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Abstract

We introduce a type of generalized orbifold called an “orbifold composition”. We study their
topology and the extensions and deformations of the maps between them. As the main goal, we
obtain the theorems which yield the geometric realizations of amalgamated free products and HNN
extensions of 3-orbifold fundamental groups. They are extensions of results of Feustel (1972; 1973)
and Feustel and Gregorac (1973)1999 Elsevier Science B.V. All rights reserved.
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0. Introduction

We can say that there are three principal results in the classical 3-manifold theory.
The first one is Waldhausen’s classification theorem on Haken manifolds (1968). The
second one is the theorem on the geometric realization of the decomposition of the
fundamental group by Feustel [5,6] and Feustel and Gregorac [7]. The last one is the
torus decomposition theorem by Jaco and Shalen [11] and Johannson [10]. In each case,
the authors use mainly “cut-and-paste” methods, that is, the methods of modifications of
mappings, and cuttings and pastings of manifolds along certain surfaces.

In [22], Thurston addressed the conjecture that each piece of the torus decomposition
described above admits some geometric structure, and proved that Haken manifolds ad-
mit a hyperbolic structure. His work originated the modern 3-manifold theory, which
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is strongly related to differential geometry, especially to hyperbolic geometry. Solving
the Smith Conjecture, Thurston used orbifolds, which are a kind of generalized mani-
fold.

It is quite natural to extend results for manifolds to those for orbifolds. Indeed, Satake
proved the Gauss—Bonnet theorem for orbifolds [19], which first introduced the notion of
orbifolds. Let us consider the extensions of the above classical results for 3-manifolds.
Bonahon and Siebenmann [1] proved the toric orbifold decomposition theorem. As for
Waldhausen'’s classification theorem for orbifolds, Zimmermann [25] showed its analogue
under the assumption of the existence of geometric decompositions. Takeuchi [21] did this
for finitely good orbifolds, and Takeuchi and Yokoyama [23] classified a larger class of
orbifolds than the class classified in [21].

The remaining result is the geometric realization of the decomposition of the orbifold
fundamental group, which is the subject of this paper. In [21,23,24], the authors proved
some useful theorems. We use these, prove some others, and obtain the following two
results:

Theorem 7.6. Let M be a compact, orientable, and irreducibBeorbifold. Let S be a
closed, orientable, and nonsphericabrbifold. Suppose algebraically splits:rf’b(M)

as an amalgamated free produgdi1 x A2 | H1 = H>, ¢) and this splitting respects the
peripheral structure of\f. Then there exists a geometric splitting realizing the algebraic
splitting above.

Theorem 7.10.Let M be a compact, orientable, and irreducitieorbifold. Let S be a
closed, orientable, and nonsphericbrbifold. Suppose algebraically spIitSnf”’(M)

as an HNN extensionA, ¢ | t~1Hyr = Hj, ) and this splitting respects the peripheral
structure of M. Then there exists a geometric splitting realizing the algebraic splitting
above.

The statements of Theorems 7.6 and 7.10 are completely parallel to those of Feustel and
Gregorac’s theorems, which are as follows:

Theorem 0.1 [5,6]. Let M be a compact, orientable, and irreducilBemanifold. LetS

be a closed and orientabR:manifold which is not th@-sphere. Supposg algebraically
splits r1(M) as an amalgamated free produgti x A2 | H1 = Ha, ¢) and this splitting
respects the peripheral structure &f. Then there exists a geometric splitting realizing the
algebraic splitting above.

Theorem 0.2 [7]. Let M be a compact, orientable, and irreducitBemanifold. LetS be

a closed and orientabl@-manifold which is not th&-sphere. Supposg& algebraically
splits 1 (M) as an HNN extensiotd, ¢ | tHit~1 = Hp, ¢) and this splitting respects the
peripheral structure of\f. Then there exists a geometric splitting realizing the algebraic
splitting above.
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In this paper, for the reader’s convenience, we review some basic facts on orbifolds in
Section 1, and on group actions on trees in Section 2.

In Section 3, an orbifold composition is defined which is made from several orbifolds
by attaching them together through certain orbi-maps. In addition, we study coverings and
the fundamental group of an orbifold composition.

In Section 4, we focus on the universal covering. Kdie anz-orbifold composition and
X9, X be two suborbifold compositions derived froxnby cutting open along an — 1)-
suborbifold of X. We construct the universal covering¥fby the “tree construction” and
show thatr{"*(X) is the free product of¢"?(X°) and={"?(Xx1) with an amalgamation.

The HNN extension case is also investigated.

Section 5 concerns orbi-maps. We study the fixed points of a spherical subgroup of
the deck transformation group of the universal covering of a 3-orbifold. Lemma 5.9 gives
sufficient conditions for the extensions of orbi-maps from a discal 2-orbifold, spherical
2-orbifold, or the double of a ballic 3-orbifold. By this lemma we can do extensions and
constructions of orbi-maps under almost the same conditions as in the manifold case. From
this point of view the lemma is valuable in itself. In addition, its proof has the interesting
implication that we may examine group actions through the topology of orbifolds.

Theorem 6.1 states that each component of the inverse image of a certain 2-suborbifold
of X by an orbi-map from a 3-orbifold/ to X is an incompressible 2-suborbifold &f,
whereX is an orbifold composition with some conditions on extendability of orbi-maps.
We also prove some theorems (Theorems 6.2 and 6.3) which are used to decrease the
number of components.

In the concluding section, we state and prove the main theorems, which enable us to
realize the decompositions of the fundamental groups. Let us present an overview of the
proof of Main Theorem 7.6, to see how effective our preparation has been.

(i) Recall that the fundamental gromq”’(M) of a 3-orbifoldM is decomposed as

(A1x Az | HL= Hp, ¢),

where H is isomorphic to the fundamental grourq”’(S) of a closed, orientable
and nonspherical 2-orbifold. First we takeS x I and the orbi-coveringV;
associated witd; and construct an orbifold compositiot by attaching them.
Sections 4 and 5.2 are used here. This newly constructed spqiays a role
analogous to that of an Eilenberg—MacLane space.

(i) Make an orbi-mapf: M — X which induces an isomorphism fromf”’(M) to
70"t (X). For this, we need theorems from Sections 4 and 5.

(i) Each component of the inverse image 6f by f is an incompressible 2-
suborbifold by Theorem 6.1. We decrease the numbers of these components by
using Theorems 6.2 and 6.3 repeatedly. Finally, the inverse image has only one
componentF, which actually realizes the decompositiorvqrb(M).

The techniques developed in [21,23,24], and this paper, should prove very useful in the

study of 3-orbifolds by cut-and-paste methods.
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1. Preliminaries on orbifolds

Throughout this paper, all orbifolds are connected unless otherwise stated. For basic
facts on orbifolds, see [22,1,4,21]. We review some theorems required in using cut-and-
paste methods for 3-orbifolds. Theorems 1.1-1.3 are derived from equivariant theorems.
(See [8,9,17,18,24].)

Theorem 1.1 (Loop theorem)Let M be a good3-orbifold with boundaries. LeF be a
connecte@-suborbifold ing M. If Ker(nfrb(F) — nfrb(M)) # 1, then there exists a discal
2-suborbifold D properly embedded i such thath D ¢ F andd D does not bound any
discal2-suborbifold inF.

Theorem 1.2 (Dehn’s lemma)Let M be a good3-orbifold with boundaries. Ley be a
simple closed curve iAM — X M such that the order dfy] is n in nfrb(M). Then there
exists a discal suborbifol®?(n) properly embedded i with d D?(n) = y.

Theorem 1.3 (Sphere theorem).et M be a good3-orbifold. Let p:M — M be the
universal cover ofM. If wo(M) # 0, then there exists a spherical suborbifd§din M
such thafS] £ 0in 72(M), whereS is any component g —1(S).

The next corollary is derived directly from Theorem 1.3.

Corollary 1.4. Let M be a good3-orbifold. If M is irreducible, then for any manifold
coveringM of M, mo(M) = 0.

In the remaining part of this section, we demonstrate several propositions derived from
Theorems 1.1-1.3. The proofs are almost the same as in the case of 3-manifolds as found
in [23, Theorems 1.5-1.8].

Proposition 1.5. Let M be a good3-orbifold, F be a connected and incompressiale
suborbifold which i®-sided and properly embedded M, and N be the orbifold derived
from M by cutting open alond". Then,M is irreducible if and only if each component of
N isirreducible.

Proposition 1.6. Let M be a good and locally orientablg-orbifold, F be a connected
and incompressibl@-suborbifold which i2-sided and properly embedded M, and N
be the orbifold derived fromM/ by cutting open along'. Then, for any component’ of
N, Ker(@d™(N") — n9™(M)) = 1.

Let M be a good 3-orbifold and® a connected 2-suborbifold which is properly
embedded and 2-sided #. It is clear that if Ketx{™(F) — n%®(M)) = 1, thenF
is incompressible id/. Under some additional hypotheses, the converse stands.
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Proposition 1.7. Let M be a good and locally orientabRorbifold, andF be a connected
2-suborbifold which i®-sided and properly embedded M. If F is incompressible, then
Ker(zO®(F) — 79®(M)) = 1.

Proposition 1.8. Let M be a good3-orbifold, and F be a connecte8-suborbifold which
is 2-sided and properly embedded M. Let p’: M’ — M be a covering and?’ be a
component op’~1(F). Then
(i) if Fis incompressible in/’, thenF is incompressible i/,
(i) if M is locally orientable andr is incompressible idZ, thenF’ is incompressible
in M’.

2. Preliminaries on some groups acting on trees

In [20], some fixed point theorems about group actions on trees are proved. Here we use
restricted forms as follows.
Let T be atree, i.e., a connected and simply connected 1-complexGarela group
simplicially acting onT'. Letn > 1 be an integer. Put
Gp,={a1,...,an |a1 =--.=ay" =(aiaj)ﬁ’~1 =1 1<i<j<n),

whereq;, f; ; > 2 are integers.

Proposition 2.1. Let p1, p2 € T be fixed points of € G and¢ be the unique simple path
from p1 to p2. Then any vertex and edge émare fixed byg.

Proof. Sincepi, p2 are fixed points of, and¢ is simple,g(¢) is a simple path fronp,
to p2. Thuse = g(¢). Observe that any vertex and edge afre fixed byg. O

Lemma 2.2. If G = G, thenT has a fixed vertex afr,, or there is an edgé& of T such
thatG, (E) = E andG,|E is orientation reversing.

Proof. This follows directly from [20, Theorem 15, p. 18] and [20, Corollary 2, p. 6411

3. Orbifold compositions

From now on, we assume that all orbifolds are good, connected, and locally orientable,
unless otherwise stated.

Definition 3.1. Let I, J be countable setsX; (i € I) be n-orbifolds, Y; (j € J) be
(n — 1)-orbifolds. Letfg Y; x e = Xi(j,¢ be orbi-maps such thafg)* are monic where
jeJ, i(j,e) €el, 3_0 1 Then we callX = (X;,Y; x [0, 1], f )161,618 =01 ann-
dimensional orbifold compositiohe mapsfg are called thattachlng map®f X. Each
X;, Y; x [0, 1] is called acomponent ofX . The equivalence relatior in

[I (xitudy;ixi(o,1D)

iel,jeJ
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is defined to be generated by
v, &)~ f5(»), =01, yelY, jelJ.

We call the identified spade];; ;c,(1Xil U Y;| x [0, 1])/~ theunderlying space of,
denoted by X|, and call the identified space

{(UEXl)u(Uz(Yj x [0,1]))}/~

iel jeJ

thesingular set ofX, denoted byX X.

From now on, we assume that the underlying spades connected. Note thak;| and
|Y; x (0,1)| are embedded ifX|. As in the case of the “mapping cyIinderf;?(s) may
have intersections and self-intersections.

For an orbifold composition we consider a 1-compl&¥) as follows: Each vertex
corresponds to each componéft each edge corresponds to each compoFgert[0, 1],
and a vertex belongs to an edge if and only if for the corresponding compdfjent®, 1]
andX; there exists an attaching map between them. The formal definition is given in the
following.

Definition 3.2. Let X = (X;,Y; x [0, 1],f/§)l'ej"/€]’8:(),l be an orbifold composition.
Define the identified spae& X) by | X|/ ~ where

there is some € I such thatv, y € | X;|/~, or
XXy &
Y {there are somg € J andr € [0, 1] such thate, y € |Y; x ¢]/~.
We callC(X), eachX;, eachY; x [0, 1], and eachr; x % the associatedl-complex a
vertex orbifold anedge orbifold ofX, and thecoreof Y; x [0, 1], respectively.

Next we consider an isomorphism of orbifold compositions as a map which is a
componentwise isomorphism and commutes with the attaching maps. See the following
definition.

Definition 3.3. Let

X=(X;,Y; x [0, 1],f;) X'=(X;. Y, x[0,1], g7)

iel,jel,e=0,1’ keK,teL,e=0,1

be orbifold compositions. We say that and X’ are isomorphicif there exist a set of
maps{y;, ¥;j}ier, jes and bijectionsy: I — K, &:J — L such that, after changing the
orientations of0, 1]'s if necessary, the following conditions hold:

(1) for eachi € I, ¢; is an isomorphism (of orbifolds) frorX; to X:W.). And for each

j €J, ¥; is anisomorphism (of orbifolds) frorfi; x [0, 1] to Yé(j) x [0, 1],

(2) foreachj € J,ande =0, 1, ¢i(j.e) 0 f7 = gf(;y 0 (Wil ¥j x€).

The homeomorphism : | X| — | X’| naturally induced by{y;, ¥;}ici, jes is called an
isomorphism fronX to X’.
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Definition 3.4. Let X = (X, Y x [0, 1], f{)kek teL.e=0,1 @and X" = (X, Y]’. x [0, 1],
f’j)ie/,jej,szo,l be orbifold compositions. We say that is a covering of X if there
exists a set of mapi;, ¥;}ier, jes Such that, after changing the orientationg@f1]’s if
necessary, the following conditions hold:
(1) eachy; is a covering map (of orbifolds) frork; to X;,, wherek; € K, and eachy;
is a covering map (of orbifolds) frorﬁj’. x [0,1]to Y¢; x [0, 1], wherel; € L,
(2) for eachj € Jande =0,1, Qi(j,e) © f/j = ffsj o (w]| Y// X €),
(3) the continuous map :|X’| — | X[, which is naturally induced bYy;, V}icr, jer,
is onto and induces the usual covering map figftj — p~1(XX) to |X| — £ X.
We call the above map a covering map fronX’ to X.

Remark 3.5. In the above definition, if each componeXif is the universal cover of a
componentXy, , then for some base poing € | X| — XX, any path? with the base point
xo such that Int N XX = ¢, and any poinfig € p~1(xo), there exists a unique lift of
with the base pointp. This holds because thg; ). are monic.

Definition 3.6. Let X be an orbifold compositionsg € | X| — X X a base point{ a path
with the base poinkg such that Int N XX =@, andp: X—> X any covering. Fix any
point o € p~1(xo). Suppose there is a coveriig X — X such that each component of
X is the universal cover of a component%f Fix any pointtg € p~1(%o). By Remark 3.5,
there exists a unique lift to X of ¢ with the base pointp. Then we can determine a lift
Z of £ uniquely, by putting = p o ¢, which is called thecanonical lift of ¢ with the base
point xo.

Definition 3.7. Let X', X be orbifold compositions, and: X’ — X a covering. We define
thedeck transformation grouput(X’, p) of p by

Aut(X’, p) ={h: X' — X' | his an isomorphism such thato i = p}.

Definition 3.8. Let X, X be orbifold compositions, ang:X —> X a covering. We say
that p is a universal coveringf for any coveringp’: X’ — X, there exists a covering
q:X — X' suchthalp = p’ogq.

Lemma 3.9. For any orbifold compositionX, there exists a unique universal covering
pX—X.

Proof. PutXp=|X|— X X. Let H be the normal subgroup af (X) normally generated
by normal loops around& X. Then, the Fox completion of the covering ¥§ associated
with H can be shown to be the universal coveXoin the sense of orbifold composition.

The unigueness is derived from the facts that an orbi-covering is an ordinary covering
on the nonsingular part and that the ordinary covering associated with the same subgroup
is unique. O
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We sometimes denote an orbifold composition or a good orbifoldy ()~(, p, XD,
wherep: X — X is the universal covering and| is the underlying space df. A good
orbifold is considered as a special case of an orbifold composition.

Proposition 3.10. Let X, X be orbifold compositions ang: X—>Xa covering. If the
restriction of p to each component df is universal and’(X) is a tree, then the covering
p:X — X is universal.

Proof. Take any covering’: X’ — X. We construct a covering:)? — X’ as follows:
take any poinfig € |)~(| — p~1(ZX) and fix it. Forx € |55|, take a simple patﬁ; with the
base poinkp and end poing, satisfying the following:

1) (0,1 C IX| - p~L(ZX).

(2) 2;[0, 1]/~ is a simple path i€ (X).

Putxg = p(%o), £z = p o £z, and Ietx(’)s p”l(xo). Let ¢%. be the canonical lift of;
with the base point,. Then a mapping : X — X' is defined byg (¥) = ¢7.(1). This map
is well-defined, and we can verify that it is a coveringang p’ og. 0O

Definition 3.11. Let X = ()N(, p,1X]) be an orbifold composition with the base point
x0€|X|— X X. Put

2(X,x0) = ala:[0,1]— X is a continuous map with
p(@(0)) = p(@(1)) = xo}.

For any two elementd, 8 € £2(X, xo), @ is equivalent tof, denoted by ~ §, if there
exists an element € Aut(X, p) such thata(0) = t(8(0)) and &(1) = t(8(1)). The
relation~ is an equivalence relation am@(X, xg)/~ is a group with the product defined
by

[&]-181=[a - p(B)],
wherep € Aut(X, p) is the element such that(3(0)) = @(1). The groupQ(f(,xo)/~
is called thefundamental group ofX and is denoted byrfrb(X,xo). Note that the
fundamental groupfrb(x, xp) is isomorphic to the deck transformation group &t p).

By the symbolos, we mean the element of A(Lf(,p) which corresponds ter €
orb
(X, x0).

Definition 3.12. Let X = (X, p, |X|) andY = (Y, q, |Y|) be orbifold compositions (or
orbifolds). By an orbi-map f: X — Y, we mean the paitf, /) of continuous maps
f:1X|— |Y|and f: X — Y satisfying
() fop=qof, 5 ) 3
(i) for eacho € Aut(X, p), there exists € Aut(Y, ¢) suchthatf oo =710 f,
(iii) there existsx € |X| — ¥ X such thatf (x) e |[Y| — XY.

Definition 3.13. Let X = (X, p, |X|) andY = (Y, ¢, |Y|) be orbifold compositions, and
f=(f,f):X — Y be an orbi-map. By the definition of an orbi-map, there exists
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point x € |X| — XX such thatf(x) € |[Y| — XY. Then the induced homomorphism
fo:O®(X, x) — 7d™(Y, f(x)) of f is naturally defined by, ([&]) = [ f o &].

For an orbi-map and a covering between orbifold compositions, we can define the
notions of C-equivalence, orbi-homotopy, and lifting as well as those for an orbi-map and
a covering between orbifolds. We derive relations among fundamental groups, coverings,
and liftings similar to those for orbifolds. See [21] for the orbifold case.

The next proposition can be proved in a way similar to one in [21, Proposition 2.2].

Proposition 3.14. Let X = (X, p, |X|), ¥ = (Y, q.|Y|) be orbifold compositions, and
f=(f, f):X — Y an orbi-map. Then fofa] € 79(X, x),

folala=(f(l@n),of.

4. The tree constructions of the universal coverings
4.1. The amalgamation case

Let X be an orbifold composition and x [0, 1] one of the edge orbifold components
of X. Suppose thaX — Y x (0, 1) consists of two disjoint orbifold composition&® and
X1, and attaching orbi-maps froiin x ¢ are mapped int&¢ and denoted by

fEiY xe—> X%, £=0,1.
We construct the universal covering of an orbifold compositioby the “tree construc-
tion”, and show that the fundamental grompfb(X) of X is the free product oirfrb(XO)
andnorb(Xl) with the amalgamated subgrouﬁ&rorb(Y x g),e=0,1.

Let p* (X X% £=0,1,andg: Y x [0,1] — Y x [0, 1] be the universal coverings.
Put H® = ffnorb(Y x €) and A® = (a left coset representative systemnﬂ’b(xg) by
H¢, which includes the identity), ¢ =0, 1. A groupG is defined as the free product
of 79(x%) andz9™®(Xx1) with the amalgamated subgroup and H*, under the map
Lo (91, denoted by

G = (X% 2 XY | HO = HY, flo (7).
And three subset&, K°, K of G are defined by
K= {e,ala2-~-am |ai #£e, aj GAOUAl,
ai, ai+1 are not both iM® or both inA*},
Koz{e,a1a2~~~am eK|aye Al},
Klz{e,alaz~-~am €K |an GAO}.

For eachk € K*, prepare a copyX; of X*, and the identity map fd X; — X*. Note
that there are #° equivalence classes of AGE, p )fS(Y X €) mOd(HS)A, e=0,1.For
each(k,a) € K% x A, prepare a copy(k a) % [0, 1] of Y x [0, 1], and the identity map

Id(k,a) . Y(k,a) X [0, 1] — Y X [0, 1].
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Let f¢: Y x ¢ > X¢ be structure maps of?, e =0, 1. Then we can define structure maps
f&’a) Y X~ Xfl by

(ido)_loaAofooidg”,)'?(ka)X0—> )?0 ife=0

(id »h loerf oidk,a): Y(ka)X]-_)Xka ife=1, a+#e,

(idg) loego f oide.e): Y(e,e) x1— X(} ife=1 a=k=e,
(id%)’loaf4 o flo idk.e): Yikey X 1— X% ife=1 a=e#k,

wherek = ta’, ¢ e K1, a’ € AL,

feay =

Put X = (Xk,X,z,Y(k o % [0,1], f(k a),f(k o)kekO, teklqea0- Define the projections
pk XS — Xfand qq.q): Y(h o) X [0,1] = Y x [0,1] by pk =pfo Id and gg.q) =

go |d<h,a), ke Kt =01, (h,a) € K° x A respectively. Note thapk and gg.q)
are the universal coverings. Furthermore, it is easy to seeC(i¥t is a tree. Hence by
Proposition 3.10,

r= U (ivane):X—>x

keK€, ¢=0,1,
(h.u)eI(OxAO

is the universal covering.
Lemma 4.1. 79(X, xo) = G

Proof. Fix a base pointg € fO(Y x 0) — XX of X and X°, and a base point; €
fL(Y x1)— ¥ X of X1. Take a pathf : [0, 1] — |V x [0, 1]| — £ X such that(r) € |Y x 1],
f(€(0)) = xo, and £ (£(1)) = x1. Fix a base poinfg € (p2)~1(xo) of X0. Recall that

Aut(X, p) = 79 (X, x0) = 2(X, x0)/~ .

Choosea € £2(X, xo) such thata(0) = X, &/~ is a simple path in the associated
1-complexC(X) of X, and if @ goes through(ge..))~*(Y x [0,1]), @ always uses
a lift of ¢ by g(k,a). The restriction ofa to each vertex orbifold component is an
element ofnfrb(XO,xo) or nfrb(Xl,xl). Denote such ordered elementsdy..., g €
9™ (X%, x0), £ =0, 1, and define a ma@ : 2(X, xo) — G by ®(@) = g1- - gm-

For eacha € 2(X, xo), there is a patle’ € (X, x0) such thatz ~ & and®(&@') =
ai---arah,whereas ---a, € K° a € A° andh € HC (possiblya = ¢ and/orh = ¢). Since
@ (@) = ®(&'), we obtain the mag : 2 (X, xg)/~ — G defined byd ([&]) = @ (@).

It is easy to verify that® is injective, surjective, and homomorphicO

4.2. The HNN case

Let X be an orbifold composition and x [0, 1] one of the edge orbifold components of
X. Suppose thaX —Y x (0, 1) is a (connected) orbifold compositidfi, and the attaching
orbi-maps front x ¢ are denoted by : Y x ¢ — X’, ¢ =0, 1. We construct the universal
covering ofX in a similar manner to the amalgamation case, and show that the fundamental
groupz™(X) of X is the HNN extension of 2™ (X").
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Let p:)?’ — X', andg: Y x [0,1] — Y x [0, 1] be the universal coverings. PHY® =
ffnf’b(Y x ¢) and A® = (a left coset representative systemnfl’b(X’) by H¢, which
includes the identity), ¢ =0, 1. A groupG is defined as the HNN extension mfrb(X’)
relative toH°, H and .} o ()1, denoted by

G=(nX"), 1117 H Y = HY, flo (fO)71).
And a subseK of G is defined by

K = {e, a1t®last®? - aut® | a; # e, a; € A%u AL
if a; € A®, theng; = (—1)°, ¢ =0,1}.
For eachk € K, prepare a cop}, of X', and the identity map jd X, — X'. Note that
there are #¢ equivalent classes of A(JY/ p)fs(Y x €) mod (H®)4, ¢ =0,1. And for
each(k,a) € K x AO, prepare a copy’(k « Of ¥, and the identity map igq): Yx.a) X
[0,1] — ¥ x [0, 1]. Let fe: Y x ¢ > X' be structure mapsg,= 0, 1. Then we can define
structure mapsf(k 2 Y(k a) X & —> X’ by

(idi) T oas o fOoidg. a)-y(ka) x 0— X if e =0,

f& o= (idkar) ll oep 0 fl oidk,a): Y(k oy x1— Xkat If e = 1/, a#e,
’ (idgs) ™ oerf Old(kyg).Y(kyg) x1— th fe=¢'=1 a=e,

(id)toa'ao floidue: Yuex1—>X, ife=—e=1a=e,
wherek = ¢a't?’, ¢ e K1,

PUtX = (X[, Yit.a) X [0, 11, £Q o> f& ap)kek acao- Define the projectiony : X, — X’

andq(k,a) : ?(k,a) x [0,1] — Y x [0,1] by py = p oid; and Gka) =4 © id(k’a), ic ek,

e =0, 1, respectively. As in the amalgamation case, we can seg fyatUqg.q)) : X — X

is the universal covering and obtain the following lemma.

Lemma 4.2. 72™(X, x0) = G

5. Extensions and constructions of orbi-maps

Definition 5.1. Let X be an orbifold composition. Define

01(X)={f:0D — X | D is adiscal 2-orbifold f is an orbi-map,
02(X)={f:8S — X | Sis aspherical 2-orbifoldf is an orbi-magp,

03(X)={f:DB — X | DB is the double of a ballic 3-orbifold,
f is an orbi-map.

We call f:9D — X € 01(X) trivial if there exists an orbi-mag: D — X such that
gloD = f, and callO1(X) trivial if any element ofO1(X) is trivial. We call f: S —
X € 02(X) trivial if there exists an orbi-map: ¢ xS — X suchthag|S = f, wherec xS
is the cone orf, and callO2(X) trivial if any element ofO2(X) is trivial. We define the
trivialities of O3(X) similarly.
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Note that if O; (X) is trivial, then any coverin& of X inherits the triviality.

Proposition 5.2. Let F be a compac®-orbifold and X be an orbifold composition. If
01(X) is trivial, then for any homomorphisg: 79(F, y) — 79™(X, x), there exists an
orbi-map f: (F, y) — (X, x) such thatf, = ¢

Proof. Let Fp = F — IntU(X F), whereU (X F) is the small regular neighborhood of
X F. We construct an orbi-map frorfip to X associated witly. Since O1(X) is trivial,
This orbi-map is extendable to the desired orbi-map.

The following Propositions 5.3 and 5.4 are proved similarly.

Proposition 5.3. Let M be a compacs-orbifold and X an orbifold composition such that
01(X) and O2(X) are trivial. Then for any homomorphisgt 79™(M, x) — 7d™(X, y),
there exists an orbi-mag : (M, x) — (X, y) such thatf, = ¢.

Proposition 5.4. Let M be a3-orbifold andX be an orbifold composition such th@g(X)
is trivial. If f, g: M — X are C-equivalent orbi-maps, thefiand g are orbi-homotopic.

The following Lemmas 5.5-5.7 give sufficient conditions which enable us to extend
certain orbi-maps.

Lemma5.5. Let X be an orbifold composition) a discal 2-orbifold, and f:9D — X
an orbi-map. IfFix([ f14) # 9, then f is extendable to an orbi-map from to X.

Proof. Letq: D? — D be the universal covering. Choose a pairg Fix([ f14). We can
construct the structure map of the desired orbi-map by mapping the cone pdiAttofx
and performing the skeletonwise and equivariant extensian.

Let S be a spherical 2-orbifold ang: S — S the universal covering. Letbe an element
of nfrb(S) andx, the point of XS such thaf¢]* = t, where? is the normal loop around
x; andk is an integer. By the symbgi(¢), we mean the local normal loop aroungdsuch
thate =m=1. u(¢) - m, wherem is a path. Leti, be the point of;~1(XS) such that the
lift of () following the lift of m~1 is a path around,.

Lemma 5.6. Let X be an orbifold composition§ a spherical2-orbifold, and f : S — X
an orbi-map. Suppose that there is a paint Fix(£.72™(S)) 4, and for anyr € 72™(5)
there is an interval,, includingd and f (;) which is fixed by 4, whereo = f,.(1). If 72
of the universal covek of X is 0, then f is extendable to an orbi-map from the conen
to X.

Proof. Letg: S — S be the universal covering : S — X the structure map of, and
B = ¢ * § be the cone o5, wherec is the cone point oB. Letg : B — B be the universal
covering and =g 1(c);i.e., B=¢é* S andg(tx + (1 —1)é) =tq(X) + (1 —t)c, X € S.
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We can construct the structure map of the desired orbi-map by mapping, ¢ x i, into
¢, and performing the skeletonwise and equivariant extensian.

Lemma5.7. Let X be an orbifold compositionB a ballic 3-orbifold, and f : DB — X
an orbi-map. Suppose that there is a pain¢ Fix(£,79P(8B)) 4, and fort e 798 B)
there is an interval,, includingd and f (x;) which is fixed by 4, whereo = f,. (7). If 72
and 3 of the universal coveX of X is 0, then f is extendable to an orbi-map from the
cone orDB to X.

Proof. The proof is similar to that of Lemma 5.6.00

Lemma 5.8. Let M be an irreducibles-orbifold. Letp : M — M be the universal covering
ando € Aut(M, p) be an orientation preserving element of finite order. Suppose’%ht
noncompact. Then
(i) Fix(o) # @ andis homeomorphic to an interv@le., homeomorphic to eith¢o, 1],
[0, 1), or (O, 1)),
(i) if M is orientable, therO1(M) is trivial.

Proof. Note first that (i) follows from (i) and Lemma 5.5, so we need only prove (i).

(i) Let n be the order o& andG be the subgroup of A, p) generated by . Let M
be the orbifoldiVI/G andg : M — M be the universal covering.

First we claim that there is no trivalent point mM. Otherwise, there is a noncyclic
spherical 2-orbifolds in . By the Orbifold Loop Theorem 1.1, : 79™(S) — 7™ (M)
is monic. This contradicts the fact th;af’b(ZVI) =G=2Z,.

Furthermore, since is orientation preservingX M has neither isolated points nor
mirror boundaries. Hence, each componen}?offi is either an interval or a simple closed
curve properly embedded |#|, and so is each component of Fi® in M.

By the lifting of irreducibility [24, 6.13],M is irreducible. Since¥/ is noncompact,
Mis a homology 0-disc. (See [2].) By [2, Theorem 5.2], in case prime, FiXo) is a
homology 0-disc. Then, Fix) is not empty and is an interval.

Consider the case= pr, p is prime and- > 1. Sinces” has prime order, Fi") is an
interval. Hence, from the fact that Kix) C Fix(c"), Fix(o) is either an interval or empty
set. To complete the proof, we have only to show thatdix~ . Suppose Fife) = @. Let
R be the subgroup off generated by”. Let M be the orbifoldi /R, t: M — M be the
universal covering, and: M — M be the covering witly =7 o 7. Note thatf is a regular
covering sincer is a normal subgroup df. Let L be the interval Fixs”) andL = M.
Note thatt|L is a homeomorphism from to L and:~1(L) = L. For anyr € Aut(M, 7),
(L)=t(TM)=XM=L.

We claim thatr acts onL preserving the orientation. Otherwise, sincpreserves the
orientation ofM, X M must have a trivalent point of the dihedral type. Contradiction.

Combining this fact and the finiteness of the orderrofwe conclude that acts
trivially on L. That is, L = Fix(Aut(M, 7)). Hencef|L is a homeomorphism from to
L, whereL = i(L). Moreover, since is regulari=X(L) = L. Thus,q|L = (f|L) o (t|L)
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andg~YL) =t~17 (L)) =+"Y(L) = L. This implies that, for anw € Aut(M, q), L =
Fix(w). Contradiction. O

Lemma 5.9. Let M be an irreducible3-orbifold, andp : M — M the universal covering.
Let G be any subgroup oAut(M, p), which is isomorphic to the orbifold fundamental
group of a sphericaR-orbifold S such that all elements @ preserve the orientation of
M. Suppose tha¥/ is noncompact. Then

(i) Fix(G) # 4,

(ii) if M is orientable, then th®;(M)’s are trivial, i =1, 2, 3.

Proof. Note first that (i) follows from (i), Lemmas 5.5-5.8, so we need only prove (i).
In caseG = Z,, this lemma reduces to Lemma 5.8. So we may assumeGhata
triangle group. Letd be the orbifold /G andq: M — M be the universal covering.
Sincen?™(S) = #9™(M), we can construct an orbi-map: S — M such thatf, is an
isomorphism by using Proposition 5.2 and Lemma 5.8. From the compactngsthefe

is a compact 3-suborbifolty of M such thatf (S) C IntN.

PutN = {(N, f) | f is an orbi-map frons to M such thatf, : 79P(S) — 79™(M) is
an isomorphism, and/ is a compact 3-suborbifold a¥ such thatf (S) c Int N}. Then
N # @. We define thecomplexityc of an elementN, f) of N as follows:

Let L be the maximum of the orders of the local groupsm‘fl)ZVI and s be the
minimal number of the Euler numbers of all componentsddf. Choose numbers
reZ andm € {0,1,2,...,L — 1} satisfying—r + imn —1)/L <s < —r + m/L.
Let n_,y;1j/. be the numbers of the components @V whose Euler numbers
are more than—r + i + (j —1)/L and not more than-r + i + j/L. Define
(N, f) = (erqm/Ls Nep e (mD)/Ls - - - Ner 41, N—p4141/L, - - ., n2) and orderc(N)
lexicographically.

Sincec(NV) > (0, ..., 0) and has discrete values, there is an elen®gt fo) € N which
attains the minimal value af(\).

Claim. Each component dfNg is a spherical-orbifold.

Otherwise, we can find an eleme(Yy, f1) € N such thatc(N1, f1) < c¢(No, fo) as
follows: Let S1, ..., Sy be a maximal system of incompressible spherical 2-suborbifolds
of N and By, ..., By be the ballic 3-suborbifolds 0f7 such thatdB; = S;. Put Ng =
NoU B1 U ---U Bg. Note that(No, fo) € N. From the minimality ofc(No, fo), there is
a nonspherical compone#t of d No. Sincenf’b(ﬁ) is finite, F is never incompressible
in M. Let D be a compressing discal 2-orbifold with respecttoUsing the innermost
arguments, we can replace the p@it D), if necessary, by one satisfyifyNdNo =9 D.
Hence it follows that either I0D) C M — Ng or Int(D) C Int(No).

In case IntD) C M — No; let N1 be the orbifold derived froniVo by attachingD x I
as a 2-handle. Put, = fp. Then,(N1, f1) e N.

In case In¢D) C Int(No); let N’ be the orbifold derived fron¥V by cutting open along
D. First, we consider the case thalt consists of two components; and N,. Then,
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9™ (No) is the free product of2™(N1) and79™(N) with the amalgamated subgroup
nfrb(D) under the maps naturally induced by inclusions. Si(\ﬁg*nf’b(S) is a finite
subgroup ofnfrb(ﬁo), by [14, Lemma 6.8(1)](f0)*nfrb(S) is conjugate to a subgroup of
eitherz 2™ (N1) or 7d™(N,). Hence, we may assume that there is an elementr " (N o)
such that

g((f0).m2™(8)) g™t < mPP(Ny).

Let ¢ be a homomorphism from?™(S) to 7™ (N1) defined byg(o) = g(fi(o))g™
for o € nfrb(S). From thg constructiong is irreducible. Hence, by Proposition 1.5,
N1 is irreducible. Letpy : N1 — Ni be the universal covering, andbe any element of
Aut(N1 p1) of finite order. In case}#"’b(Nl) 0o, by Lemma 5.8¢ has a fixed point
in N1. In case #Orb(Nl) < 00, each component afN; must be a spherlcal 2-orbifold.
SinceN1 is irreducible,N1 is a ballic 3-orbifold. Theng has a fixed point inV1. Hence,
by Proposition 5.2 and Lemma 5.5, we can construct an orbi-fpap — Nj such that

(f1)x = @ 70P(S) — 70P(Ny).

Sinceg : 7d™(S) — 72™(M) is an isomorphism, so i§f1). : 79™(S) — 72™P(M). Thus,
we have(N1, f1) e N.

IncaseN’ is connectedzzf’b(ﬁo) is an HNN group. Then, by using [14, Lemma 6.8(2)],
we construct N, f1) € NV, similarly.

In any case, it is clear tha{N1, f1) < c¢(No, fo), which yields the claim.

Let S1,...,8 be the incompressible spherical 2-orbifold components /8§, and
B1, ..., By be the ballic 3-suborbifolds aff such thab B; = S;. At least one of theB;’s
includesNg. Otherwise, it follows that InB; NInt No = ¢ for all i. Then,NgU B1U- - -U By
is a closed 3-suborbifold of; i.e., NoUBiU---UB = M. This contradicts the
noncompactness off. Thus, we may assume thBi > No. Hence, f(S) C Bi. On the
other hand, sincg, : 79™(S) — 79P(M) is an isomorphismf, : 79°(S) — 72™(By) is
monic. Furthermore, smcefrb(Bl) — 7P™(M) is also monlc,nf’b(Bl) is isomorphic
to 79P(M) (= 79(S)). Then, ¥ By is the same type a& (the cone ons). Let By be
a component of ~1(B1). Sinceq|B1: By — B1 is #norb(aBl) sheeted orbi-covering and
#nfrb(aBl) =#G < o0, ¢ X(By) = B1. That is, B is invariant undeiG. Hence, for any
o € G, o fixes a line segment including(v), wherev is the trivalent point o2 B;. O

1

Proposition 5.10. Let X = (X*,Y x [0, 1], f¥).=0,1 be an orbifold composition, where
eachX? is an orientable, irreducibl&-orbifold, andY is an orientable?-orbifold. If the
universal coverings ok¢ andY are all noncompact, the®;(X) is trivial, i =1, 2, 3.

Proof. Let p: X — X be the universal covering. From the unigueness of the universal
covering Lemma 3.9, we may assume tlats the orbifold composition constructed as
illustrated in Section 4.

Claim. Let G be any subgroup oAut(X, p), which is isomorphic to the fundamental
group of a sphericak-orbifold. Then there is a vertex or edge orbifdfdof X such that
G(Z)=
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Considering the associated 1-complexX~qfthe claim is derived from Lemma 2.2. Then
the triviality of O1(X) follows from Lemmas 5.8, 5.5 and the claim. Note that the edge
orbifold is a good orientable and irreducible 3-orbifold.

Take any elemenff € 02(X), f:S — X. Let q:§—> S be the universal covering
and f§ — X the structure map off. Let B = ¢ « S be the cone orS and ¢ the
cone point of B. Let g:B = ¢ * S — B be the universal covering: = §1(c) and
GAi+1=-0) =tg(X)+ A —1t)c, i€ 8.

By the claim and Lemma 5.9 f, 77 orb($)) 4 has a fixed point, say, in a vertex or edge
orbifold Z of X.

Choose anyr € n rb(S) Let X; be the point defined in the paragraph preceding
Lemma5.6. We put = f(7). Sinceo4 fixes a vertex or edge orbifold, of X, it follows
thato, fixes an interval inZ, by using Lemma 5.8. Note that #'is any edge orbifold
fixed byoy, then the fixed set interval is a fiber @f. Hence, by Proposition 2.1, we can
find an interval connecting(%;) andd which is fixed byo4. Note thatro(X) = 0 from
the construction oX. Then the triviality ofO2(X) follows from Lemma 5.6.

All that remains to be shown is the triviality @s(X), which is derived from the facts
73(X) =0and Lemma5.7. O

Let X be an orbifold composition anfl be a core of an edge orbifold x [0, 1] of X.
When we consider each connected component (or its closurgj|ef |F|, it naturally
admits an orbifold composition structure by restricting the structucé.afle denote it by
X — F, etc. In this situation, a component of typex [, %] (respectivelyY x [e, %)),
¢ = 0,1, appears, and is called a closed (respectively open) half-edge orbifold of the
orbifold composition. Iterating this process, we can consider an orbifold composition with
several half-edge orbifolds. Concerning the new types of orbifold compositions described
above, the same arguments and statements hold as those in Sections 3-5.

6. More on orbifold compositions

Let X be an orbifold composition. An orbifoldl belongs to the seitX if Y satisfies one
of the following conditions:
(i) Y is a boundary component of a vertex orbifoldXfsuch thatY is disjoint from
any images of attaching maps ¥f
(ii) Y isthe core of a closed half-edge ¥fsuch thabY = ¢.

Theorem 6.1 (Transversality theorem).et M be a compact and orientabl@orbifold,
andX a3-orbifold composition with trivialD; (X)’s, i = 2, 3. Suppose that there is an edge
orbifold whose core is an orientable and nonspher2alrbifold F such thatO; (X — F)
is trivial, i = 2, 3. Then, for any orbi-magf : M — X, there is an orbi-mag: M — X
such that

(i) g is orbi-homotopic tof,

(i) each component gf1(F) is a compact, properly embeddédsided, incompress-

ible 2-suborbifold inM, and
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(i) for properly chosen product neighborhoofisx [—1,1] of F = F x 0in X, and
¢ NF) x[-1,1]of g7 1(F) = g~X(F) x 0in M, g maps each fibet x |[—1, 1]|
homeomorphically to the fibeg(x) x |[—1,1]| for eachx € |g~1(F)|, where
g:|M| — |X| is the underlying map of.

Proof. Let G be any component of ~1(F). LetUg andUy; be sufficiently small compact
neighborhoods o6 such thatf (Ug) C F x [—3, 11, Int(Ug) > U};, anddUq andaU;
are parallel inUg. By Proposition 5.10 and [21, 5.4], we may assume fHat; is an orbi-
map. Triangulate” x [—%, %] as a product. By modifying |U; to a simplicial orbi-map,
we have thaG is a compact, properly embedded, and 2-sided 2-suborbifdig,inNote
that this modification can be performed by an orbi-homotopy which fiMes Int(Ug).
Iterating the modifications, we may assume that each componghtlef) is a compact,
properly embedded, and 2-sided 2-suborbifolddnThe remainder of the proof is similar
to[21,5.5]. O

Theorem 6.2 (I-bundle theorem)Let M be a compact, orientable and irreducib&
orbifold with boundary, and{ be a3-orbifold composition. Lelf : (M, M) — (X, §X)
be an orbi-map such thaf, is monic. Suppose there is a path (1,91) — (|M| —
XM, |0M|), incompressible componenks, B1 of dM, and a componerd® of § X which
satisfy the following
() «(0 #a(l).
(i) f@(0) = f(al)e |6X| - TX.
(iii) [foal=21innP™(X), whered is a lift of « to the universal coveM of M and
=, N
(iv) B (respectively) includesu (i) (respectivelyf (a(0))), Ker(zd™(C) — 7™ (X))
=1,and(f|B;): B; — C is acoveringj =0, 1 (possiblyBg = B1).
ThenM is an I-bundle over a closeztorbifold.

Proof. Let no:m®™®(Bo, x0) — 7Y™(M,x0) be the homomorphism induced by the
inclusion orbi-mapBy — M and p: (A7[,)Zo) — (M, xo) be the covering associated with
nonfrb(Bo,xo). By an argument parallel to [23, 4.1 and 4.2], we can show Mais
compact. Hencep : (M, xo) — (M, xo) is a finite covering. Therefore,

|79(M, x0); nor?™®(Bo, x0)| < oo.

From [21, 6.3],M is an I-bundle over a closed 2-orbifold1

Theorem 6.3 (Retraction theorem)Let M be an orientable3-orbifold which is orbi-
isomorphic to an I-bundle over a clos@dorbifold F. Let X be a3-orbifold composition
with trivial 0;(X)’s,i =2,3.Let f:(M,dM) — (X, §X) be an orbi-map such that|a M
is not an orbi-embedding and such that, for each compoRea{ M, there is a component
C of §X with f(B) Cc C and(f|B): B — C an orbi-covering.

If there is a pointx € |F| — X F such thatf|(¢~1(x)) is orbi-homotopiq6.3.1)to a
path inC rel. {x} x a1, wherep: M — F is a fibration, then there is an orbi-homotopy
fi:M — X such thatfo= f, fi(M)CéX,andf;|0M = f|OM.
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Proof. Letsy, ..., sy be asystem of simple closed curves|éih— X F such that; Ns; =

x if i # j, and cuttingF open alongsy, ..., s; derives discal orbifold®s, ..., D,. We
construct the desired orbi-map: M x J — X, J =[0, 1] as follows: FirstH |[{¢p~1(x) x
J} is defined by the orbi-homotopy (6.3.1). Then we can defifigp—1(s;) x J} and
H|{¢~X(D;) x J} by using the triviality ofO2(X) and O3(X), respectively. See [23, 4.3]
for details. O

Remark 6.4. In Theorem 6.3, iff,: 79°(M) — 79™(X) is an isomorphism and’ is
orientable, then condition (6.3.1) holds. Furthermateis orbi-isomorphic to the product
I-bundle overBg, and By is orbi-isomorphic taC.

Proof. The proof follows by an argument parallel to [23, 4.6]0

Theorem 6.5 (Amalgamation theorem)Let A;, i = 1,2, be groups which contain
subgroups;, i = 1, 2. Suppose there is an isomorphigmH; — Hz. LetA], i =1,2, be
subgroups of; containingH; . If the naturalhomomorphism: (A} x A} | H1 = Ha, ¢) —
(A1% Az | HL = Ha, ¢) is an isomorphism, theA; = A}, i =1, 2.

Proof. See [3, Proposition 2.5].0

Theorem 6.6 (HNN theorem)Let A be a group which contains subgroups, i = 1, 2.
Suppose there is an isomorphigmH; — H». Let A’ be a subgroup ofi, containingH;,
i =1,2. If the natural homomorphism: (A’, ¢ | '~ YHit' = Hp, ) — (A, t |t~ 1Hyit =
Ho, ¢) is an isomorphism, theA = A’.

Proof. Let H be the subgroup ofA which is generated by{; and H,. Let G =
(H,s | s 1Hys = Ha, ). From the remark preceding Lemma 2 on p. 238 of [14],
(At 1t Hat = Hp, ) = (A, G | H = ¢(H), ¢)
and
(A ¢ |7 Hit' = Ho,¢) = (A", G | H = ¢(H), ¢).

Then, by Theorem 6.5, we can derive the conclusian.

7. Main Theorem
In this section, we assume that all free products with amalgamations are nontrivial.

Definition 7.1. Let M be a 3-orbifold with trivialO1(M). Let S be a closed, orientable,
nonspherical 2-orbifold. Supposefrb(M) = (A1 % A2 | HL = Ha, ¢) and there is an
isomorphismw:nfrb(S) — Hi. Let p; : X; — M be the orbi-covering associated with
A, i =1,2. Note thatO1(X;) is trivial, i = 1,2. PutH; = p*(H;), i = 1,2. Note that
(p1<lH1) ™ o ¢ (respectively(pai H2) " o ¢ o ¥) is an isomorphism frome2™®(S) to
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Hy (respectivelyﬁz). By Proposition 5.2, we can construct orbi-mags S — X1 and
ha:S — Xo such thath1. = (p1s|H1) L o ¢ andha. = (p2s|H2) L 0 ¢ 0 1. We call the
orbifold compositionX = (X1, X2, S x [0, 1], 1, h2) theorbifold composition associated
with (A1 * A2 | H1 = H>, ¢). We also define therbifold composition associated with
(A, 1|t~ YHit = Ho, ¢) similarly.

From Lemma 4.1 (respectively Lemma 4.2), it holds that

w2 (X) = (7P (X1) * 7LP(X2) | hywd™P(S) = hownd™(S), hov o h1 )

(respectively(m2™(X"), 1 | 1~ h1,7d(S)r = hou?™(S), how o h12)). Furthermore, we
have the following proposition.

Proposition 7.2. Let M be a3-orbifold with O1(M) trivial. Let S be a closed, orientable,
and nonsphericaR-orbifold. Supposer®™®(M) = (A1 * Az | H1 = Ha, ¢) (respectively
(A1 | 17 Hit = Ha,¢)) and there is an isomorphisny : 79™(S) — Hi. Let X be
the orbifold composition associated wit1 = Ao | Hy = Ha, ¢) (respectively(A,r |
1~ Hit = Hp, ¢)). Then there is an isomorphisin: 79™(X) — 79(M) such that
(i) w@d™(X) = A;, i =1,2 (respectively (OP(X")) = A),
(i) w(H)=H;, i=1,2 (note thath;, x2"™(S) = H;),
(i) ¥o(haohH)=poW.

Proof. Let ay,...,a, (respectivelybs,...,b,) be a generating system Oiffrb(Xl)
(respectivelyzf’b(Xz)). We can construct the desired isomorphigrby defining? (a;) =
p1x(a;) and¥ (b)) = p2«(bj). O

Definition 7.3. Let M be a 3-orbifold, ands be a closed, orientable, and nonspherical 2-
orbifold. We say thatS algebraically splitSnfrb(M) as an amalgamated free produi€t
nfrb(M) is expressed as a free product with an amalgamationx Az | Hy = Ho, ¢),
and there is an isomorphisin: H; — nfrb(S).

We say that the splitting abouwespects the peripheral structuef M if for each
component of dM, some conjugate of*nfrb(G) is contained in eitheA1 or Ao, where
n is the inclusion orbi-may — M.

Proposition 7.4. Let M be a compact, orientable, and irreducitBeorbifold. Let S be a
closed, orientable, and nonsphericabrbifold. Suppose algebraically splitSnfrb(M)
as an amalgamated free produgdi1 x A2 | H1 = H>, ¢) and this splitting respects the
peripheral structure ofM. Let X be the orbifold composition associated witd;
Ao | H1 = H>, ). Then there is an orbi-map : M — X such thatf, is an isomorphism
and £(dM) N (S x (0, 1)) = 4.

Proof. Since z¥™(M) has the form(Ay * Az | Hy = Ha, ), 7P (M) is infinite and
the universal cover oM is noncompact. Them1(M) is trivial using Lemma 5.8. By
Proposition 7.2, there is an isomorphiskn: nfrb(M) — nfrb(X) such that¥ (A;) =
79 (X;), W (H;) = H;, i =1,2,and¥ o ¢ = (hp. 0 hy}) o W. By Proposition 5.1001(X)



148 Y. Takeuchi, M. Yokoyama / Topology and its Applications 95 (1999) 129-153

and O,(X) are trivial. Hence, by Proposition 5.3, there is an orbi-nfapM — X which
induces the isomorphisn#¥. Then all we have to do is show that i is a component
of M, there is an orbi-homotopy? : F x [0,1] — X such thatH|(F x 0) = f/|F
and H|(F x 1) is an orbi-map into eitheX1 or X». We construct this orbi-homotopy
in a piecewise fashion. DefinH|(F x 0) = f’|F. Choose a triangulatiok|r| of |F]|
so that for each 2-simplex € K|, de N X F = ¢ and (Inte) N ¥ F = (at most one
point).

Let F1 be the subspace of x [0, 1] whose underlying space i|§(|(;)|| x |[0, 1]|.
From the hypothesis that the splitting respects the peripheral structure, some conjugation
of W(n*nfrb(F)) is contained in eithewfrb(Xl) or nfrb(Xz). Hence, we can extend
H|(F x 0) to (F x 0) U Fy such th<';1tH(K|(,1)| x 1) is included in eitherX; or X». Note
that

Ker (79™(X ;) — n0™(X)) =1

by the definition of an orbifold composition. So we can extaiif{(F x 0) U F;} to
(F x 0)U Fy U (F x 1) such thatd (F x 1) is included in eitheX; or X». Since02(X)
is trivial, we can extend |[{(F x O)U(F x h)U Fy}to F x [0,1] O

Definition 7.5. Let F be a closed, properly embedded, 2-sided, incompressible, and
separating 2-suborbifold iM. Let M1, M2 be the orbifolds derived fromM by cutting
open alongF andn; : F — M;, i = 1,2, be the inclusion orbi-maps. Note the™®(M)
is expressed as the amalgamated free pro(im?'lb(Ml) * nfrb(Mz) | nl*nfrb(F) =
ﬂz*nfrb(F), N2x © r;l;l). We say thatF geometrically realizes the algebraic splitting
(A1% A2 | Hy = Hp, ¢) of x¥™(M) if there is an isomorphisr# : 72™(M) — 7™ (M)
such that

() w@d(M)) = A;,i=1,2,

(i) ¥ d™(F xi))=H;,i=1,2,and

(ii)) ¥ omaon,)=goW.

Theorem 7.6. Let M be a compact, orientable, and irreducibBeorbifold. Let S be a
closed, orientable, and nonsphericabrbifold. Suppose algebraically spIitSnf'b(M)

as an amalgamated free produgd1 x A2 | H1 = H>, ¢) and this splitting respects the
peripheral structure of\f. Then there exists a geometric splitting realizing the algebraic
splitting above.

Proof. Let X = (X1, X2, S x [0, 1], h1, h2) be an orbifold composition associated with
(A1 * A2 | H1 = Ho, ¢). By Proposition 7.4, we can construct an orbi-mépM — X
such thatf, is an isomorphism and(@M) N (S x (0, 1)) = @.

Note that, by Proposition 5.1®); (X) is trivial, i = 1,2, 3. Since0;(X) is trivial,
i=123,j=120{(X—-Sx %) is trivial, i = 1,2, 3. From Theorem 6.1, we may
assume that each component (S x %) is a compact, properly embedded, 2-sided,
incompressible 2-suborbifold if, and f is transverse between product neighborhoods
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of f71(S x 3) and of S x 3. Let F1,..., Fx be the components of ~1(S x 3). Since
£ x %) NaM =}, eachF; isclosed; =1, ..., k. By [21, 7.2] and [23, 3.2], we may
assume thaf|F;: F; — S x 3,i =1,...,k, is an orbi-covering.

Claim 1. k£ =1. (By modifyingf through an orbi-homotopy.

Supposek > 2. Let My, ..., M, be the components derived froM by cutting open
along Fi, ..., Fy. From the surjectivity off,, there is a pathg:(I,d1) — (IM| —
M, f74(S x 3)) such thatB(0) # B(1), F(B(0) = f(B(L), and[f o ] =1 in
nfrb(X), wherej is a lift of B to the universal cover oM and f = (f, f). This path
B is called a binding tie and can be expressed as the fofm= «1--- ), such that
Inte; N f~1(S x 3) =0, fod& represents an element of eithel®(X1) or 79(X7) and
[foa;], [f oa;j;1] are not both imfrb(Xl) or both innfrb(Xz), whereg; is a lift of «;
to the universal cover o¥7. We may assume that the numbeis minimal. Then we claim
m = 1. Supposen > 2. Sincel f o @1l ---[f o&nl =1in7d(X), [f 0] € 7d™(S x 3)
for somei, i =1,...,m, by [14, Theorem 2.6]. Let be a loop inS x 3 — 2(S x 3)
such thaf¢] = [f o &1 in 72™(S x 3). Lety be a lift of ¢~* by the orbi-coveringf|F;,
with initial point «; (1), whereF;, is the component of ~1(S x %) including ¢; (1). In
casey (1) # «;(0), puts = a; - y. Otherwise, put = a1---j_1-y 1 @ip1---cm. IN
any case, by modifying along the product structure of the regular neighborhoo# of
we have another binding tie, i.e., a path(1, 1) — (M| — XM, f~(S x %)) such that
§(0) #8'(1), £(8'(0) = f(8'(L)), and[f 0 §'1 =1 in zd™(X), whered' is a lift of &
to the universal cover oM. Sinces’ intersects withf ~1(S x %) in fewer points than
B, this contradicts the minimality ofi. Hencem = 1. Then,g is included in one of the
componenty, ..., M;.

SupposeM; is such a component. We may assume tliad/1) C X1. Hence, by
Theorems 6.2, 6.3, and Remark 6.4, we can modgify7; through an orbi-homotopy rel.
dMj to an orbi-mapfi : M1 — X1 which satisfiesfi(M1) C S x % Hence we can remove
one or two ofFy, ..., F. Repeating this process 4f> 2, we can finally assume=0, 1.

If k=0, f*nfrb(M) < Aj or Ay. This contradicts the fact that, is an isomorphism and
the decomposition at (M) is nontrivial. Thusk =1.

Claim 2. f|F1: F1— S is an orbi-isomorphism.

Otherwise, we can remoug by using an argument similar to the proof of Claim 1.
Claim 3. F; is separating.

Otherwise, there is a loapin M, which intersectd transversely in a single point. By
Claim 2 and Theorem 6., o « intersectsS transversely in a single point. This contradicts
the fact thatS is separating.

Let M1, M> be the components derived froM by cutting open along”. Note that
f(My) € X; and (M)« 7d(M;) — 79™®(X;), i = 1,2, are monics. By Claim 2,



150 Y. Takeuchi, M. Yokoyama / Topology and its Applications 95 (1999) 129-153

Fim @™ (F) = m2™(S). Sincefunix = hix fx, finisndP(F) = hixmd™(S), i = 1,2. Hence,
all maps in the following commutative diagram are isomorphisms.

Mg () g ()
N1« h1s
7o (F) 79(s)
12x hoy

n2sm{"(F) ha2™(S)

f*|’72*7T](_)rb(F)
Thus, fi o (112« 0 n7,5) = (hae 0 h}) o fi. Note that

fe (M) # 72 (Mp) | 917 LP(F) = n2u 2™ (F), nai 0 13})

— (7P(X1) % 7P (X2) | h1umYP(S) = hourPP(S), hox o hTD)

is an isomorphism. By Theorem 6.5f|Ml-)*:nf’b(Ml-) — nf’b(Xl-), i=12, are
isomorphisms. Then the composite affand¥ given in Proposition 7.2 gives the desired
isomorphism. O

Definition 7.7. Let M be a 3-orbifold. LetS be a closed, orientable, and nonspherical
2-orbifold. We say thaf$ algebraically spIits;rfrb(M) as an HNN extensioif nf’b(M)
is expressed as an HNN extension, ¢ | t 1 Hit = Ho, ¢), and there is an isomorphism
W Hy— n90(S).

We say that the splitting abouwespects the peripheral structuf M if for each
componentG of dM, some conjugate o;f;*nfrb(G) is contained inA, wheren is the
inclusion orbi-map; — M.

Proposition 7.8. Let M be a compact, orientable, and irreducitBeorbifold. Let S be a
closed, orientable, and nonsphericabrbifold. Suppose algebraically splitSnfrb(M)
as an HNN extensionA, ¢ | t~1Hyr = Hj, ) and this splitting respects the peripheral
structure of M. Let X be the orbifold composition associated with, ¢ | =1 Hyt =
Hj, ¢). Then there is an orbi-mag': M — X such that f, is an isomorphism and
FOM)N(S x (0,1) =¢.

Proof. Similarly to Proposition 7.4. O

Definition 7.9. Let F be a closed, properly embedded, 2-sided, incompressible, and
nonseparating 2-suborbifold . Let M’ be the orbifold derived fromM by cutting open
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alongF andn;: F xi — M’,i =0, 1, be the inclusion orbi-maps. Note tha{frb(M) is
expressed as the HNN extension

(2P M), 1| 17 0 P(F x 0) 1 = nuw{™(F x 1), n1y 0 ng).

We say thatF geometrically realizes the algebraic splitting\, r | t~1H1it = H>, ¢) of
79" (M) if there is an isomorphisni : 72™(M) — 72™(M) such that

(1) ¥ @PPM)) = A,

(2) w(mind™(F xi))=H;, i=0,1,and

(3) ¥(nung) =g oW

Theorem 7.10.Let M be a compact, orientable, and irreduciti8eorbifold. Let S be a
closed, orientable, and nonsphericabrbifold. Suppose algebraically splitSnfrb(M)

as an HNN extensionA, ¢ | t~1Hyr = Hj, ) and this splitting respects the peripheral
structure of M. Then there exists a geometric splitting realizing the algebraic splitting
above.

Proof. Let X = (X, S x [0,1],h1,h2) be an orbifold composition associated with
(A,t | t=YHit = Hp, ¢). By Proposition 7.8, we can construct an orbi-mapM —

X such that f, is an isomorphism andf (M) N (S x (0,1)) = ¥. Note that, by
Proposition 5.1001(X), 02(X), and O3(X) are trivial. As in the proof of Theorem 7.6
(using the normal form of the HNN group), we can modjfithrough an orbi-homotopy
so thatf~1(S) consists of one, and only one, componé&nivhich is a closed, properly
embedded, 2-sided, and incompressible 2-suborbifoM.in

Claim 1. There is a loop inM| — ¥ M whose algebraic intersection number withis
one.

Since S is nonseparating irX, there is a loop8 in |X| — XX which intersectsS
transversely in a single point. Singg is an isomorphism, there is a loopn (M| — X M
such that f.[a] = [B8] in nfrb(X). We may assume that intersectsF transversely.
Since [f o a] = [B] in nf’b(X), there is an orbi-magh : ST x [0,1] — X such that
h|(S* x 0) = f o andh|(ST x 1) = B. Henceh is a map froms? x [0, 1] to |X| such
thati|(S1 x 0) = f o andi|(ST x 1) = B. Therefore, the algebraic intersection number
of f o ands$ is one. Sincef is an orbi-isomorphism betweedn x [0, 1] and S x [0, 1],
the algebraic intersection number@fnd F is also one.

Claim 2. There is a loop inM| — ¥ M whose geometric intersection number withis
one.(ThusF is nonseparating.

From Claim 1, there is a loop1 in |M| — XM which intersectsF' transversely, and
whose algebraic intersection number withis one. Letpy, ..., p2n+1, m > 0, be all points
of w1 N F. Supposen > 1. Then we may assume that the algebraic intersection number of
a1 andF at p1 is +1 and atp, is —1. Hence we can find a loag in |M| — XM which
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intersectsF transversely and; N F = a1 N F — {p1, p2}. Repeating this process, we can
find a desired loop.

Let M’ be the component derived from by cutting open along’. Note thatf (M') C
X and(f|M'), :nfrb(M’) — nf’b(X’) is monic. The remainder of the proof is similar to
the proof of Theorem 7.6 except for using Theorem 6.6 instead of Theorem®.5.

Acknowledgements

We wish to thank Mitsuyoshi Kato for his comments on our talk, which encouraged us
to improve this paper. We also thank the referee for his useful comments and the editor for
his detailed advises on our grammatical errors.

References

[1] F. Bonahon and L. Siebenmann, The characteristic toric splitting of irreducible compact 3-
orbifolds, Math. Ann. 278 (1987) 441-479.
[2] G.E.B. Bredon, Introduction to Compact Transformation Groups (Academic Press, New York,
1972).
[3] E.M. Brown, Unknotting inM2 x I, Trans. Amer. Math. Soc. 123 (1966) 480-505.
[4] W.D. Dunbar, Hierarchies for 3-orbifolds, Topology Appl. 29 (1988) 267-283.
[5] C.D. Feustel, A splitting theorem for closed orientable 3-manifolds, Topology 11 (1972) 151—
158.
[6] C.D. Feustel, A generalization of Kneser’s conjecture, Pacific J. Math. 46 (1973) 123-130.
[7] C.D. Feustel and R.J. Gregorac, On realizing HNN groups in 3-manifolds, Pacific J. Math. 46
(1973) 381-387.
[8] W. Jaco and H. Rubinstein, PL minimal surfaces in 3-manifolds, J. Differential Geom. 27 (1988)
493-524.
[9] W. Jaco and H. Rubinstein, PL equivariant surgery and invariant decompositions of 3-manifolds,
Adv. Math. 73 (1989) 149-191.
[10] K. Johannson, Homotopy Equivalence of 3-Manifolds with Boundaries, Lecture Notes in Math.
761 (Springer, Berlin, 1979).
[11] W.H. Jaco and P.B. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21
(Amer. Math. Soc., Providence, RI, 1979).
[12] H. Kneser, Geschlossene Flachen in dreidimensionalen Mannigfaltigkeiten, Jahresbericht der
Deut. Math. Verein. 38 (1929) 248-260.
[13] S. Kwasik and R. Schultz, Icosahedral group actiong&dninvent. Math. 108 (1992) 385-402.
[14] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory, Ergebn. Math. Grenzgeb. 89
(1977).
[15] W. Magnus, A. Karras and D. Solitar, Combinatorial Group Theory (Wiley, New York, 1966).
[16] W.H. Meeks and S.T. Yau, Group actions BA, in: The Smith Conjecture (Academic Press,
New York, 1984) 169-179.
[17] W.H. Meeks and S.T. Yau, Topology of three-dimensional manifolds and the embedding
problems in minimal surface theory, Ann. of Math. (2) 112 (1980) 441-484.
[18] W.H. Meeks and S.T. Yau, The equivariant Dehn’s lemma and loop theorem, Comment. Math.
Helv. 56 (1981) 225-239.
[19] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. USA 42 (1956)
359-363.



Y. Takeuchi, M. Yokoyama / Topology and its Applications 95 (1999) 129-153 153

[20] J.P. Serre, Trees (Springer, Berlin, 1980).

[21] Y. Takeuchi, Waldhausen’s classification theorem for finitely uniformizable 3-orbifolds, Trans.
Amer. Math. Soc. 328 (1991) 151-200.

[22] W.P. Thurston, The geometry and topology of three-manifolds, Mimeo-graphed notes (Prince-
ton Univ., Princeton, NJ, 1978).

[23] Y. Takeuchi and M. Yokoyama, Waldhausen'’s classification theorem for 3-orhifolds, Preprint.

[24] Y. Takeuchi and M. Yokoyama, PL-least area 2-orbifolds and its applications to 3-orbifolds,
Preprint.

[25] B. Zimmermann, Some groups which classify knots, Math. Proc. Cambridge Philos. Soc. 104
(1988) 417-418.



