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1. INTRODUCTION 

Let R be a commutative local ring with identity 1 and a unique maximal 
ideal A. Let V denote a free module of rank IZ over R with an alternating 
bilinear form f: Vx V+ R. We assume R/A #F,. However, V may have 
rad V#Qr. 

A linear automorphism e of V is called an isometry on V if (T satisfies 
f(ax, oy) = f(x, y) for all x, y in V. The set of all isometries is a subgroup 
of the automorphism group of V which is called a symplectic group, 
denoted by Sp( V). For a submodule U of V we define U’ = {u E VI 
f(v, U) = 0} and rad U= Un U’. Then U’ is called the orthogonal com- 
plement of U, and rad U the radical of U. For submodules U and W of V, 
by U I W we mean U@ W with f (U, W) = 0. We define 

Sp,(V)= {cp~Sp(V)Icp=l onrad V}. 

For any element a in R and any element v in V we can define an 
isometry T,., called a transvection with coefficient a and axis v’ by the 
formula 

T,,,z = z + f (z, u) . a . v, ZE v. 

For a subset S of V, T,,, = { T,,s 1 a E R, SE S}, and T,(S) is the sub- 
group of Sp( V) generated by TR,S. 

Let S be a subset of V. If for X, y in S there exists a sequence si, . . . . s, in 
S such that s, = x, s, = y, and f(si, si+ ,) = unit for i = 1, . . . . r - 1, then we 
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say that x is connected to y in S. If any two vectors x, y in S are connected 
in S, then S is said to be connected. 

In 1983, Brown and Humphries [l] showed the following: 

For a finite subset S of V\rad V, T,(S) = Sp,( V) if and only if S spans V and S is 
connected 

under the assumption that R is a field and R # F2. In this paper, we shall 
extend this theorem to a local ring R with R/A # F2 in Theorem 3.3. 

However, in our proof we do not apply their forest technique which 
reduces connected sets to forests. We prove the theorems rather 
algebraically. As a result the proof will be shorter, and as we see later the 
assumption that S is finite can be dropped (the author knew recently that 
they had also dropped that assumption on finiteness for S). 

As an easy consequence of Theorem 3.3 we shall show in Theorem 3.4 
that we can choose n vectors u, O, x1, . . . . x,-~ in S such that TR,+, T,,,, 
T 1,x, 3 -..9 T ,,X,-z generates T,(M), where M= {x E Vlf(x, V) = R}. In 
Theorem 3.5 we prove that if R is generated by r elements as an additive 
group then T,(M) is generated by n + r - 1 transvections in T,,,. 

Note that if R is a field then T,(M) = Sp,( V), and ifj Vx V+ R is non- 
singular, i.e., the mapping L’ + Hom,( V, R) given by x ~f( , x) is an 
isomorphism, then T,(M) = Sp( V), and in general Sp,( V) c T,(M) c 
Sp( V). In Section 4 we give some applications of these theorems to the 
generation of Sp,(L’ ’ ), where L is an arbitrary hyperbolic space of V. 

Finally, we note that throughout this paper our assumption R/AZ F2 
will be used only one time in the end of the proof that (c) implies (a) in 
Theorem 3.3. 

Recently, Brown and Humphries [2] extended their results to the case 
R=F,. 

This paper was written while the author was at the University College of 
North Wales, United Kingdom, from December 1983-February 1984 as a 
delegated research worker of Josai University, Japan. The author is grateful 
to the Department of Pure Mathematics, University College of North 
Wales, for its hospitality, and to Josai University for its financial support. 

2. PRELIMINARIES 

To simplify the notation from now on we write xy instead off(x, y) for 
x, y in V. 

Two vectors x and y in I’ are called a hyperbolic pair if xy = 1, and a 
plane H = Rx @ Ry is called a hyperbolic plane. Clearly, if u and v are con- 
nected then H = Rue Rv forms a hyperbolic plane. We define an isometry 
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AonHbyA:x+yandy + -x. For a unit a in R, O(a) is an isometry on 
H defined by @(a): x + ax and y -+ a-‘~. We know that if H is a hyper- 
bolic plane then V = H I HI. 

LEMMA 2.1. If H = Ru @ Rv is a hyperbolic plane then Sp( H) = 
L({u, v>). 

Proof. For u’=(uo))’ u we have UU’= 1 and T,({u, v})= T,({u,u’}). 
Hence we may assume uv = 1. Put G = TR( { u, v}). Then A = T,,, T,., T,,, is 
in G and @(a) = A-‘T,,, T,-l,,T,,, is also in G for any unit a in R. 

Take any ~7 in Sp( H) and let ou = au + bv for a, b in R. Since R = uV = 
(au)(aV) = (au) V, a or b is a unit. Using A, we may assume a is a unit. 
Then, @(a-‘) TPu-~h,vo fixes u and so maps v to u+cu for some c in R. 
Hence, T,.,,@(c’) T-,-I~,~IJ = 1. Q.E.D. 

From now on, if CJ is an isometry in Sp(H), then we shall use the same 
notation 0 for its natural extension c I 1. 

3. MAIN THEOREM 

A vector x in V is called a maximal vector if XV = R and the set of all 
maximal vectors of V is denoted by M in this paper. 

LEMMA 3.1. (a) If M # 0, then M is a connected spanning set of V. 
(b) T,(M) acts transitively on M. 

Proof. Take any two vectors x and y in M. Then, for some two vectors 
u and v in M we have xu = unit and yv = unit. Let z = u if yu = unit, z = u if 
xv = unit, and z = u + v if otherwise. Then, xz = unit and zy = unit. So A4 is 
connected. Set a - ’ = xz and b ~ ’ = zy. Then, T,,, ~ ..x = z and Tb,.v _ ;z = y. 
Thus, (b) holds. Finally, we show that M spans I’. Suppose that there 
would exist a vector z which is not contained in the module spaned by M. 
Then clearly z would not be a maximal vector. Therefore, for any x in M, 
x+z would be a maximal vector as a sum of maximal one and not 
maximal one. But, x + z is not in M, a contradiction. Q.E.D. 

Let A be the unique maximal ideal of R. Then we have three canonical 
homomorphisms R -+ R/A, V + V/AV and Sp( V) -+ Sp( V/AV). For these 
three maps we shall use the same notation z or -. In the above we have 
tit7 = ZZ and 6.C = ?CC for a in R, v in V and CJ in Sp( V). Therefore, P = V/A V 
is regarded as an n-dimensional alternating space over the field i? = R/A. 

LEMMA 3.2. Let U be a submodule of V. If D = P then U = V. 
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ProoJ Let {x1, . . . . x,,} be a base for I/. Suppose {U,, . . . . zin} spans P for 
ui in U. Express u1 =a,.-~, + ... + a,~,. Then, at least one ai, say a,, is a 
unit. Hence, { ul, u2, . . . . x,} spans I/. Next, express u2 = b,u, + b,x, + 
. . . + b,x,. Then, at least one of b,, . . . . b, is a unit, since U1 and U, are 
linearly independent in ii. Repeat this method. Q.E.D. 

THEOREM 3.3. For a subset S# @ in M, (a), (b), and (c) are equivalent. 

(a) T,(S) acts transitively on A4. 

F--J) T,(S) = T,(M). 
(c) S is a connected spanning set of V. 

Proof. That (a) implies (b) is clear, using Td,.” T,;, T$ = Tc,Td.JX. 
Next, we show that (b) implies (c). Take any x in M. Then, there exists y 

in A4 such that yx = unit. Therefore, if we take cr in T,(S) with (T = T,,,, 
then the identity cy = T,,, y implies that x is contained in the space U 
spanned by S. Thus, M c U. Since M spans V by Lemma 3.1, we have 
U = V, i.e., S spans V. 

Now suppose that S were not connected. Thus, S can be expressed as a 
disjoint union of two non-empty subsets B and C with BC = { 0 > modulo 
A. If B would span V then CV= (0) modulo A, a contradiction. So, the 
space U spanned by B does not contain C. By Lemma 3.2 we can take s in 
B and t in C\U with i$ U. Clearly T,(S) can not carry s to t. This is a 
contradiction, since by (b) of Lemma 3.1 T,(M) is transitive on M. 

Finally, we show that (c) implies (a). If S is infinite then we can choose a 
finite subset S’ of S spanning V, since the rank of V is finite. Further, by 
adding only a finite number of elements S” of S to S’, we can make S’ u S” 
connected. Thus, we may assume that S is finite. 

Now, since S is connected, there exists u and v in S with uu = unit. Put 
H=Ru@Rv. We write D=S\{u,u}. If D#@, we define B=(sEDI 
Hs= R) and C= D\B. 

Since S is connected, if C # Qr then B # @ and there exist s in B and t in 
C with st = unit. Write t’ = T,,st. Then, by T,,, T,,, T;;,’ = T,:,,, we see 
T,(S) = T,J(S\t) u t’). Further, (S\t) u {t’} still spans V and is connec- 
ted. Moreover Ht’ = R. This allows us, exchanging t and t’ in S and 
repeating this method, to assume C = 0, i.e., B = D. 

Now, we split V = H I H’. Set D = { si 1 i E Z} and express for each i in Z, 

s; = uju + biv + xi, ai, biE R, xie H’. 

Then {xi} span HI, since S spans V. Further, by D = B, we have a, = unit 
or bj = unit for each i in I. Note that for any c in Sp(H), GT,,,~~- ’ = T,;,, is 
in T,(S), since Sp(H) = T,( { u, u}) by Lemma 2.1. In particular, since any 
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maximal vector in H can be carried to u by a suitable G in Sp(H), 
( T,,,+,, 1 i E Z} are in TR(S). Let 

ti = u + xj, i E I. 

Now, take any x in M. We show that x can be carried to tl by a product 
of elements of T,(S), which completes our proof. 

Write 

x = cu + dv + y, c,d~R, YEHI. 

If neither c nor d are units, then for some xi we have yxj = unit, since 
XE M. Therefore, mapping x by T ,,,,, we may assume c= unit. Further, 
mapping x by a suitable element in Sp(H), we may assume 

x=u+y. 

Let p be a unit such that p - 1 is also a unit, in fact such p exists, since 
R/A # F2. Write y=Cit,eixi, eiE R. Take any i in I. If xt, is not a unit 
then (@(p-‘)x) t, is a unit. So we may assume xti=unit. Then, putting 
e = -(xt,)-’ e;, T,,,,x has a maximal vector as its H part and has zero as a 
coefftcient on xi. Thus, repeating this method for all i in I, we may assume 
that x is a maximal vector in H, and so x is carried to u by a suitable 
element in Sp(H). Q.E.D. 

R. Brown and S. P. Humphries’ results now immediately follow from our 
theorem, because if R is a field then M = V\rad V and Sp,( V) = T,(M). 

THEOREM 3.4. Let S be a subset of M which is connected and spans V. 
Then, there exist n vectors {u, v, x, , . . . . x, ~ 2} in S such that { TR(u), T,,,, 
T IJ, 3 . ..Y T l,.l;n-2} generates T,(M). Further, we can choose u arbitrarily in S 
and v also arbitrarily among those vectors in S with uv = unit. 

Proof: First we show that we can choose n vectors in S which are 
connected and span V. 

Take any connected vectors u and v in S, i.e., MU = unit. Clearly {U, U} 
are connected and free in l? Set S’ = {u, v, x,, . . . . x,}, xi E S and suppose 
that s’ is connected and free. Let W be the space spanned by S’. If W $ V 
then by Lemma 3.2 we can choose a vector x,, , in S such that Xi+ i is not 
contained in m and fi+ , is connected to s’. Thus, we can choose n vectors 
,,,={ u, 0, XI, . . . . x,-2 } in S such that s” is connected and s” is a base for 
l? Then, S” is connected and by Lemma 3.2 it spans V. 

Therefore, by Theorem 3.3, { T,+, TR,“, T,,,, , . . . . TR,.r,m2 } generates 
T,(M). Here, we note that for any two vectors s, t in V if st = unit then, 
writing a = (st) -2, we have 
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Therefore, by the connectedness of {u, v, xl, . . . . x,- *}, we have our 
theorem. Q.E.D. 

THEOREM 3.5. Zf M# @ and R is generated by r elements as an additive 
group, then T,(M) is generated by n + r - 1 transvections in T,,,. 

Proof By Lemma 3.1, M is a connected spanning set of V. Hence, 
applying Theorem 3.4, for some n vectors xi, . . . . x, in M, T,(M) is 
generated by T,,,, , T,,,z, . . . . T,,,n. Further, since T,,, Tb,x = T, fb,x for any 
a, b in R and x in V, we see that T,,,, is generated by r transvections. Thus, 
we have the theorem. Q.E.D. 

4. GENERATION OF Sp,(LIrad V) 

For a subset X of V we define a subgroup Sp( V, X) of Sp( V) as 

Sp(V,X)=($ESp(V)I+=lonX). 

According to this notation, the subgroup Sp,( V) defined in the Introduc- 
tion is Sp( V, rad V). 

An orthogonal direct sum L = H, I ... -L H, of hyperbolic planes 
H 1, ..., H, is called a hyperbolic space. Clearly we have L’ = LL” and 
V= L I L’. For a hyperbolic space L of V we have 

radV=L’nLLI’=radL’=radL’l 

and 
L il=LIradV. 

Next, we shall show that two groups Sp( V, L’) and SpJL”) are 
isomorphic. Let (T be in Sp( V, L’). Then, since (aLI’) LI = oL’ ‘OLD = 
{0}, we have crL”cL”. Replacing 0 with (r-l, we have oLl’=L’I. 
This means that the restriction (T 1 Lll is an isometry in Sp(L”). Since 0 
fixes L’n L” =rad L”, G IL~l is in Sp,(L”). Thus, we have a restric- 
tion map 

x: Sp( v, LI.) + Spo(Lli) 

defined by x(a) = 01~11. 

THEOREM 4.1. For a hyperbolic space L of V, the restriction map 
x: Sp( V, L’) + Sp,(L”) is a group isomorphism. 

Proof. Since the injectivity and the group homomorphism of x is clear, 
we prove the surjectivity of x. Take any G’ in Sp,(L’ ‘). We shall show that 
G = (0’ 1 J I (1 Lo) is in Sp( V, LI). Then ~a = 0’ is clear. 
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First, by the definition of cr, c is a linear map on V. Since 0 = G’ on L’l, 
we have 

Thus, d is surjective. To show the injectivity of 0 we prove that 
Ker cr= (0). We have V= L I Ll. Letz=x+ybeinKeraforxELand 
y E LL. Then, since GZ = C’X + y = 0, we have y = -rs’x. Since x E L c L” 
and o’L~’ = Lll, y is in L”. And so z is also in L”. However, since 
a=a’on L” and g’ is injective, z must be zero. Thus, c is injective on V. 

That c preserves the form f: V x V + R is easy to see and hence c is in 
SP(V,L'). Q.E.D. 

By the theorem, we shall identify these two groups. We note that 
SpO(L1 ‘) = Sp(L I rad V, rad V). 

LEMMA 4.2. Let u, v, and w be vectors in M. Suppose uv = uw = 1. Then, 
we can map w to v by a product of two transvections in T,(M) without 
moving u. 

Proof Write H= Rue Rv and V= H 1 H’. Express w = au + v +z, 
a E R, z E HI. Then T, (u + z) T, ~ ,(u) maps w to v without moving u. 

Q.E.D. 

THEOREM 4.3. For a hyperbolic space L of V let M’ be the set of 
maximal vectors of V’ = L I rad V, i.e., M’ = {x E V’ 1 x V’ = R}. Then, 

Ts(M’)=Sp(V, L’). 

Proof As we mentioned above V’ = L’l. Further, by Theorem 4.1 we 
can identify Sp( V, L’) with Sp,(L”). So we show T,(M) = Sp,( V’). 

Now, since M’(rad v’) = {0}, T,(M) fixies rad V’. Hence, T,(M’)c 
Sp,( I”). To show the converse we prove that for any 0 in Sp,( I”), G is a 
finite product of elements of T,(M’). Let {u, v} be a hyperbolic pair in L. 
Hence MU = cucv = 1. In particular, {u, au} c M’. Therefore, we have 8 in 
T,(M) such that 8ou = u, because T,(M) acts transitively on M’ by (b) of 
Lemma 3.1. 

Further, by Lemma 4.2 we can carry 8ov to v by p in T,(M) without 
moving u. Thus, setting a’ = pea, we see a’ = 1 on H = Ru @ Rv. Split V’ = 
H I HI. Then a’HI = HI. Therefore, we can apply the above argument to 
a’ [*I. Thus, repeating this method we have p, 6,) . . . . p,8, in T,(M’) such 
thatp,0,...p,0,a= 1. Q.E.D. 

THEOREM 4.4. Let L, V’, and M’ be the same objects as in Theorem 4.3. 
Then, for any subset S # @ in M’, the following are equivalent: 
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(a) TJS) acts transitively on M’, 

(b) T,(S)=Sp(~J'), 

(c) S spans V’ and S is connected. 

ProoJ: This is a trivial consequence of Theorems 3.3 and 4.3. Q.E.D. 

THEOREM 4.5. Let L, V’, and M’ be the same objects as in Theorem 4.3, 
and let V’ be a free module of m = rank I/‘. Suppose that 4 # S c M’ and S is 
a connected spanning set of V’. Then S contains m vectors 

{ 4 v, XI, ...? x,,~~} such that Sp( V, Ll) is generated by (TR,+, T,,,, 
T I,\-,) ...Y T ,,r,-2}, where we can choose {u, v} as an arbitrarily hyperbolic pair 
in M’. 

ProoJ: Use Theorems 3.4 and 4.3. Q.E.D. 

THEOREM 4.6. Let L, V’, and M’ be the same objects as in Theorem 4.3. 
If v’ is a free module of m = rank V/’ and R is generated by r elements as an 
additive group, then Sp( V, Ll) is generated by m + r - 1 transvections in 
T R,M’. 

Proof: Use Theorems 3.5 and 4.3. Q.E.D. 
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