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Existence of Solutions to
u′′ + u+ g�t� u� u′� = p�t�� u�0� = u�π� = 0
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Existence and multiplicity results for the boundary value problem{
u′′ + u+ g�t� u� u′� = p�t�� 0 < t < π�

u�0� = u�π� = 0

are presented. The proofs are based on the alternative method, a connectedness
result, the contraction mapping principle, and a detailed analysis of the bifurcation
equation utilizing, e.g., a generalization of the mean value theorem for integrals.
We shall obtain results with g bounded or unbounded, having finite limits at ±∞ or
without limits, thus extending some recent results in the literature. The proofs offer
a constructive way to find the bounds for p̄ and to find numerically the number of
solutions and the approximative solutions.  2001 Academic Press
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1. INTRODUCTION

The two-point boundary value problem

u′′ + u+ g�u′� = p�t�� 0 < t < π�

u�0� = u�π� = 0�
(1.1)

where g and p are continuous functions, has been studied (e.g., by Canada
and Drabek [2] and Habets and Sanchez [3]). The existence results of [2]
are completed in [3] by a multiplicity result in terms of conditions for p̄ in
the decomposition of p,

p�t� = p̄ sin t + p̃�t�� (1.2)

where p̄ ∈ � and p̃ is orthogonal to sin t. The proof is carried out using
mainly topological degree and homotopy arguments.
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We shall present existence and multiplicity results for the boundary value
problem

u′′ + u+ g�t� u� u′� = p�t�� 0 < t < π�

u�0� = u�π� = 0�
(1.3)

The proofs are based on the alternative method (as in [2] and [3]), a con-
nectedness result of [6], the contraction mapping principle, and a detailed
analysis of the bifurcation equation utilizing, e.g., a generalization of the
mean value theorem for integrals [5]. We shall obtain results for (1.3) with
g bounded or unbounded, having finite limits at ±∞ or without limits.

The proofs offer a constructive way to find the bounds for p̄ and to find
numerically both the number of solutions and the approximative solutions.

2. THE ALTERNATIVE METHOD

Denote φ�t� =
√

2
π

sin t and Lu = u′′ + u. Let k be a modified Green’s
function satisfying (as a function of t)

Lk�t� s� = δ�t − s� −φ�t�φ�s�
k�0� s� = k�π� s� = 0∫ π

0
k�t� s�φ�t�dt = 0�

(2.1)

The problem (1.3) is equivalent to the pair of equations

uλ�t� = λφ�t� +
∫ π

0
k�t� s�[p̃�s� − g

(
s� uλ�s�� u′

λ�s�
)]
ds� (2.2)

δ̄�λ� = p̄−
∫ π

0
g
(
t� uλ�t�� u′

λ�t�
)
φ�t�dt = 0� (2.3)

Here, for simplicity, we write

p�t� = p̄φ�t� + p̃�t� (2.4)

instead of (1.2).
That a solution of (2.2)–(2.3) is a solution of (1.3) is easily verified by

applying L to the integral equation (2.2) and using the given orthogonality
conditions. The proof that a solution of (1.3) satisfies (2.2)–(2.3) is a
standard one using the Lagrange identity, symmetry of k�t� s�, and the
orthogonality conditions.
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3. THE RESULTS

We shall use the following assumptions for g� 
0� π� × � × � → �:

(g1) g is continuous and bounded;

(g2) g is continuous and satisfies the Lipschitz condition �g�t� u� v� −
g�t� ū� v̄�� ≤ M�u− ū� +N�v − v̄�� u� ū� v� v̄ ∈ �, where M2 + 4N2 < 9/2.

If g satisfies (g1), then by Schauder’s fixed-point theorem the integral
equation (2.2) has at least one solution uλ for any given λ ∈ �. If, on
the other hand, g satisfies (g2), then it can be shown that for a fixed λ ∈ �
the right-hand side of Eq. (2.2) defines an operator which is a contraction
mapping on H1
0� π� and hence has a unique fixed point uλ. In both cases
we can calculate

δ̃�λ� =
∫ π

0
g
(
t� uλ�t�� u′

λ�t�
)
φ�t�dt�

In the case of (g1) δ̃ may be multivalued. Denote

a = inf�δ̃�λ� � λ ∈ �� uλ is a solution of (2.2)��
b = sup�δ̃�λ� � λ ∈ �� uλ is a solution of (2.2)��

If p̄ ∈ �a� b� and g satisfies (g2), then there exist δ̃�λ1� and δ̃�λ2� such that
δ̃�λ1� < p̄ < δ̃�λ2�, and it can be shown that δ̃�λ� is (Lipshitz) continuous,
which implies that δ̃�λ� = p̄ for a λ ∈ �λ1� λ2� (or for a λ ∈ �λ2� λ1�);
i.e., problem (1.3) has a solution. Also in the case of (g1), as shown in [2],
using a result of ([1], Theorem 3.1), problem (1.3) has a solution. Hence,
we can state the following result, which essentially is due to Canada and
Drabek [2].

Theorem 3.1. If g satisfies (g1) or (g2), then there exists an interval 
a� b�
such that problem (1.3) has (i) at least one solution if p̄ ∈ �a� b� and (ii) no
solution if p̄ �∈ 
a� b�.
Remark 3.1. In the case of dependence only on the derivative

g�t� u� v� = g�t� v�, the inequality M2 + 4N2 < 9/2 can be replaced
by the inequality N < 3/2 and in the case g�t� u� v� = g�t� u� by the
inequality M < 3. Also, we could replace the constants M and N by
suitable square integrable functions. As for the case p̄ ∈ �a� b�, we refer
to [3].

Example 3.1. Consider the problem

u′′ + u+ sinh−1 u′ = p̄φ�t� + p̃�t�� u�0� = u�π� = 0� (3.1)
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FIGURE 1

The function g�t� u� v� = sinh−1 v satisfies (g2) with M = 0 and N = 1;
hence we can apply Theorem 3.1. The curve δ̃�λ�, which is found numer-
ically for p̃�t� ≡ 0, is shown in Fig. 1. We have �a� b� ≈ �−0�54� 0�54�� In
the general case, if �p�∞ is small enough, then following the proof in [4,
p. 795], it can be shown that (1.3) has a (small) solution. Thus, in that case
we know that the interval �a� b� is nonempty. Note that g is not bounded.
The interval �a� b� depends on p̃ and g. If we have some additional infor-
mation, we may obtain a priori bounds for �a� b�.

Proposition 3.1. Assume that g�t� u� v� = g�t� v� satisfies (g2) with
M = 0 and N < 3/2,∫ π

0
g�t� c cos t� sin t dt = 0 for all c ∈ �� �a�

and that

�p̃�t� − g�t� v�� ≤ m�t�� t ∈ 
0� π�� v ∈ �� �b�

for an m ∈ L+
1 
0� π�. Then 
a� b� ⊂ 
−d� d�, where

d = N
∫ π

0

∫ π

0
m�s��kt�t� s��φ�t�dt ds�

i.e., problem (1.3) does not have a solution if �p̄� > d.
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Proof. We have

uλ�t� = λφ�t� +
∫ π

0
k�t� s�[p̃�s� − g

(
s� u′

λ�s�
)]
ds

and

u′
λ�t� = λφ′�t� + ũ′

λ�t��
where ũ′

λ�t� =
∫ π

0 kt�t� s�
p̃�s� − g�s� u′
λ�s���ds satisfies, by (b),

�ũ′
λ�t�� ≤

∫ π

0
�kt�t� s��m�s�ds� �c�

We can write

g
(
t� u′

λ�t�
) = g�t� λφ′�t�� + w�t��

where

w�t� = g
(
t� λφ′�t� + ũ′

λ�t�
)− g�t� λφ′�t��

satisfies, by the Lipschitz condition, the inequality

�w�t�� ≤ N�ũ′
λ�t��� �d�

Now, by using (a), (c), and (d) we obtain

�δ̃�λ�� = �
∫ π

0
g�t� u′

λ�t��φ�t�dt� = �
∫ π

0
w�t�φ�t�dt�

≤
∫ π

0
N�ũ′

λ�t��φ�t�dt ≤ N
∫ π

0

∫ π

0
�kt�t� s��m�s�ds φ�t�dt = d�

which means that problem (1.3) cannot have a solution if �p̄� > d.

Example 3.2. Consider the boundary value problem

u′′ + u+ sinu′ = p̄φ�t�� u�0� = u�π� = 0� �3�2�
The function g�t� u� v� = sin v satisfies (g2) with M = 0 and N = 1, and
condition (a), condition (b) with m�t� ≡ 1 when p̃�t� ≡ 0 and d ≈ 1�1776.
Hence, by Proposition 3.1 we deduce that problem (3.2) does not have a
solution if �p̄� > 1�1776. In Example 3.3 we will find numerically a smaller
lower estimate for �p̄� for the nonexistence.

Theorem 3.2. Assume that g satisfies (g1) or (g2) and that c ∈ �a� b�
is a limit point of both �δ̃�λ� � λ ∈ �−∞� d�� and �δ̃�λ� � λ ∈ 
d�∞�� for
a d ∈ �. Then, if p̄ ∈ �a� b�\�c�, problem (1.3) has at least two solutions.
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Proof. Suppose first that (g1) holds. Since g is continuous and bounded,
then for any closed bounded interval I = 
α�β� there exists a closed
bounded convex subset B of H1
0� π� such that the mapping T ,

T �u� λ� = λφ�t� +
∫ π

0
k�t� s�

× [
p̃�s� − g

(
s� u�s�� u′�s�)]ds� λ ∈ I� u ∈ B�

is a compact continuous mapping from B × I into B. Then, by [6, Fixed
Point Theorem, p. 341], there exists a connected set S ⊂ B × I of fixed
points of T , and S meets both B × �α� and B × �β�. Now, for any p̄ ∈
�a� b�\�c� we can find δ̃�λ1�, δ̃�λ2� and δ̃�λ3� such that λ1 < λ2 < λ3 and
δ̃�λ1� < p̄ < δ̃�λ2�, δ̃�λ3� < p̄ < δ̃�λ2�. Hence, as a continuous real valued
function on a connected set S1 associated with the interval I1 = 
λ1� λ2�,
�u� λ� → p̄ − δ̃�λ� assumes the value 0 on S1; i.e., problem (1.3) has a
solution. The same conclusion holds true for the interval I2 = 
λ2� λ3�; i.e.,
problem (1.3) has at least two solutions.

If g satisfies (g2), then δ̃�λ� is single valued and Lipschitz continuous and
the proof is obvious.

In [3] it is proved that if g satisfies (g1) and is locally Lipschitz continuous
then the conclusion of Theorem 3.2 holds true, provided that g�t� u� v� =
g�v� has finite limits g�−∞� and g�+∞� with p ∈ �a� b�\�l�, l = g�−∞�+
g�∞�. In the following example we have g�v� = sin v, which does not have
limits at ±∞ but lim�λ�→∞ δ̃�λ� = 0, and we can apply Theorem 3.2.

Example 3.3. Consider the boundary value problem

u′′ + u+ sinu′ = p̄φ�t�� u�0� = u�π� = 0� (3.2)

The function g�t� u� v� = sin v satisfies (g2) with M = 0 and N = 1, and we
have

δ̃�λ� =
∫ π

0
sin

(
λφ′�t� + ũ′

λ�t�
)
φ�t�dt

=
∫ π

0
sin

(
λ

√
2
π

cos t + ũ′
λ�t�

)√
2
π

sin t dt

= 1
2

∫ π

0
cos

(
λ

√
2
π

cos t + ũ′
λ�t� + t

)
dt

− 1
2

∫ π

0
cos

(
λ

√
2
π

cos t + ũ′
λ�t� − t

)
dt�

The functions θλ�t� = ũ′
λ�t� + t and θ̄λ�t� = ũ′

λ�t� − t, and their
derivatives are continuous and bounded uniformly in λ ∈ �. Since
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φ′�t� =
√

2
π

cos t has a finite number of critical points on 
0� π� and
q�u� = cosu is 2π-periodic with a mean value 0, then by Lemma 2 of [5],

∫ π

0
cos

(
λ

√
2
π

cos t + θλ�t�
)
dt → 0

and
∫ π

0
cos

(
λ

√
2
π

cos t + θ̄λ�t�
)
dt → 0�

as �λ� → ∞. Hence lim�λ�→∞ δ̃�λ� = 0, which by Theorem 3.2 implies that
problem (3.2) has at least two solutions if p̄ ∈ �a� b�\�0�. Again, following
the proof in [4, p. 795], it can be shown that problem (3.2) has a (small)
solution if �p�∞ is small enough, and consequently the interval �a� b� in this
case is nonempty. We have found numerically that �a� b� ≈ �−0�36� 0�36�.
The curve δ̃�λ� is shown in Fig. 2.

Example 3.3 also serves as an example for the following more general
result.

Corollary 3.1. Assume that g� � → � is Lipschitz continuous with
Lipschitz constant N < 3

2 and T -periodic with the mean value ḡ =
1
T

∫ T
0 g�u�du. Then the problem

u′′ + u+ g�u′� = p̄φ�t� + p̃�t�� u�0� = u�π� = 0� (3.3)

has at least two solutions, if p̄ ∈ �a� b�\�2
√

2
π
ḡ�.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-10 -5 0 5 10

"delta"

FIGURE 2



562 kannan and seikkala

Proof. The function g�t� u� v� = g�v� satisfies (g2) with the condition
given in Remark 3.1, and following the proof of Lemma 2 in [5] we obtain

lim
�λ�→∞

δ̃�λ� = lim
�λ�→∞

∫ π

0
g
(
λφ′�t� + ũ′

λ�t�
)
φ�t�dt

= ḡ
∫ π

0
φ�t�dt = 2

√
2
π
ḡ� (3.4)

The conclusion follows then from Theorem 3.2.

The result (3.4) is valid for any φ for which φ′ has a finite number of
critical points and φ′ ∈ C1
0� π�. Thus we could derive similar results, e.g.,
for the boundary value problem,

u′′ + u+ g�u′� = p�t�� u′�0� = u′�π� = 0� (3.5)

in which case the null space is spanned by cos t. We will not go into details
here.

Corollary 3.2. Let g�t� u� v� = g�u� v� satisfy (g2) and assume
that the limits g�∞�−∞� = limu→±∞�v→−∞ g�u� v� and g�∞�∞� =
limu→±∞�v→∞ g�u� v� exist and are finite. Then the problem

u′′ + u+ g�u� u′� = p̄φ�t� + p̃�t�� u�0� = u�π� = 0�

has at least two solutions, if p̄ ∈ �a� b�\�l�, where l = g�∞�−∞� +
g�∞�∞�.
Proof. Following the idea of [3], without loss of generality we may and

do suppose henceforth that l = 0, i.e., g�∞�−∞� = −g�∞�∞�. Indeed, by
letting

h�u� v� = g�u� v� − g�∞�−∞� + g�∞�∞�
2

= g�u� v� − l

2
and q�t� = p�t� − l/2 we obtain an equivalent problem,

u′′ + u+ h�u� u′� = q�t�� u�0� = u�π� = 0�

with h and q satisfying the hypotheses of g and p of the theorem and
h�∞�−∞� = −h�∞�∞�.

By Theorem 3.2 it suffices to show that lim�λ�→∞ δ̃�λ� = 0. But this
follows from the Lebesque convergence theorem and the condition
g�∞�−∞� = −g�∞�∞� because for any uλ we have

δ̃�λ� =
∫ π

0
g

(
λ

√
2
π

sin t + ũλ�t�� λ

√
2
π

cos t + ũ′
λ�t�

)√
2
π

sin t dt�

where both ũλ and ũ′
λ are bounded on 
0� π� uniformly in λ ∈ �.
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Example 3.4. Since g�t� u� v� = tan−1 v satisfies (g2) and has finite
limits ±π

2 at ±∞ we conclude, by Corollary 3.2, that the problem

u′′ + u+ tan−1 u′ = p̄φ�t� + p̃�t�� u�0� = u�π� = 0� (3.6)

has at least two solutions, if p̄ ∈ �a� b�\�0�. In [4] it has been proved that if
�p�∞ is small, then problem (3.6) has a solution. We have found the curve
δ̃�λ� for p̃�t� ≡ 0 numerically (see Fig. 3), with a ≈ −0�3 and b ≈ 0�3.

If g depends on t, we replace the assumptions of finite limits of Corollary
3.2 by the assumption

lim
u→±∞�v→∞

g�t�u�v�=g�t�∞�∞�=−g
(
t+ π

2
�∞�−∞

)
= lim

u→±∞�v→−∞
g
(
t+ π

2
�u�v

)
uniformly in t∈

[
0�
π

2

]
(3.7)

and obtain in a similar way.

Corollary 3.3. Let g satisfy (g2) and (3.7). Then problem (1.3) has at
least two solutions, if p̄ ∈ �a� b�\�l�.

As we can see from the graphs of δ̃�λ�, in Examples 3.1–3.4 δ̃�λ� is odd
when p̃�t� ≡ 0. Indeed, we have
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Theorem 3.3. If g satisfies (g2) and if g�t�−u�−v� = −g�t� u� v�, 0 ≤
t ≤ π, u� v ∈ �, and if p̃�t� ≡ 0, then δ̃�λ� is odd and the number of solutions
of the boundary value problem

u′′ + u′ + g�t� u� u′� = 0� u�0� = u�π� = 0 (3.8)

is odd.

Proof. For each λ ∈ � the integral equation (2.2) has a unique solution
uλ. From

−uλ�t� = −λφ�t� +
∫ π

0
k�t� s�g(s� uλ�s�� u′

λ�s�
)
ds

= −λφ�t� −
∫ π

0
k�t� s�g(s�−uλ�s��−u′

λ�s�
)
ds� 0 ≤ t ≤ π�

it follows by the uniqueness that u−λ = −uλ, λ ∈ �. Hence

δ̃�−λ� =
∫ π

0
g
(
t� u−λ�t�� u′

−λ�t�
)
φ�t�dt

=
∫ π

0
g
(
t�−uλ�t��−u′

λ�t�
)
φ�t�dt

= −
∫ π

0
g
(
t� uλ�t�� u′

λ�t�
)
φ�t�dt

= −δ̃�λ�� λ ∈ ��

This proves that δ̃�λ� is odd and hence that the number of solutions of
(3.8) is odd.
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