ)|dτ

≥ 2−d+1
n−1∑
k=1

∫
I ′n,ik

|wn(τ ; Iϕ)− Pn(τ ; Iϕ)|dτ

≥ 2−d−1(1− 1/n)c◦n
−r

≥ 2−d−2c◦n
−r ,

where for the last inequality we have applied (3.12) and the fact that |I ′n,ik
| = 1/(4n), 1 ≤ k ≤

n − 1, and n > 1.
Applying (2.2) we obtain

‖wn − Pn‖L1(Bd ) ≥

(∫
[0,π ]d−2

Jd−1(ϕ̃)dϕ̃
)

2−d−2c◦n
−r
=: c∗n

−r ,

which concludes the proof of (3.10), and in turn implies (3.8) since wn ∈ W ◦,r∞ (Bd). Hence the
lower bounds

E
(

W ◦,rp (Bd),Pn(Bd)
)

Lq (Bd )
≥ c∗n

−r , 1 ≤ q ≤ p ≤ ∞. (3.13)

Combining (3.7) and (3.13), the lower bounds (3.1) follow for all 1 ≤ p, q ≤ ∞ such that
r − d(1/p − 1/q) > 0. The proof of Theorem 1 is complete. �

Proof of Theorem 2. Since Pn(Bd) ⊂ R N (Bd) where N � nd−1, the upper bounds follow
immediately from the upper bounds for q = 2 in Theorem 1.

The lower bounds are an immediate consequence of Lemma 5 combined with the lower
bounds for q = 2 in Theorem 1. This completes the proof of Theorem 2. �
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