Existence of Solutions to

$$
u^{\prime \prime}+u+g\left(t, u, u^{\prime}\right)=p(t), u(0)=u(\pi)=0
$$

R. Kannan and S. Seikkala
Department of Mathematics, University of Texas at Arlington, Arlington, Texas 76019

Submitted by Jean Mawhin
Received March 3, 2000

Existence and multiplicity results for the boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+u+g\left(t, u, u^{\prime}\right)=p(t), \quad 0<t<\pi, \\
u(0)=u(\pi)=0
\end{array}\right.
$$

are presented. The proofs are based on the alternative method, a connectedness result, the contraction mapping principle, and a detailed analysis of the bifurcation equation utilizing, e.g., a generalization of the mean value theorem for integrals. We shall obtain results with g bounded or unbounded, having finite limits at $\pm \infty$ or without limits, thus extending some recent results in the literature. The proofs offer a constructive way to find the bounds for \bar{p} and to find numerically the number of solutions and the approximative solutions. © 2001 Academic Press

Key Words: boundary value problem; resonance; existence; multiple solutions.

1. INTRODUCTION

The two-point boundary value problem

$$
\begin{gather*}
u^{\prime \prime}+u+g\left(u^{\prime}\right)=p(t), \quad 0<t<\pi, \\
u(0)=u(\pi)=0, \tag{1.1}
\end{gather*}
$$

where g and p are continuous functions, has been studied (e.g., by Canada and Drabek [2] and Habets and Sanchez [3]). The existence results of [2] are completed in [3] by a multiplicity result in terms of conditions for \bar{p} in the decomposition of p,

$$
\begin{equation*}
p(t)=\bar{p} \sin t+\tilde{p}(t), \tag{1.2}
\end{equation*}
$$

where $\bar{p} \in \mathbb{R}$ and \tilde{p} is orthogonal to $\sin t$. The proof is carried out using mainly topological degree and homotopy arguments.

We shall present existence and multiplicity results for the boundary value problem

$$
\begin{gather*}
u^{\prime \prime}+u+g\left(t, u, u^{\prime}\right)=p(t), \quad 0<t<\pi \\
u(0)=u(\pi)=0 \tag{1.3}
\end{gather*}
$$

The proofs are based on the alternative method (as in [2] and [3]), a connectedness result of [6], the contraction mapping principle, and a detailed analysis of the bifurcation equation utilizing, e.g., a generalization of the mean value theorem for integrals [5]. We shall obtain results for (1.3) with g bounded or unbounded, having finite limits at $\pm \infty$ or without limits.

The proofs offer a constructive way to find the bounds for \bar{p} and to find numerically both the number of solutions and the approximative solutions.

2. THE ALTERNATIVE METHOD

Denote $\phi(t)=\sqrt{\frac{2}{\pi}} \sin t$ and $L u=u^{\prime \prime}+u$. Let k be a modified Green's function satisfying (as a function of t)

$$
\begin{align*}
& L k(t, s)=\delta(t-s)-\phi(t) \phi(s) \\
& k(0, s)=k(\pi, s)=0 \tag{2.1}\\
& \int_{0}^{\pi} k(t, s) \phi(t) d t=0
\end{align*}
$$

The problem (1.3) is equivalent to the pair of equations

$$
\begin{align*}
u_{\lambda}(t) & =\lambda \phi(t)+\int_{0}^{\pi} k(t, s)\left[\tilde{p}(s)-g\left(s, u_{\lambda}(s), u_{\lambda}^{\prime}(s)\right)\right] d s \tag{2.2}\\
\bar{\delta}(\lambda) & =\bar{p}-\int_{0}^{\pi} g\left(t, u_{\lambda}(t), u_{\lambda}^{\prime}(t)\right) \phi(t) d t=0 . \tag{2.3}
\end{align*}
$$

Here, for simplicity, we write

$$
\begin{equation*}
p(t)=\bar{p} \phi(t)+\tilde{p}(t) \tag{2.4}
\end{equation*}
$$

instead of (1.2).
That a solution of (2.2)-(2.3) is a solution of (1.3) is easily verified by applying L to the integral equation (2.2) and using the given orthogonality conditions. The proof that a solution of (1.3) satisfies (2.2)-(2.3) is a standard one using the Lagrange identity, symmetry of $k(t, s)$, and the orthogonality conditions.

3. THE RESULTS

We shall use the following assumptions for $g:[0, \pi] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$:
(g1) g is continuous and bounded;
(g2) g is continuous and satisfies the Lipschitz condition $\mid g(t, u, v)-$ $g(t, \bar{u}, \bar{v})|\leq M| u-\bar{u}|+N| v-\bar{v} \mid, u, \bar{u}, v, \bar{v} \in \mathbb{R}$, where $M^{2}+4 N^{2}<9 / 2$.

If g satisfies (g1), then by Schauder's fixed-point theorem the integral equation (2.2) has at least one solution u_{λ} for any given $\lambda \in \mathbb{R}$. If, on the other hand, g satisfies (g2), then it can be shown that for a fixed $\lambda \in \mathbb{R}$ the right-hand side of Eq. (2.2) defines an operator which is a contraction mapping on $H^{1}[0, \pi]$ and hence has a unique fixed point u_{λ}. In both cases we can calculate

$$
\tilde{\delta}(\lambda)=\int_{0}^{\pi} g\left(t, u_{\lambda}(t), u_{\lambda}^{\prime}(t)\right) \phi(t) d t
$$

In the case of (g1) $\tilde{\delta}$ may be multivalued. Denote

$$
\begin{aligned}
& a=\inf \left\{\tilde{\delta}(\lambda): \lambda \in \mathbb{R}, \quad u_{\lambda} \text { is a solution of }(2.2)\right\} \\
& b=\sup \left\{\tilde{\delta}(\lambda): \lambda \in \mathbb{R}, \quad u_{\lambda} \text { is a solution of }(2.2)\right\}
\end{aligned}
$$

If $\bar{p} \in(a, b)$ and g satisfies (g2), then there exist $\tilde{\delta}\left(\lambda_{1}\right)$ and $\tilde{\delta}\left(\lambda_{2}\right)$ such that $\tilde{\delta}\left(\lambda_{1}\right)<\bar{p}<\tilde{\delta}\left(\lambda_{2}\right)$, and it can be shown that $\tilde{\delta}(\lambda)$ is (Lipshitz) continuous, which implies that $\tilde{\delta}(\lambda)=\bar{p}$ for a $\lambda \in\left(\lambda_{1}, \lambda_{2}\right)$ (or for a $\lambda \in\left(\lambda_{2}, \lambda_{1}\right)$); i.e., problem (1.3) has a solution. Also in the case of (g1), as shown in [2], using a result of ([1], Theorem 3.1), problem (1.3) has a solution. Hence, we can state the following result, which essentially is due to Canada and Drabek [2].

THEOREM 3.1. If g satisfies $(g 1)$ or $(g 2)$, then there exists an interval $[a, b]$ such that problem (1.3) has (i) at least one solution if $\bar{p} \in(a, b)$ and (ii) no solution if $\bar{p} \notin[a, b]$.

Remark 3.1. In the case of dependence only on the derivative $g(t, u, v)=g(t, v)$, the inequality $M^{2}+4 N^{2}<9 / 2$ can be replaced by the inequality $N<3 / 2$ and in the case $g(t, u, v)=g(t, u)$ by the inequality $M<3$. Also, we could replace the constants M and N by suitable square integrable functions. As for the case $\bar{p} \in\{a, b\}$, we refer to [3].

Example 3.1. Consider the problem

$$
\begin{equation*}
u^{\prime \prime}+u+\sinh ^{-1} u^{\prime}=\bar{p} \phi(t)+\tilde{p}(t), \quad u(0)=u(\pi)=0 \tag{3.1}
\end{equation*}
$$

The function $g(t, u, v)=\sinh ^{-1} v$ satisfies (g2) with $M=0$ and $N=1$; hence we can apply Theorem 3.1. The curve $\tilde{\delta}(\lambda)$, which is found numerically for $\tilde{p}(t) \equiv 0$, is shown in Fig. 1 . We have $(a, b) \approx(-0.54,0.54)$. In the general case, if $\|p\|_{\infty}$ is small enough, then following the proof in [4, p. 795], it can be shown that (1.3) has a (small) solution. Thus, in that case we know that the interval (a, b) is nonempty. Note that g is not bounded. The interval (a, b) depends on \tilde{p} and g. If we have some additional information, we may obtain a priori bounds for (a, b).

Proposition 3.1. Assume that $g(t, u, v)=g(t, v)$ satisfies (g2) with $M=0$ and $N<3 / 2$,

$$
\begin{equation*}
\int_{0}^{\pi} g(t, c \cos t) \sin t d t=0 \quad \text { for all } c \in \mathbb{R} \tag{a}
\end{equation*}
$$

and that

$$
\begin{equation*}
|\tilde{p}(t)-g(t, v)| \leq m(t), \quad t \in[0, \pi], v \in \mathbb{R}, \tag{b}
\end{equation*}
$$

for an $m \in L_{1}^{+}[0, \pi]$. Then $[a, b] \subset[-d, d]$, where

$$
d=N \int_{0}^{\pi} \int_{0}^{\pi} m(s)\left|k_{t}(t, s)\right| \phi(t) d t d s,
$$

i.e., problem (1.3) does not have a solution if $|\bar{p}|>d$.

Proof. We have

$$
u_{\lambda}(t)=\lambda \phi(t)+\int_{0}^{\pi} k(t, s)\left[\tilde{p}(s)-g\left(s, u_{\lambda}^{\prime}(s)\right)\right] d s
$$

and

$$
u_{\lambda}^{\prime}(t)=\lambda \phi^{\prime}(t)+\tilde{u}_{\lambda}^{\prime}(t),
$$

where $\tilde{u}_{\lambda}^{\prime}(t)=\int_{0}^{\pi} k_{t}(t, s)\left[\tilde{p}(s)-g\left(s, u_{\lambda}^{\prime}(s)\right)\right] d s$ satisfies, by (b),

$$
\begin{equation*}
\left|\tilde{u}_{\lambda}^{\prime}(t)\right| \leq \int_{0}^{\pi}\left|k_{t}(t, s)\right| m(s) d s . \tag{c}
\end{equation*}
$$

We can write

$$
g\left(t, u_{\lambda}^{\prime}(t)\right)=g\left(t, \lambda \phi^{\prime}(t)\right)+w(t)
$$

where

$$
w(t)=g\left(t, \lambda \phi^{\prime}(t)+\tilde{u}_{\lambda}^{\prime}(t)\right)-g\left(t, \lambda \phi^{\prime}(t)\right)
$$

satisfies, by the Lipschitz condition, the inequality

$$
\begin{equation*}
|w(t)| \leq N\left|\tilde{u}_{\lambda}^{\prime}(t)\right| . \tag{d}
\end{equation*}
$$

Now, by using (a), (c), and (d) we obtain

$$
\begin{aligned}
|\tilde{\delta}(\lambda)| & =\left|\int_{0}^{\pi} g\left(t, u_{\lambda}^{\prime}(t)\right) \phi(t) d t\right|=\left|\int_{0}^{\pi} w(t) \phi(t) d t\right| \\
& \leq \int_{0}^{\pi} N\left|\tilde{u}_{\lambda}^{\prime}(t)\right| \phi(t) d t \leq N \int_{0}^{\pi} \int_{0}^{\pi}\left|k_{t}(t, s)\right| m(s) d s \phi(t) d t=d
\end{aligned}
$$

which means that problem (1.3) cannot have a solution if $|\bar{p}|>d$.
Example 3.2. Consider the boundary value problem

$$
\begin{equation*}
u^{\prime \prime}+u+\sin u^{\prime}=\bar{p} \phi(t), \quad u(0)=u(\pi)=0 . \tag{3.2}
\end{equation*}
$$

The function $g(t, u, v)=\sin v$ satisfies (g2) with $M=0$ and $N=1$, and condition (a), condition (b) with $m(t) \equiv 1$ when $\tilde{p}(t) \equiv 0$ and $d \approx 1.1776$. Hence, by Proposition 3.1 we deduce that problem (3.2) does not have a solution if $|\bar{p}|>1.1776$. In Example 3.3 we will find numerically a smaller lower estimate for $|\bar{p}|$ for the nonexistence.

Theorem 3.2. Assume that g satisfies ($g 1$) or (g2) and that $c \in(a, b)$ is a limit point of both $\{\tilde{\delta}(\lambda): \lambda \in(-\infty, d]\}$ and $\{\tilde{\delta}(\lambda): \lambda \in[d, \infty)\}$ for ad $\in \mathbb{R}$. Then, if $\bar{p} \in(a, b) \backslash\{c\}$, problem (1.3) has at least two solutions.

Proof. Suppose first that (g1) holds. Since g is continuous and bounded, then for any closed bounded interval $I=[\alpha, \beta]$ there exists a closed bounded convex subset B of $H^{1}[0, \pi]$ such that the mapping T,

$$
\begin{aligned}
T(u, \lambda)= & \lambda \phi(t)+\int_{0}^{\pi} k(t, s) \\
& \times\left[\tilde{p}(s)-g\left(s, u(s), u^{\prime}(s)\right)\right] d s, \quad \lambda \in I, u \in B
\end{aligned}
$$

is a compact continuous mapping from $B \times I$ into B. Then, by [6 , Fixed Point Theorem, p. 341], there exists a connected set $S \subset B \times I$ of fixed points of T, and S meets both $B \times\{\alpha\}$ and $B \times\{\beta\}$. Now, for any $\bar{p} \in$ $(a, b) \backslash\{c\}$ we can find $\tilde{\delta}\left(\lambda_{1}\right), \tilde{\delta}\left(\lambda_{2}\right)$ and $\tilde{\delta}\left(\lambda_{3}\right)$ such that $\lambda_{1}<\lambda_{2}<\lambda_{3}$ and $\tilde{\delta}\left(\lambda_{1}\right)<\bar{p}<\tilde{\delta}\left(\lambda_{2}\right), \tilde{\delta}\left(\lambda_{3}\right)<\bar{p}<\tilde{\delta}\left(\lambda_{2}\right)$. Hence, as a continuous real valued function on a connected set S_{1} associated with the interval $I_{1}=\left[\lambda_{1}, \lambda_{2}\right]$, $(u, \lambda) \rightarrow \bar{p}-\tilde{\delta}(\lambda)$ assumes the value 0 on S_{1}; i.e., problem (1.3) has a solution. The same conclusion holds true for the interval $I_{2}=\left[\lambda_{2}, \lambda_{3}\right]$; i.e., problem (1.3) has at least two solutions.

If g satisfies (g2), then $\tilde{\delta}(\lambda)$ is single valued and Lipschitz continuous and the proof is obvious.

In [3] it is proved that if g satisfies (g1) and is locally Lipschitz continuous then the conclusion of Theorem 3.2 holds true, provided that $g(t, u, v)=$ $g(v)$ has finite limits $g(-\infty)$ and $g(+\infty)$ with $p \in(a, b) \backslash\{l\}, l=g(-\infty)+$ $g(\infty)$. In the following example we have $g(v)=\sin v$, which does not have limits at $\pm \infty$ but $\lim _{|\lambda| \rightarrow \infty} \tilde{\delta}(\lambda)=0$, and we can apply Theorem 3.2.

Example 3.3. Consider the boundary value problem

$$
\begin{equation*}
u^{\prime \prime}+u+\sin u^{\prime}=\bar{p} \phi(t), \quad u(0)=u(\pi)=0 . \tag{3.2}
\end{equation*}
$$

The function $g(t, u, v)=\sin v$ satisfies (g2) with $M=0$ and $N=1$, and we have

$$
\begin{aligned}
\tilde{\delta}(\lambda)= & \int_{0}^{\pi} \sin \left(\lambda \phi^{\prime}(t)+\tilde{u}_{\lambda}^{\prime}(t)\right) \phi(t) d t \\
= & \int_{0}^{\pi} \sin \left(\lambda \sqrt{\frac{2}{\pi}} \cos t+\tilde{u}_{\lambda}^{\prime}(t)\right) \sqrt{\frac{2}{\pi}} \sin t d t \\
= & \frac{1}{2} \int_{0}^{\pi} \cos \left(\lambda \sqrt{\frac{2}{\pi}} \cos t+\tilde{u}_{\lambda}^{\prime}(t)+t\right) d t \\
& -\frac{1}{2} \int_{0}^{\pi} \cos \left(\lambda \sqrt{\frac{2}{\pi}} \cos t+\tilde{u}_{\lambda}^{\prime}(t)-t\right) d t .
\end{aligned}
$$

The functions $\theta_{\lambda}(t)=\tilde{u}_{\lambda}^{\prime}(t)+t$ and $\bar{\theta}_{\lambda}(t)=\tilde{u}_{\lambda}^{\prime}(t)-t$, and their derivatives are continuous and bounded uniformly in $\lambda \in \mathbb{R}$. Since
$\phi^{\prime}(t)=\sqrt{\frac{2}{\pi}} \cos t$ has a finite number of critical points on $[0, \pi]$ and $q(u)=\cos u$ is 2π-periodic with a mean value 0 , then by Lemma 2 of [5],

$$
\begin{array}{ll}
& \int_{0}^{\pi} \cos \left(\lambda \sqrt{\frac{2}{\pi}} \cos t+\theta_{\lambda}(t)\right) d t \rightarrow 0 \\
\text { and } \quad \int_{0}^{\pi} \cos \left(\lambda \sqrt{\frac{2}{\pi}} \cos t+\bar{\theta}_{\lambda}(t)\right) d t \rightarrow 0
\end{array}
$$

as $|\lambda| \rightarrow \infty$. Hence $\lim _{|\lambda| \rightarrow \infty} \tilde{\delta}(\lambda)=0$, which by Theorem 3.2 implies that problem (3.2) has at least two solutions if $\bar{p} \in(a, b) \backslash\{0\}$. Again, following the proof in [4, p. 795], it can be shown that problem (3.2) has a (small) solution if $\|p\|_{\infty}$ is small enough, and consequently the interval (a, b) in this case is nonempty. We have found numerically that $(a, b) \approx(-0.36,0.36)$. The curve $\tilde{\delta}(\lambda)$ is shown in Fig. 2.

Example 3.3 also serves as an example for the following more general result.

Corollary 3.1. Assume that $g: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz continuous with Lipschitz constant $N<\frac{3}{2}$ and T-periodic with the mean value $\bar{g}=$ $\frac{1}{T} \int_{0}^{T} g(u) d u$. Then the problem

$$
\begin{equation*}
u^{\prime \prime}+u+g\left(u^{\prime}\right)=\bar{p} \phi(t)+\tilde{p}(t), \quad u(0)=u(\pi)=0 \tag{3.3}
\end{equation*}
$$

has at least two solutions, if $\bar{p} \in(a, b) \backslash\left\{2 \sqrt{\frac{2}{\pi}} \bar{g}\right\}$.

Proof. The function $g(t, u, v)=g(v)$ satisfies (g2) with the condition given in Remark 3.1, and following the proof of Lemma 2 in [5] we obtain

$$
\begin{align*}
\lim _{|\lambda| \rightarrow \infty} \tilde{\delta}(\lambda) & =\lim _{|\lambda| \rightarrow \infty} \int_{0}^{\pi} g\left(\lambda \phi^{\prime}(t)+\tilde{u}_{\lambda}^{\prime}(t)\right) \phi(t) d t \\
& =\bar{g} \int_{0}^{\pi} \phi(t) d t=2 \sqrt{\frac{2}{\pi}} \bar{g} \tag{3.4}
\end{align*}
$$

The conclusion follows then from Theorem 3.2.
The result (3.4) is valid for any ϕ for which ϕ^{\prime} has a finite number of critical points and $\phi^{\prime} \in C^{1}[0, \pi]$. Thus we could derive similar results, e.g., for the boundary value problem,

$$
\begin{equation*}
u^{\prime \prime}+u+g\left(u^{\prime}\right)=p(t), \quad u^{\prime}(0)=u^{\prime}(\pi)=0, \tag{3.5}
\end{equation*}
$$

in which case the null space is spanned by $\cos t$. We will not go into details here.

Corollary 3.2. Let $g(t, u, v)=g(u, v)$ satisfy (g2) and assume that the limits $g(\infty,-\infty)=\lim _{u \rightarrow \pm \infty, v \rightarrow-\infty} g(u, v)$ and $g(\infty, \infty)=$ $\lim _{u \rightarrow \pm \infty, v \rightarrow \infty} g(u, v)$ exist and are finite. Then the problem

$$
u^{\prime \prime}+u+g\left(u, u^{\prime}\right)=\bar{p} \phi(t)+\tilde{p}(t), \quad u(0)=u(\pi)=0
$$

has at least two solutions, if $\bar{p} \in(a, b) \backslash\{l\}$, where $l=g(\infty,-\infty)+$ $g(\infty, \infty)$.

Proof. Following the idea of [3], without loss of generality we may and do suppose henceforth that $l=0$, i.e., $g(\infty,-\infty)=-g(\infty, \infty)$. Indeed, by letting

$$
h(u, v)=g(u, v)-\frac{g(\infty,-\infty)+g(\infty, \infty)}{2}=g(u, v)-\frac{l}{2}
$$

and $q(t)=p(t)-l / 2$ we obtain an equivalent problem,

$$
u^{\prime \prime}+u+h\left(u, u^{\prime}\right)=q(t), \quad u(0)=u(\pi)=0
$$

with h and q satisfying the hypotheses of g and p of the theorem and $h(\infty,-\infty)=-h(\infty, \infty)$.
By Theorem 3.2 it suffices to show that $\lim _{|\lambda| \rightarrow \infty} \tilde{\delta}(\lambda)=0$. But this follows from the Lebesque convergence theorem and the condition $g(\infty,-\infty)=-g(\infty, \infty)$ because for any u_{λ} we have

$$
\tilde{\delta}(\lambda)=\int_{0}^{\pi} g\left(\lambda \sqrt{\frac{2}{\pi}} \sin t+\tilde{u}_{\lambda}(t), \lambda \sqrt{\frac{2}{\pi}} \cos t+\tilde{u}_{\lambda}^{\prime}(t)\right) \sqrt{\frac{2}{\pi}} \sin t d t,
$$

where both \tilde{u}_{λ} and $\tilde{u}_{\lambda}^{\prime}$ are bounded on $[0, \pi]$ uniformly in $\lambda \in \mathbb{R}$.

$$
\begin{equation*}
\text { SOLUTIONS то } u^{\prime \prime}+u+g\left(t, u, u^{\prime}\right)=p(t), u(0)=u(\pi)=0 \tag{563}
\end{equation*}
$$

EXAMPLE 3.4. Since $g(t, u, v)=\tan ^{-1} v$ satisfies (g2) and has finite limits $\pm \frac{\pi}{2}$ at $\pm \infty$ we conclude, by Corollary 3.2, that the problem

$$
\begin{equation*}
u^{\prime \prime}+u+\tan ^{-1} u^{\prime}=\bar{p} \phi(t)+\tilde{p}(t), \quad u(0)=u(\pi)=0 \tag{3.6}
\end{equation*}
$$

has at least two solutions, if $\bar{p} \in(a, b) \backslash\{0\}$. In [4] it has been proved that if $\|p\|_{\infty}$ is small, then problem (3.6) has a solution. We have found the curve $\tilde{\delta}(\lambda)$ for $\tilde{p}(t) \equiv 0$ numerically (see Fig. 3), with $a \approx-0.3$ and $b \approx 0.3$.

If g depends on t, we replace the assumptions of finite limits of Corollary 3.2 by the assumption

$$
\begin{align*}
\lim _{u \rightarrow \pm \infty, v \rightarrow \infty} g(t, u, v)= & g(t, \infty, \infty)=-g\left(t+\frac{\pi}{2}, \infty,-\infty\right) \\
= & \lim _{u \rightarrow \pm \infty, v \rightarrow-\infty} g\left(t+\frac{\pi}{2}, u, v\right) \\
& \text { uniformly in } t \in\left[0, \frac{\pi}{2}\right] \tag{3.7}
\end{align*}
$$

and obtain in a similar way.
Corollary 3.3. Let g satisfy (g2) and (3.7). Then problem (1.3) has at least two solutions, if $\bar{p} \in(a, b) \backslash\{l\}$.

As we can see from the graphs of $\tilde{\delta}(\lambda)$, in Examples 3.1-3.4 $\tilde{\delta}(\lambda)$ is odd when $\tilde{p}(t) \equiv 0$. Indeed, we have

THEOREM 3.3. If g satisfies $(g 2)$ and if $g(t,-u,-v)=-g(t, u, v), 0 \leq$ $t \leq \pi, u, v \in \mathbb{R}$, and if $\tilde{p}(t) \equiv 0$, then $\tilde{\delta}(\lambda)$ is odd and the number of solutions of the boundary value problem

$$
\begin{equation*}
u^{\prime \prime}+u^{\prime}+g\left(t, u, u^{\prime}\right)=0, \quad u(0)=u(\pi)=0 \tag{3.8}
\end{equation*}
$$

is odd.
Proof. For each $\lambda \in \mathbb{R}$ the integral equation (2.2) has a unique solution u_{λ}. From

$$
\begin{aligned}
-u_{\lambda}(t) & =-\lambda \phi(t)+\int_{0}^{\pi} k(t, s) g\left(s, u_{\lambda}(s), u_{\lambda}^{\prime}(s)\right) d s \\
& =-\lambda \phi(t)-\int_{0}^{\pi} k(t, s) g\left(s,-u_{\lambda}(s),-u_{\lambda}^{\prime}(s)\right) d s, \quad 0 \leq t \leq \pi
\end{aligned}
$$

it follows by the uniqueness that $u_{-\lambda}=-u_{\lambda}, \lambda \in \mathbb{R}$. Hence

$$
\begin{aligned}
\tilde{\delta}(-\lambda) & =\int_{0}^{\pi} g\left(t, u_{-\lambda}(t), u_{-\lambda}^{\prime}(t)\right) \phi(t) d t \\
& =\int_{0}^{\pi} g\left(t,-u_{\lambda}(t),-u_{\lambda}^{\prime}(t)\right) \phi(t) d t \\
& =-\int_{0}^{\pi} g\left(t, u_{\lambda}(t), u_{\lambda}^{\prime}(t)\right) \phi(t) d t \\
& =-\tilde{\delta}(\lambda), \quad \lambda \in \mathbb{R}
\end{aligned}
$$

This proves that $\tilde{\delta}(\lambda)$ is odd and hence that the number of solutions of (3.8) is odd.

REFERENCES

1. H. Aman, A. Ambrosetti, and G. Mancini, Elliptic equations with noninvertible Fredholm linear part and bounded nonlinearities, Math. Z. 158 (1978), 179-194.
2. A. Canada and P. Drabek, On semilinear problems with nonlinearities depending only on derivatives, SIAM J. Math. Anal. 27 (1996), 543-557.
3. P. Habets and L. Sanchez, A two-point problem with nonlinearity depending only on the derivative, SIAM J. Math. Anal. 28 (1997), 1205-1211.
4. R. Kannan, R. Kent Nagle, and K. L. Pothoven, Remarks on the existence of solutions of $x^{\prime \prime}+x+\arctan x^{\prime}=p(t), x(0)=x(\pi)=0$, Nonlinear Anal. 22 (1994), 793-796.
5. R. Kannan and R. Ortega, An asymptotic result in forced oscillations of pendulum-type equations, Appl. Anal. 22 (1988), 45-53.
6. H. Shaw, A nonlinear elliptic boundary value problem, in "Nonlinear Functional Analysis and Differential Equations" (L. Cesari, R. Kannan, and J. D. Schuur, Eds.), Vol. 19, pp. 339-345, Dekker, New York, 1976.
