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Abstract

We solve completely Thue equations in function fields over arbitrary finite fields. In the function
field case such equations were formerly only solved over algebraically closed fields (of character-
istic zero and positive characteristic). Our method can be applied to similar types of Diophantine
equations, as well.
© 2005 Elsevier Inc. All rights reserved.

MSC: 11D59; 11Y50; 11R58

Keywords: Thue equations; Global function fields

1. Introduction

Classical Diophantine equations like Thue equations (cf. Thue [10]) are traditionally
solved over the rings of rational integers or over the ring of integers of a number field
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(cf. Baker [1]). Several authors considered the analogous problem over function fields:
more exactly over the ring of integers of a function field over an algebraically closed field,
see, e.g., [6,8], both in case the ground field is of zero or positive characteristic. These
results have also common generalizations (cf. Győry [5]).

Our purpose is now to investigate this problem in function fields over arbitrary finite
fields. It is well known that Diophantine equations over finite fields play an important role
in cryptography, cf. Niederreiter and Xing [7].

Also, from a practical point of view this case is much more straightforward than the
case of algebraically closed ground fields (which mostly occur in theory only).

As it will turn out, also in this case the unit equation plays a crucial role and the so-
lutions can be computed easily. However, for constructing the appropriate function fields,
performing calculations in them, determining heights, etc. we intensively use the computer
algebra package KASH [2].

2. Global function fields

In the following we shall strongly rely on the argument used by Mason [6] for function
fields over algebraically closed fields. We show how his ideas can be transferred to our
situation. A general description of properties of function fields (also over finite fields) can
be found in the book of Stichtenoth [9].

We introduce some notations. k = Fq denotes a finite field with q = pd elements. The
rational function field of k is k(t) as usual, and K is a finite extension of k(t) of degree n0

and genus g0. The integral closure of k[t] in K is denoted by oK . We assume that K

is separably generated over k(t) by an element y belonging to oK and that k is the full
constant field of K . Any element f ∈ K has a unique presentation

f =
n0∑
i=1

hiy
i−1, hi ∈ k(t).

Conjugates of elements (fields) are denoted by upper case indices. Let A :=
((y(j))i−1)1�i,j�n ∈ Kn×n have determinant D. We note that D is the discriminant of y.
It is nonzero since K is separably generated. We obtain the system of linear equations:

(
f (1), . . . , f (n)

) = (h1, . . . , hn)A.

Hence, the hi are rational functions in the f (j), (y(j))i−1.
The set of all (exponential) valuations of K is denoted by V , the subset of infinite val-

uations by V∞. By abuse of notation we do not distinguish between places and valuations.
For example, we write degv for the degree of the divisor belonging to the valuation v ∈ V .
For a nonzero element f ∈ K we denote by v(f ) the value of f at v. For integral elements
this is the highest power of the divisor belonging to v that divides the divisor (f ), and this
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concept is extended to rational elements in the usual way. For the normalized valuations
vN(f ) = v(f ) · degv the product formula holds:

∑
v∈V

vN(f ) = 0 ∀f ∈ K \ {0}.

The height of a nonzero element f of K is defined to be

H(f ) :=
∑
v∈V

max
{
0, vN(f )

}
.

Because of the product formula this is tantamount to

H(f ) = −
∑
v∈V

min
{
0, vN(f )

}

which then holds for all elements of K including 0.

3. Unit equations

Let V0 be a finite subset of V . Then the nonzero elements γ ∈ K satisfying v(γ ) = 0
for all v /∈ V0 form a multiplicative group in K . These elements are called V0-units. For
V0 = V∞ the V0-units are just the units of the ring oK .

The resolution of Thue equations (as well as several other types of classical Diophantine
equations) is usually reduced to equations of the form

γ1 + γ2 + γ3 = 0 (1)

where the γi are V0-units for a suitable set V0.
The crucial inequality of Mason on the above equation becomes in our case:

Lemma 3.1. Let V0 be a finite subset of V and let γi (1 � i � 3) be V0-units satisfying (1).
Then either γ1

γ3
is in Kp or its height is bounded:

H

(
γ1

γ3

)
� 2g − 2 +

∑
v∈V0

degv. (2)

Proof. The proof is along the lines of the proof of Lemma 2 in [6] (see [6, p. 14]). Since in
our case the field of constants k is not algebraically closed we encounter a few additional
difficulties which we will point out in what follows.
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We may assume that f := γ1/γ3 and therefore γ2/γ3 = −f − 1 do not belong to k. Let

V1 := {
v ∈ V : v(f ) < 0

}
, V2 := {

v ∈ V : v(f ) > 0
}
,

V3 := {
v ∈ V : v(f ) = 0 ∧ v(f + 1) > 0

}
.

These are disjoint subsets of the set V0. Then we have

H(f ) =
∑
v∈V1

(−v(f )
)

degv =
∑
v∈V2

v(f )degv =
∑
v∈V3

v(f + 1)degv.

This is true because of 1 = (1+f )+(−f ), the product formula, and the property v(f ) < 0
⇔ v(1 + f ) < 0. If z denotes a prime element for the valuation v ∈ V then the differential
1df satisfies v(1df ) = v(df/dz) (see [9, Chapter IV]). If f is not a pth power then the
divisor 1df is canonical, i.e., deg(1df ) = 2g−2, since the field k of constants is complete
(see [9, Chapter I.5]). This yields

2g − 2 =
∑
v∈V

v(df )degv =
∑
v∈V0

v(df )degv =
∑

v∈V1∪V2∪V3

v(df )degv

�
∑

v∈V1∪V2

(
v(f ) − 1

)
degv +

∑
v∈V3

(
v(1 + f ) − 1

)
degv

= −H(f ) + H(f ) −
∑

v∈V1∪V2

degv + H(f ) −
∑
v∈V3

degv

� H(f ) −
∑

v∈V1∪V2∪V3

degv � H(f ) −
∑
v∈V0

degv

whence the assertion follows. �
Taking Φ = −γ1/γ3, Ψ = −γ2/γ3 Eq. (1) gives the unit equation in two variables

Φ + Ψ = 1 (3)

where Φ,Ψ are V0-units. Because of characteristic p the number of solutions of such a
unit equation can be infinite.

For example, if V0 is just the set of infinite valuations and η,1 − η are both units of oK

then also ηκ , (1 − η)κ is a solution of (3) for every exponent κ = p�. Hence, there exist
solutions of arbitrary large heights in this situation.

The subsequent lemma shows that for any finite subset V0 of V , the group of V0-units
of K contains only a finite number, say s, of V0-units η which are not p�th powers and for
which also 1 − η is a V0-unit. We denote the set of these units by {η1, . . . , ηs}.

Lemma 3.2. Let V0 be a finite subset of V . Assume that a V0-unit Φ in K is a solution
of (3). If Φ is not a p�th power of ηi (1 � i � s, � ∈ Z

�0) then Φ belongs to a finite subset
of K which can be calculated.
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For the proof we refer to [6, Lemma 11, p. 98]. The proof starts by assuming that Φ is
not a pth power in K and therefore also provides the means to calculate the ηi .

4. Application to Thue equations

4.1. Preliminaries

We want to apply these results to (relative) Thue equations over K . Let

F(X,Y ) :=
n∑

i=0

AiX
n−iY i ∈ oK [X,Y ]

be a binary homogeneous form of degree at least 3. Without loss of generality (cf. [4,
p. 20]) we can assume that F is monic in X, i.e., A0 = 1. The polynomial F(X,1) ∈ oK [X]
is required to be separable and irreducible. Then for arbitrary m ∈ oK the equation

F(x, y) = m in x, y ∈ oK

is called a Thue equation (over K). Denote by α a zero of F(x,1) in K , let L = K(α) and
oL the integral closure of k[t] in L. Assume that k is the full constant field of L, too. If
x, y ∈ oK is a solution of the Thue equation then

F(x, y) = NL/K(x − αy) = m. (4)

Denote by γ (j) (j = 1, . . . , n) the conjugates of any γ ∈ L over K . Assume that
(x, y) ∈ o2

K is a solution of (4). Then β = x − αy is of norm m, that is β can be repre-
sented in the form

β = x − αy = μ · η (5)

where η is a unit in L and μ is an element of a finite set S of non-associated elements of L

of norm m over K . For the solution of the corresponding norm equation we use the usual
methods from algebraic number theory, i.e., calculate suitable S-units [3]. Those, together
with Dirichlet’s unit theorem (cf., e.g., [11]), can be easily transfered to the function field
case, too.

Denote by η1, . . . , ηr a set of fundamental units in L (that can be calculated by the
computer algebra system KASH [2]). Setting k∗ = 〈η0〉, there are integer exponents
a0, a1, . . . , ar such that

β = x − αy = μ · ηa0 · ηa1 · · ·ηar
r . (6)
0 1
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For fixed distinct i, j, k (with 1 � i, j, k � n) set Lijk = L(α(i), α(j), α(k)) with genus g.
Denote by V0 a finite set of valuations of Lijk containing the infinite valuations and such
that

v
(
α(i) − α(j)

) = 0, v
(
α(j) − α(k)

) = 0, v
(
α(k) − α(i)

) = 0 if v /∈ V0

and

v
(
μ(i)

) = 0, v
(
μ(j)

) = 0, v
(
μ(k)

) = 0 if v /∈ V0.

Siegel’s identity (holding trivially for any solution, see [4, Chapter 3]) gives

(
α(i) − α(j)

)
β(k) + (

α(j) − α(k)
)
β(i) + (

α(k) − α(i)
)
β(j) = 0. (7)

By the fundamental Lemma 3.1

τijk = (α(j) − α(k))β(i)

(α(i) − α(j))β(k)

is either of bounded height or is contained in L
p
ijk . In the following the height function is

applied always in Lijk .

4.2. Effective upper bounds for the solutions of Thue equations

In case Eq. (4) has only finitely many solutions we derive an upper bound for the
heights of the solutions. If the equation has only finitely many solutions, then there must
be i, j, k such that τijk is not a pth power in Lijk . We keep the above notation and set
A = max(H(α(i),H(α(j)),H(α(k))).

Theorem 4.1. If τijk is not a pth power, then Eq. (4) has only finitely many solutions and
for all solutions (x, y) we have

max
(
H(x),H(y)

)
� 11A + 1

n
H(μ) + 4g − 4 + 2

∑
v∈V0

degv.

Proof. Applying Lemma 3.1 we get

H(τijk) � 2g − 2 +
∑
v∈V0

degv = c1.

This implies

H

(
β(i)

(k)

)
= H

(
x − α(i)y

(k)

)
� H(τijk) + H

(
α(i) − α(j)

(j) (k)

)
� c1 + 4A = c2.
β x − α y α − α
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Using an argument of Mason [6, Chapter II.1] for y �= 0 we have

x

y
= α(k)β(i)/β(k) − α(i)

β(i)/β(k) − 1

whence

H

(
x

y

)
� 2A + 2c2.

By

yn = μ∏n
h=1

(
x
y

− α(h)
)

we derive

nH(y) � H(μ) + n

(
H

(
x

y

)
+ A

)

whence the assertion follows for y. The bound for x can be obtained similarly. �
4.3. An algorithm for calculating the solutions of Thue equations

We now turn to finding the solutions of Eq. (4).

Case I. Consider first the case when τijk is of bounded height. Similarly as in the proof of
Theorem 4.1 we obtain

H

(
x − α(i)y

x − α(k)y

)
� H(τijk) + H

(
α(i) − α(j)

α(j) − α(k)

)
� c1 + H

(
α(i) − α(j)

α(j) − α(k)

)
= c′

2. (8)

By (6) we have

x − α(i)y

x − α(k)y
= μ(i)

μ(k)

(
η

(i)
1

η
(k)
1

)a1

· · ·
(

η
(i)
r

η
(k)
r

)ar

whence using (8) we obtain

H

((
η

(i)
1

η
(k)
1

)a1

· · ·
(

η
(i)
r

η
(k)
r

)ar
)

� c′
2 + H

(
μ(k)

μ(i)

)
= c3.

This means for any infinite valuation v of Lijk we have

a1 · v
(

η
(i)
1

η
(k)

)
+ · · · + ar · v

(
η

(i)
r

η
(k)

)
� c3.
1 r
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Note that by interchanging i and k we get the same expression on the left-hand side with
opposite sign: for this reason the inequalities are also valid with absolute values:

∣∣∣∣∣a1 · v
(

η
(i)
1

η
(k)
1

)
+ · · · + ar · v

(
η

(i)
r

η
(k)
r

)∣∣∣∣∣ � c3. (9)

Note that the units in the above formula have zero values at finite valuations. The in-
equalities of type (9) (obtained for different choices of i, k) can be used to determine all
possible values of the exponents a1, . . . , ar .

For any possible exponent vector a1, . . . , ar we can determine η = η
a1
1 · · ·ηar

r in (5).
Then the system of equations

x − α(1)y = μ(1) · η(1), x − α(2)y = μ(2) · η(2)

can be used to determine the corresponding x, y.

Case II. If in (7) we have

τijk = (α(j) − α(k))β(i)

(α(i) − α(j))β(k)
∈ L

p
ijk,

then using (5) we obtain

(α(j) − α(k))μ(i)

(α(i) − α(j))μ(k)
· η(i)

η(k)
∈ L

p
ijk.

Here the last term is a unit in Lijk hence for any finite valuation v of Lijk

v

(
(α(j) − α(k))μ(i)

(α(i) − α(j))μ(k)

)

must be divisible by p. This usually does not hold and there is no Case II solution. Other-
wise, τijk is a pth power, say τijk = ψ

p
ijk , we replace τijk by ψ

p
ijk and repeat the argument.

Remark. In the above calculations several elements (e.g., α(i) − α(j)) are contained in
subfields of type Lij = K(α(i), α(j)) of Lijk . Since for elements in Lij the values at any
valuation of Lijk can be easily calculated from the values of the corresponding valuations
of Lij , hence in fact almost all calculations can be performed in the subfields Lij which
are much easier to deal with, especially for large degrees n.

5. Examples

Example 1. In the first example we do not need to apply the fundamental lemma.
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Let k = F5, let K = k(t), let α be a root of

y3 + t7 + t = 0

and let L = K(α). Consider the Thue equation

NL/k(t)(x − αy) = 1 in x, y ∈ k[t]. (10)

Denote by α(1), α(2), α(3) the conjugates of α. Using symmetric polynomials we have

α(3) = −α(1) − α(2)

and substituting it into α(1)α(3) + α(2)α(3) + α(1)α(2) = 0 we obtain

(
α(2)

)2 + α(1)α(2) + (
α(1)

)2 = 0

whence

α(2) = 4α(1) ± α(1)
√−3

2
= 3

(
4α(1) ± α(1)

√
2
)
. (11)

Observe that
√

2 is contained in F25, a quadratic extension of K , hence in this case

M = L
(
α(1), α(2), α(3)

) = F25(t)(α).

Denote by w a generating element of the multiplicative group F
∗
25 of F25 with

2 = w6, 3 = w18, 4 = w12.

By (11) we have

α(2) = w16α(1), α(3) = w8α(1).

Siegel’s identity gets the form

w8(x − α(1)y
) + (

x − α(2)y
) + w16(x − α(3)y

) = 0. (12)

In our case M has one infinite valuation. In the above equation all terms are units hav-
ing zero values at all finite valuations. By the product formula their value at the infinite
valuation is also 0, hence they are contained in the constant field F25.

Equation (12) leads to the unit equation

w4 x − α(1)y

(3)
+ w20 x − α(2)y

(3)
= 1
x − α y x − α y
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which can be written in the form

ε1 + ε2 = 1 in ε1, ε2 ∈ F
∗
25. (13)

If ε1, ε2 are solutions of this equation, then

x − α(1)y = ε1w
4(x − α(3)y

)
, x − α(2)y = ε2w

20(x − α(3)y
)
, (14)

hence (10) gets the form

ε1ε2
(
x − α(3)y

)3 = 1 (15)

whence for the solutions ε1, ε2 of (13) the 1/(ε1ε2) must be a cube in F
∗
25.

We determined all such solutions ε1, ε2 of (13), calculated the corresponding x − α(3)y

from (15) and determined x, y from the system of linear equations (14). We found, that the
only integer solution is x = 1, y = 0.

Example 2. Let k = F11,K = k(t), let α be a root of

y3 − ty + t3 = 0

and let L = K(α). Consider the Thue equation

NL/k(t)(x − αy) = 1 in x, y ∈ k[t]. (16)

Denote by α(1), α(2), α(3) the conjugates of α. Using symmetric polynomials we have

α(3) = −α(1) − α(2)

and substituting it into α(1)α(3) + α(2)α(3) + α(1)α(2) = −t we obtain

(
α(2)

)2 + α(1)α(2) + (
α(1)

)2 − t = 0

whence

α(2) = −α(1) ± √−3(α(1))2 + 4t

2
. (17)

The minimal polynomial of the square root is

z6 + 5tz4 + 9t2z2 + 5t6 + 7t3.

The function field M = F11(t)(z) contains α(1), α(2), α(3). By

z2 = −3
(
α(1)

)2 + 4t
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we have

(
α(1)

)2 = −z2 + 4t

3

whence

α(1) = 6

t4

(
4t3 + 6t2z2 + tz4).

Further we obtain

α(2) = −α(1) + z

2
, α(3) = −α(1) − z

2
.

For any 1 � i � 3 let j = i +1 (mod 3), k = i +2 (mod 3) (taking 3 in case of 0 remainder)
and let

γi = (
α(j) − α(k)

)(
x − α(i)y

)
.

Then Siegel’s identity gets the form

γ1 + γ2 + γ3 = 0. (18)

The field M has genus 1. It has three infinite valuations, all of degree 2. The x − α(i)y are
units, having nonzero values only at the infinite valuations. The (α(i) −α(j))/(α(j) −α(k))

have nonzero values all together for 6 finite valuations, all having degrees 1 or 2, the sum of
the degrees is 9. Denote by V0 the set of these 6 finite and the three infinite valuations of M .
Then by the fundamental Lemma 3.1 γi/γj is either of bounded height, or is contained
in M11.

Case I. Assume

H

(
γ1

γ3

)
� 2 · 1 − 2 + 15 = 15.

This implies

H

(
x − α(1)y

x − α(3)y

)
� 15 + H

(
α(1) − α(2)

α(2) − α(3)

)
= 17. (19)

In our case K has unit rank 1. The fundamental unit is

ε = 3t + 1 + 3α.

The values

v

(
ε(i)

(k)

)

ε
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(at infinite valuations) are ±3. Hence by (19) and (9) we have

x − αy = μ · εa

with a root of unity μ in k, where

3 · |a| � 17

hence

|a| � 5.

The possible values of a were tested and we found only the solution x = 1, y = 0 for a = 0
and x = 3t + 1, y = 8 for a = 1.

Case II. To exclude γ1
γ3

∈ M11 we consider

γ1

γ3
= α(2) − α(3)

α(1) − α(2)
· x − α(1)y

x − α(3)y
.

The second term on the right-hand side is a unit, hence

v

(
α(2) − α(3)

α(1) − α(2)

)

should be divisible by 11 at all finite valuations v. This is not satisfied, however. (Similarly
for γ1/γ2 and γ2/γ3.)

Example 3. Let k = F3, K = k(t), let α be a root of

y3 + (
t2 + 2

)
y2 + (

2t2 + 2
)
y + 2 = 0

and let L = K(α). Consider the Thue equation

NL/k(t)(x − αy) = 1 in x, y ∈ k[t]. (20)

Denote by α(1), α(2), α(3) the conjugates of α. Using symmetric polynomials we have

α(3) = −t2 − 2 − α(1) − α(2)

and substituting it into α(1)α(3) + α(2)α(3) + α(1)α(2) = 2t2 + 2 we obtain

(
α(2)

)2 + α(2)
(
α(1) + t2 + 2

) + (
α(1)

)2 + α(1)
(
t2 + 2

) + 2t2 + 2 = 0
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whence

α(2) = −(α(1) + t2 + 2) ± √
α(1)(t2 + 2) + t4 + 2t2 + 2

2
. (21)

The minimal polynomial of the square root is

z6 + z4(t4 + t2 + 1
) + z2(t8 + 2t6 + 2t2 + 1

) + 2t8 + 2t4 + t6 + 2.

The function field M = F3(t)(z) contains α(1), α(2), α(3). By

z2 = α(1)
(
t2 + 2

) + t4 + 2t2 + 2

we have

α(1) = z2 − t4 − 2t2 − 2

t2 + 2
.

Further we obtain

α(2) = −α(1) − t2 − 2 + z

2
, α(3) = −α(1) − t2 − 2 − z

2
.

For any 1 � i � 3 let j = i +1 (mod 3), k = i +2 (mod 3) (taking 3 in case of 0 remainder)
and let

γi = (
α(j) − α(k)

)(
x − α(i)y

)
.

Then Siegel’s identity gets the form

γ1 + γ2 + γ3 = 0. (22)

The field M has genus 7. It has six infinite valuations, all of degree 1. The x − α(i)y are
units, having nonzero values only at the infinite valuations. The (α(i) −α(j))/(α(j) −α(k))

have nonzero values all together for six finite valuations, all having degrees 4. Denote by V0
the set of these six finite and the six infinite valuations of M . Then by the fundamental
Lemma 3.1 γi/γj is either of bounded height, or is contained in M3.

Case I. Assume

H

(
γ1

γ3

)
� 2 · 7 − 2 + 24 = 42.

This implies

H

(
x − α(1)y

(3)

)
� 42 + H

(
α(1) − α(2)

(2) (3)

)
= 48. (23)
x − α y α − α
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In this case K has unit rank 2. The fundamental units are

ε1 = 1 + 2t2α + 2α2, ε2 = t2 + 1 + (
2t2 + 1

)
α + 2α2.

Considering the values of

v

(
ε(i)

ε(k)

)

(at infinite valuations) by (23) and (9) become

x − αy = μ · εa1
1 · εa2

2

with a root of unity μ in k, where

|a1 + 2a2| � 24, |a1 − a2| � 24,

whence

|3a1| � |a1 + 2a2| + |a1 − a2| � 48,

that is |a1| � 16. Searching over the set

−16 � a1 � 16, a1 − 24 � a2 � a1 + 24

we found the following solutions

(x, y) = (
1,2t2 + 1

)
, (0,2), (1,1), (1,0),

(
2t2 + 2,2t2 + 1

)
,

(
t4 + 2t2 + 1,2t2 + 1

)
.

Case II. To exclude γ1
γ3

∈ M3 we consider

γ1

γ3
= α(2) − α(3)

α(1) − α(2)
· x − α(1)y

x − α(3)y
.

The second term on the right-hand side is a unit, hence

v

(
α(2) − α(3)

α(1) − α(2)

)

should be divisible by 3 at all finite valuations v. This is not satisfied, however. (Similarly
for γ1/γ2 and γ2/γ3.)

Example 4. Let k = F5,K = k(t). For simplicity take A = t2 + t + 1; B = t4 − 1. Let α

be a root of

y4 − 2B2y2 + A + B2 = 0,
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that is α =
√

B + √−A, and let L = K(α). This function field L obviously has N =
K(

√−A) as a subfield. Consider the Thue equation

NL/k(t)(x − αy) = 1 in x, y ∈ k[t]. (24)

Denote by α(i) the conjugates of α (i = 1, . . . ,4).
If we let

α(1) =
√

B + √−A, α(2) = −
√

B + √−A

then by α(1)α(2) = √
A + B2 the element β = α(1) + α(1)α(2) generates a function field M

of degree 8 over K containing all conjugates of α. The element β is defined by the poly-
nomial

z8 + (−4B − 4A − 4B2)z6 + (
4BA + 4B3 + 6B2 + 2A + 6A2 + 6B4 + 12AB2)z4

+ (−4BA + 12A2 − 12B4A + 16AB2 + 4BA2 + 4B5 + 4B4 − 12A2B2 − 4A3

− 4B3 + 8B3A − 4B6)z2

+ (
6B4A2 + B4 − 4B5 + 6B6 + 2A3 + A2 + 2AB2 + 4B6A − 4B7 − 8B3A

+ 14B4A + A4 + 4A3B2 + 10A2B2 − 4BA2 − 12B5A − 4BA3 − 12A2B3 + B8)
= z8 + (

t8 + 4t4 + t2 + t + 1
)
z6 + (

t16 + 2t10 + 2t9 + 2t8 + 2t4 + 2t3 + 3t2

+ 2t + 4
)
z4 + (

t24 + 3t20 + 3t18 + 3t17 + 2t16 + t14 + t13 + 4t12 + t11 + 4t10

+ t9 + 2t8 + t7 + t6 + 2t4 + 4t3 + 4t2 + 2
)
z2

+ (
t32 + 3t28 + 4t26 + 4t25 + t24 + 4t22 + 4t21 + 2t19 + 2t18 + t17 + 3t15

+ 2t14 + t13 + t12 + 2t11 + 3t10 + 4t8 + 2t7 + 3t6 + 4t5 + 2t4 + 2t3 + 4t2).
By

β − α =
√

A + B2 (25)

we get

β2 − 2βα + α2 − A − B2.

One of the roots of this equation satisfies the quartic defining polynomial of α, giving
the embedding of α(1) into M . The other conjugate can be obtained by (25), the last two
conjugates are the negatives of these ones.

The field K has unit rank 3, we embed all conjugates of the fundamental units into M .
(These units are far too complicated to include explicitly here.) Let
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γ1 = (
α(2) − α(3)

)(
x − α(1)y

)
,

γ2 = (
α(3) − α(1)

)(
x − α(2)y

)
,

γ3 = (
α(1) − α(2)

)(
x − α(3)y

)
,

then we have

γ1 + γ2 + γ3 = 0. (26)

The field M has genus 13. It has eight infinite valuations, all of degree 1. The x −α(i)y are
units, having nonzero values only at the infinite valuations. The quotients

α(1) − α(2)

α(1) − α(3)
,

α(2) − α(3)

α(2) − α(1)
,

α(3) − α(1)

α(3) − α(2)

have nonzero values all together at four finite valuations, two of them being of degree 4,
the other two of degree 6. Denote by V0 the set of the eight infinite and these four finite
valuations. Then by the fundamental Lemma 3.1 γi/γj is either of bounded height, or is
contained in M5.

Case I. Assume

H

(
γ1

γ3

)
� 2 · 13 − 2 + (8 + 12 + 8) = 52.

This implies

H

(
x − α(1)y

x − α(3)y

)
� 52 + H

(
α(1) − α(2)

α(2) − α(3)

)
= 65. (27)

As we mentioned above, K has unit rank 3. We denote by ε1, ε2, ε3 the fundamental units.
Considering the values of

v

(
ε
(i)
h

ε
(k)
h

)

(at infinite valuations) for h = 1,2,3, by (27) and (9) we get

x − αy = μ · εa1
1 · εa2

2 · εa3
3

with a root of unity μ in k where among others the exponents satisfy

|50a1 + 6a2 + 54a3| � 65,

|51a1 + 5a2 + 54a3| � 65,

|49a1 + 3a2 + 54a3| � 65.
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There are about 8000 solutions (a1, a2, a3) of the above system of linear inequalities.
Testing all possible exponent vectors we found that Eq. (24) has only the trivial solu-
tions (x, y) = (1,0), (2,0), (3,0), (4,0) (these yield in fact the products of x − αy for
x = 1, y = 0 with roots of unity in k).

Case II. To exclude γ1
γ3

∈ M5 we consider

γ1

γ3
= α(2) − α(3)

α(1) − α(2)
· x − α(1)y

x − α(3)y
.

The second term on the right-hand side is a unit, hence

v

(
α(2) − α(3)

α(1) − α(2)

)

should be divisible by 5 at all finite valuations v. This is not satisfied, however. (Similarly
for γ1/γ2 and γ2/γ3.)

Computational experiences. All computations used in the examples were performed by
using the computer algebra system KASH [2], running on 1 GHz PC-s. The calculations
took just some seconds with the exception of the test of about 8000 possible exponent
vectors in Example 4 which took about 90 minutes.
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