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A C,-semigroup (T,) of positive linear operators on a Banach lattice E is called 
irreducible if it leaves no closed lattice ideals # {O}. E invariant. It is shown that all 
known (and some recently discovered) conditions on E and/or an irreducible cyclic 
semigroup (P) implying that a(T) f {0}, h ave precise analogs for irreducible 
semigroups, to the effect that the generator A has nonvoid spectrum and, if (T,) is 
eventually compact or A has compact resolvent, that the spectral bound s(A) is an 
eigenvalue of A wtth positive eigenvector. i(“ 1987 Academic Press, Inc 

Let E denote a (real or complex) Banach lattice (for notation, we follow 
the terminology used in [6]). A semigroup S of positive linear operators 
on E is called irreducible (resp. band irreducible) if no closed lattice ideals 
(resp. bands) other than {0}, E are invariant under every TE S. A single 
(linear) operator T >, 0 on E is called (band)irreducible if it leaves no closed 
ideal (band) Z(O), E invariant, i.e., iff the cyclic semigroup (T”),, N is 
irreducible (band irreducible). By cornrast, for a C,-semigroup (T,),,,, on 
E to be irreducible (band irreducible) it is sufficient but not necessary that 
some operator T, (t > 0) be irreducible (band irreducible). Since every band 
in a Banach lattice is a closed ideal, it is clear that band irreducibility is the 
weaker concept. Various examples of irreducible operators and semigroups 
can be found in [2] and [S]. 

Supposing now (T,) to be an irreducible or band irreducible C,,- 
semigroup on E, we are concerned with conditions on E and/or (T,) imply- 
ing the spectral bound s(A) = sup{Re I: i E o(A)} of the generator A of 
(T,) to be finite (or equivalently, the finite spectrum of A to be nonvoid). 
The corresponding question for cyclic semigroups (Y”‘),, E N has been treated 
in [5] (see also [6, V, Sect. 61); however, the results obtained there have 
been considerably improved by de Pagter’s recent theorem [4], to the 
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effect that every compact irreducible operator T> 0 on E has strictly 
positive spectral radius r(T) (and, consequently, a nonzero eigenvalue). 
This result has been extended (under mild additional conditions) to band 
irreducible operators [2, 71, where also a substantial extension of the so- 
called Theorem of Ando-Krieger (cf. [8, p. 6211) can be found. On the 
other hand, an example given in [S, Sect. 31 shows that an irreducible 
positive operator on Lp[O, I] (1 ,< p < +co) can be topologically nilpotent 
(i.e., have r(T) = 0), while G. Greiner [ 31 has constructed an irreducible 
C,-semigroup on the same spaces whose generator has void (finite) spec- 
trum. 

It will be shown below (Theorem B) that all conditions known to imply 
that a (band) irreducible operator T has strictly positive spectral radius, 
have precise analogs for C,-semigroups. For the convenience of the reader 
and to put our results in perspective, we shall list these conditions in the 
following theorem. Let us recall also that if E is an order complete 
(=Dedekind complete) Banach lattice, an operator contained in the band 
(E’@ E)” of F(E) is called an abstract kernel operator. (Here Y(E) 
denotes the order complete Banach lattice of all order bounded operators 
on E, under the norm T+ )I Tll, : = (( 1 TI II.) In many concrete cases (e.g., 
for many Kiithe function spaces), the abstract kernel operators are just 
those defined by measurable kernels in the usual way (see [6, IV. 91). 

THEOREM A. Let E denote a Banach lattice (dim E > I), and let T Z 0 
denote an irreducible operator on E. Then each of the foIlowing conditions on 
E andfor T implies that r(T) > 0: 

(i) E = C,,(U), U locally compact. 

(ii) The positive cone E, contains an extreme ray. 

(iii) Some power TP (p E N) is compact. 

(iv) E is order complete and some power Tp (p E N ) is an abstract ker- 
nel operator. 

In particular, in case (iii) r(T) is an eigenvalue of T. 

Under conditions (i) and (ii), the assertion that r(T) > 0 was proved in 
[ 51 (see also [6, V. 6.11) while the sufficiency of (iii) and (iv) is due to de 
Pagter [4, Theorem 3 and Proposition 51). 

Theorem A can be extended to cover band irreducible operators, as 
follows: While condition (i) seems to have no precise analog, (ii) carries 
over easily if T is order u-continuous ( =sequentially order continuous). 
Under the same additional assumption, conditions (iii) and (iv) carry over, 
as was proved recently by Grobler [2] (see also [7], where the same was 
shown under an additional condition on E). We summarize: 
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COROLLARY A. Zf T > 0 is band irreducible and order a-continuous, then 
each of conditions (ii), (iii), (iv) above implies that r(T) > 0. 

Let us note that in (iii) and (iv) it can be assumed without loss of 
generality that p = 1. In fact, it suffices to select some real number I > r(T) 
and consider the operator S = TP(;l - T) -p, which is irreducible (resp. band 
irreducible) whenever T is, and for which r(S) >O iff r(T) >O (spectral 
mapping theorem). 

2 

We now assume ( T,),,O to be a strongly continuous semigroup (C,- 
semigroup) of positive linear operators on an arbitrary Banach lattice E. 
As before, we denote by A the generator of (T,) and by s(A) the spectral 
bound sup{ Re I: ,I E o(A)}. In case A has void (finite) spectrum we let, as 
usual, s(A)= --co. 

THEOREM B. Let E denote any Banach lattice (dim E > 1 ), and let (T,) 
denote an irreducible C,-semigroup on E. Then each qf the following con- 
ditions on E and/or (T,) implies that s(A) > -a: 

(i) E = C,(U), U locally compact. 

(ii) The positive cone E, contains an extreme ray. 

(iii) For some t > 0, T, is compact. 

(iii’) The generator A has compact resolvent. 

(iv) E is order complete and for some t > 0, T, is an abstract kernel 
operator. 

In particular, in cases (iii) and (iii’) the generator A of (T,) has the eigen- 
value s(A) with corresponding positive eigenvector. 

The corollary of Theorem A has the following analog: 

COROLLARY B. Let (T,) be band irreducible and let T, be order cr-con- 
tinuous for each t > 0. Then each of conditions (ii), (iii), (iv) of Theorem B 
implies that s(A) > --co. Under condition (iii), s(A) is an eigenvalue of A 
with positive eigenvector; the same is true under (iii’) provided that E has a 
separating order o-continuous dual. 

The proofs of Theorem B and Corollary B are based on Theorem A, 
Corollary A, and the following four lemmata. 

LEMMA 1. Zf (T,) is irreducible then T, # 0 for all t > 0. 
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ProoJ: We first note that by [l], for any A> s(A) and t > 0 the 
resolvent R(i, A) : = (A - A) -’ is given by 

R(5 A) = lorn e -““T, ds = R,(i, A) + e-“‘T,R(i, A), 

where &(A, A) : = 1; e -““T, ds and the integral over [w, is to be 
understood as an improper Riemann integral in the strong operator 
topology. Hence we obtain the basic inequality 

T,R(& A) < e”‘R(1, A) (A>s(A), t>O). (1) 

Now suppose that T, = 0 for some t > 0, and let E : = inf{ t: T, = 0). Since 
T, + id E for t JO, we have E > 0. By definition of E, TC,* # 0; we choose 
z > 0 so that TE,*z = : y > 0. Letting w  : = R(,l, A) y for any fixed 1> s(A), 
from (1) we obtain T, w  < e”‘w for all t > 0. Since w  > 0, w  must be a quasi- 
interior point of E,. On the other hand, we have 

Tc/z w  = T,,, R(4 A) TF.,zz = WA, A ) T,z = 0, 

since (T,) commutes with R(& A). It follows that TE,2 = 0, and this con- 
tradicts the definition of E. 1 

LEMMA 2. Let (T,) be irreducible on E, and for any fixed ,I > s(A) and 
t 2 0 define V, := T,R(I, A) = T,(n - A)-‘. Then: 

(a) For any XE E, x> 0, V,x is a quasi-interior point of E, (in par- 
ticular, V, is an irreducible operator). 

(b) For all t>O, x>O impIies T,x>O. 

ProoJ: We first prove (a) for t = 0. From inequality (1) above we 
obtain, for any x> 0, the invariance of the closed ideal generated by 
R(1, A) x under the semigroup (T,); hence R(5 A) x must be quasi- 
interior to E, . Multiplying both sides of (1) by the operator T, ( 3 0) and 
exchanging s and t, we obtain for all ~30, t >O, 

T, V, < ei.” V,. (2) 

Now if x > 0 is given and if y : = V,x, we obtain T, y G e”“y for all s > 0. 
Therefore, the closed ideal generated by V,x is invariant under (T,); 
irreducibility now implies that either V,x is quasi-interior to E,, or else 
that V,x = 0. But 0 = V,x = T,[R(l, A) x] implies that T, = 0 which con- 
tradicts Lemma 1. This proves (a); it is now also clear that (b) holds. 1 

Note. The proofs of Lemmata 1 and 2 are arranged so that under the 
general hypothesis of Corollary B, both lemmata can be seen to remain 
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valid if “irreducible” is replaced by “band irreducible,” “closed ideal” by 
“band,” and “quasi-interior point of E+” by “weak order unit of E.” 

LEMMA 3. Let S, T be positive operators on a Banach lattice E. If T is 
weak!y compact and order (a-)continuous, then ST is order (o-)continuous. 

Proof. Let D denote a non-void directed (2 ) subset of E. We have to 
show that inf D = 0 implies inf ST(D) = 0; in the case of order g-continuity 
of T we assume D to be countable. Now we have inf T(D) = 0 by order 
(G- )continuity; weak compactness of T implies that y = lim T(D) exists 
weakly (hence in norm, [6,11.5.9, Corollary]). But y = inf T(D), since E + 
is closed, and thus lim T(D) = 0. This implies lim ST(D) = 0, which in turn 
implies 0 = inf ST(D). 1 

LEMMA 4. Let (T,) be a semigroup such that each T, (t > 0) is order 
(o-)continuous, and suppose that E has a separating order (o-)continuous 
dual. Then for each 2 > s( A ), R( 2, A ) = (1. - A ) ’ is order (a- )continuous. 

Proof. It will be enough to prove the assertion concerning order 
o-continuity. Let (x,,) be a decreasing sequence in E with inf,,x, = 0, 
and let 0 d x’ E Eb be arbitrary (Eb = order a-continuous dual of E). For 
i>s(A) we have, by [l], 

By hypothesis, the integrand converges to 0 pointwise on OX+ ; the 
dominated convergence theorem implies lim, ( R( I, A) x, , x’ ) = 0. Thus if 
u E E, satisfies v < R(R, A) x, for all n, it follows that (u, x’) = 0 for all 
x’ E (E;) + ; since Eb separates E, it follows that v = 0 and hence that 
inf,, R(1, A) .Y, = 0. 1 

Proof of Theorem B. For the proof of Theorem B we recall that for any 
j” in the resolvent set of A (in particular, for I >s(A)) the mapping 
c( -+ l/( A- m) defines a bijection of a( A) onto (T( R(A, A)), where it is 
understood that the point cc of the Riemann sphere is considered an 
element of o(A) in case A is unbounded. (It is natural in this context, 
though not necessary for positive semigroups, to consider complex Banach 
lattices: cf. [6, 11.111.) 

In particular, then, s(A) = - 00 means a(A) = { co } or equivalently, 
o(R(& A))= {O}. Thus to show that s(A)> -00, it suflices to prove that 
R(1, A) is not topologically nilpotent. Using Theorem A and the well- 
known fact that irreducibility of (T,) is equivalent to irreducibility of 
R(1,, A) for any A> s(A), we consider the four conditions of Theorem B in 
order. 
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(i) and (ii) Since R(I, A) is (20 and) irreducible for 1 >s(A), 
Theorem A(i), (ii) imply that r(R(1, A)) > 0. 

(iii) and (iii’) If T, or R(1, A) is compact, then the operator 
I/, : = T,R(A, A) is compact, and irreducible by Lemma 2. Theorem A (iii) 
implies that r( V,) > 0. On the other hand, from Formula (1) (proof of 
Lemma 1) we obtain V, < e”‘R(1, A). Since the spectral radius is an isotone 
function on the cone of positive operators in 9(E), it follows that 
r(R(A,A))>e-“‘r(V,)>O. 

(iv) If T, is an abstract kernel operator then so is V,. In fact, denote 
by Z the lattice ideal of Y’(E) generated by E’@ E; since 
(E’@ E)oR(A, A)cE’@ E and since R(1, A)>O, it follows that 
ZoR(A,A)cZ. Now T,E(E’@E)” means that T, = sup, T, for a directed 
(G<) family of positive operators T,EI; because of 
T,R(1, A) = supa T,R(I, A) we obtain V, E (E’@ E)‘l. Since by Lemma 2, 
V, is irreducible, we conclude from Theorem A(iv) that r( V,) > 0 and 
hence, as above, that r(R(1, A)) > 0. 

To prove the final assertion of Theorem B, consider condition (iii) first. 
We use the well-known identity 

which is valid for all x E E, 1 EC, and the equality r(T,) = em* where w  
denotes the growth bound of (T,). Let T, be compact; since 
was(A) > -co, eoc is an eigenvalue with positive eigenvector x0 of T,. 
Now y := j& e-osTsxO ds> 0 by Lemma 2(b), and (O-A) y=O. 
Therefore, w  = s(A) has the claimed property. 

Under condition (iii’), since R(I,, A) is compact (for any I, > s(A)), the 
spectral radius r > 0 of R(&, A) is an eigenvalue with eigenvector x0 > 0. A 
simple calculation shows that x0 is an eigenvector of A for the eigenvalue 
1, - (l/r), which necessarily equals s(A) (cf. the remark at the beginning of 
the proof). 1 

Proof of Corollary B. The proof of this corollary is basically the same 
as for Theorem B; first of all we note that under the general hypothesis of 
Corollary B, each of the operators V, = T,R(L, A) is band irreducible 
(Lemma 2 and subsequent note). However, some additional arguments are 
necessary because, in order to employ Corollary A, we have to show that 
V, is order a-continuous, or at least that I/, dominates a band irreducible, 
order o-continuous positive operator. It will then be sufficient to prove that 
r( V,) > 0 in each case; as before we take up conditions (ii)- in order. 

(ii) Let u generate an extreme ray of E, (i.e., let u > 0 be an atom of E). 
By Lemma 2 and the subsequent Note, V,u is a weak order unit of E. 
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Hence V,u A u = EU for some E > 0 which implies V,u 2 EM. By induction we 
obtain V;u > E”U for all n E N, whence it follows that (I V:(l ‘PI >, E and 
r(V,)>.. 

(iii) If T, is compact then I/, is compact, and band irreducible by 
Lemma 2 and the subsequent Note. Lemma 3 assures that V, = R(;1, A) T, 
is order o-continuous. The fact that s(A) is an eigenvalue of A with positive 
eigenvector, is proved exactly as for Theorem B. 

(iii’) Since Eb is required to separate E, Lemma 4 assures that I?(,%, A) is 
order a-continuous. The remaining part of the proof is the same as for 
Theorem B. 

(iv) Suppose that T, is an abstract kernel operator and recall that, by 
order completeness of E, the lattice Z(E) (order bounded operators) is 
order complete. The assumption 0 6 T, E (Eb @ E)” (T, being order a-con- 
tinuous) means that T, = sup% T, where (T,) is a family of positive 
operators contained in the ideal J generated by Eb@ E. Since Eb@ E is 
invariant under left multiplication by R(,I, A), it follows that R(I>, A) T, E J 
for each ~1. Now, since R(A, A) T, 6 R(I, A) T, = V,, B : = sup, R(E., T) T, 
exists in P”(E) and BE (E& 0 E)‘l. By its definition, B is order o-con- 
tinuous; we show that B is band irreducible. In fact, if x > 0 then T,x > 0 
(Lemma 2 and subsequent note) and hence there exists c1 such that 
T,x > 0. Thus by Lemma 2 again, R( J., A) T,x is a weak order unit of E. 
Therefore, Bx is a weak order unit of E; in particular, B is band irreducible. 
Hence by Corollary A we have r(B) > 0; this implies r( V,) 3 r(B) > 0. 1 
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